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Abstract

In this paper we give another characterization of the strictly nilpotent elements in the Weyl
algebra, which (apart from the polynomials) turn out to be all bispectral operators with polynomial
coefficients. This also allows to reformulate in terms of bispectral operators the famous conjecture,
that all the endomorphisms of the Weyl algebra are automorphisms (Dixmier, Kirillov, etc).
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0. Introduction

In a recent series of papers [13-15] there has been made an attempt to broaden the
classification of bispectral operators that was started by Duistermaat and Grinbaum in [9]
and continued by Wilson in [18]. The present paper could be considered as yet another step
in this direction. | believe, however, that the results could be of interest also to specialists in
other areas of research, in particular connected to the Weyl alggbFar this reason | will
try to present the material without using any specific knowledge on bispectral operators.
To explain the main message of the paper let me first recall some definitions and results.

In what follows we will consider the algebry in its standard realization — i.e. as the
algebra of differential operators with polynomial coefficients. An eleniért A4 is said
to act nilpotently on a non-constant elemeHte A, when there exists a positive integer
suchthat af} (H) = 0. An element istrictly nilpotent if it acts nilpotently on all elements
ofA1. Slightly paraphrasing Dixmier the strictly nilpotent elements are characterized as

E-mail address: horozov@fmi.uni-sofia.bg (E. Horozov).
1 Supported by Grant MM 1003-2000 of NFSR of Bulgaria.

0007-4497/02/$ — see front matt€r 2002 Editions scientifiques et médicales Elsevier SAS. Tous droits réserveés.
PIl: S0007-4497(02)01132-6


https://core.ac.uk/display/82346437?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

606 E. Horozov / Bull. Sci. math. 126 (2002) 605614

those that belong to the orbits of the operators with constant coefficients under the action
of the automorphism group Aut(A1) of As.

Now | pass to the other main object of the present paper — the bispectral operators. They
have been introduced by Grinbaum (cf. [10]) in his studies on applications of spectral
analysis to medical imaging. Later it turned out that they are connected to several actively
developing areas of mathematics and physics — the KP-hierarchy, infinite-dimensional
Lie algebras and their representations, particle systems, automorphisms of algebras of
differential operators, non-commutative geometry, etc. (see e.g. [1-3,5-7,11,16-19], as
well as the papers in the proceedings volume of the conference in Montréal [12]).

An ordinary differential operatak (x, d,) is called bispectral if it has an eigenfunction
¥(x,z), depending also on the spectral parametewhich is at the same time an
eigenfunction of another differential operatagz, 3,) now in the spectral parameter
In other words we look for operatois, A and a function/ (x, z) satisfying equations of
the form:

Ly = f(@)y, (0.1)
Ay =0(x)Y, (0.2)

where the functions are defined in some open se afidC2. A simple consequence of
the above definition is that the bispectral operdtacts nilpotently on the functiord (x).
This is the well known ad-condition from [9] which is widely believed to be not only
necessary but also a sufficient condition for the bispectrality. oprovided thatL is
normed as follows:

N-2
L=o"+> Vo, (0.3)
=0

i.e. Vy =1 andVy_1 = 0. In fact for operators imM; the first condition, i.eVy =1
suffices as by conjugating by expQ(x)) with an appropriate polynomiad(x) the
second condition can be achieved remainingtin In what follows we will also use this
relaxed norming condition, i.e. we will assume tliahas the form:

N-1
L=a"+) " v;o/, (0.4)
j=0
We are ready to formulate our main results.

Theorem 0.1. A differential operator from A of the form (0.4)is bispectral if and only if
itisstrictly nilpotent.

This result will be an easy consequence of the following theorem which will be
formulated purely in terms of the Weyl algebra, i.e. without referring to bispectral
operators.

Theorem 0.2. Anelement L € A1 isstrictly nilpotent if and only if it is either a polynomial
in x or hasthe form (0.4)and acts nilpotently on some non-constant polynomial 6 (x).
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In other words the strictly nilpotent operators (of non-zero order) are exactly those that
satisfy the ad-condition and (0.4).

The theorems announced above constitute the main body of the paper.

Next | will explain some further connections between the Weyl algebra and bispectral
operators.

In the fundamental paper [9] Duistermaat and Grunbaum classified the bispectral
operators of order two. Roughly speaking they are Darboux transformations of some Bessel
operators the only exception being the Airy operator. Another important result, due to
Wilson [18], is that all bispectral operators of rank 1 are Darboux transformations of
operators with constant coefficients. (This is not the original form of Wilson’s theorem
but a well known reformulation, cf. e.g. [14].) In [3] we suggested a general scheme for
producing bispectral operators by application of Darboux transformations out of “simple”
ones which apparently works for all differential operators (see also [14]). Now it seems
that the most difficult problem in the classification of bispectral operators is not to
perform Darboux transformations but to find a reasonable class of operators that could
be considered “simple”. The results of the present paper show thaj iall “simple”
operators are those that satisfy ttamonical commutation relation (CCR for brevity)

(L, P]=1, (0.5)
One can reinterpret the main results also as follows.

Proposition 0.3. The centralizer C (L) of any bispectral operator in A1 is generated by an
element L', which together with some other element P satisfy the CCR (0.5).

In view of this re-interpretation it is tempting to conjecture the opposite:
Conjecture0.4. If two elements Lo and P satisfy the CCR (0.5)they are bispectral.

The results of the present paper allow to easily show that the above conjecture is
equivalent to the famous conjecture of Dixmier—Kirillov:

Conjecture 0.5. If two operators L and P satisfy CCR then they generate A;. In other
words every endomor phism of the Weyl algebra is automor phism.

This equivalence is demonstrated at the end of the last section.
To make the presentation less dependent on [8] we recall some of the results that are
needed in Section 1. Then in the next section we give the proofs of the above results.

1. Preliminarieson the Weyl algebra

Before proceeding with the main results we briefly recollect some of the notions and
results from [8]. The first Weyl algebry is an associative algebra generated over a field
by two elementg andg, subject to the canonical commutation relati®@CR)[p, ¢] = 1.
In this paperF will be alwaysC, although most of the results can be reformulated for
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more general fields. In most of the paper will be realized as the algebra of differential
operators of one variabkewith polynomial coefficients, wherg = 3 andg = x. A major
tool in the the study ofi; is the introduction of suitable filtrations. L&t = " a; jq' p’/
and letE(G) be the set of all pair§, j), such that; ; # 0. If p ando are two real numbers
put

Vy0(G)= sup (pi+oj).

(i,/))€EE(G)

Denote byE (G, p, o) the set of pairsi, j), such thapi +oj = v, - (G). With eachG, p
and o we associate a polynomigl(X,Y) (in the commuting variableX andY) as
follows:

fxY= > a;x'vi (1.1)
a,',jEE(G,,O,G)

f will be calledthe polynomial o, o -associated with G. Now we ready to recall Lemma 7.3
from [8] on the “normal form” of a polynomiaf associated with an eleme@t To avoid
unnecessary for us terminology we recall it for the particular case that we need. Namely
we consider thatG € A; act onM € A1 nilpotently. Letp, o be positive integers and
let f andg be the polynomialsp, o)-associated wittG and M correspondingly and put
vV =10,,(G) andw = v, o (M).

Lemma 1.1. Assume that v + w > p + ¢ and that f is not a monomial. Then one of the
following cases holds:

(i) f* isproportional to g¥;

(i) o > p, p divideso and

FX,Y) =2X%(X/? 4+ puy)?; (1.2)
(iii) p > o, o divides p and

FOXLY) =2y (Y7 4+ ux)?; (1.3)
(iv) o = p, and

FXLY)=auX + o) (WX +V'Y)P, (1.4)

where A, u, ', v,v’" € C and «, 8 are non-negativeintegers.

At the end we introduce (after Dixmier) the following notations. L&®0) be a
polynomial ind. Then the automorphisdg, given by:

D5 = b (1.5)
is well defined. In the same way for a polynomilx) one defines:
g = ko (1.6)

A fundamental result from [8] is the following theorem, which will be used in the present
paper.

Theorem 1.2. The group Aut(A1) of automorphisms of A is generated by the automor-
phisms (1.5)and (1.6).
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2. Proofs

In this section we are going to give the proofs of the results from the Introduction. No
doubt the central one is Theorem 0.2 from which the rest are easy consequences.

The proof of Theorem 0.2 uses an induction reminiscent of “Fermat’s method of infinite
descent”, the main step of which in our case reduces the number of the factors of the
order N of L. This will be done as follows. We can suppose thatlepends on, i.e.
it is not a polynomial ind. First choose appropriately ando in such a way that the
polynomial f, (p,o)-associated with. has two terms, the first one beirig¥. Then
show thatf has the form from Lemma 1.1, (iii) wite = 0. The next step is to apply
an appropriate automorphism af;, sending our operatat to another one with similar
properties but reducing the number of factors of the onder

We need some preparations for the proof. Wiita the form:

L= Z a,-,jx"af (2.1)
(i, ))eE(L)

with ag y =1, a; y =0, i > 0. We would like to consider now the non-trivial cases when
at least one pointi, j) with i > 0 belongs toE(L), i.e. we assume thdt depends non-
trivially on x. Assuming that we will explain how to choose the weightsndo to fit our
purposes. Draw the line in the plaf#& passing through the poiii, N) and at least one
other point, sayk, m) with £ > 0 and such that all other points remain below or on the
line. Then one can choogeando to be one non-zero solution in integers of the equation
No = kp + mo. The solution does not depend on the speciiaon). This gives that the
polynomial f, (p, o)-associated witlL has the form:

FXY) =YY tap XY™+ apn #0. (2.2)

Here we have chosen the péir, m) so thatk is the greatest possible. Our main concern
will be to study the polynomiaf associated wittL. Introduce also the following object.
Let M be an element from the orbit af, which does not commute with and has the
form:

M:lI/Rlo(D510~-~olI/R,o(Dsl(x), (23)

whereR;, S; are polynomials with de§; > 3, degS; > 3. The numbef could be zero.
In this caseM = x.

Lemma2.1. Assumethat L isgivenasin (0.3)and that it acts nil potently on a non-constant
polynomial 6 (M) in M, where M isgivenin (2.3). Let k > 1 in the above expression (2.2)
of f. Thenv, (L) >p+o0.

Proof. Writing f in the form:

=" d g X +--), am#0 (2.4)

we can choose =k andp =N —m. If m =0 andk = N = 2 then according to [8],
Lemma 7.4 the element is strictly semisimple and hence acts nilpotently only on
elements of its centraliz&T (L), which cannot be true sindd does not commute with.
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(A simple independent proof is also possible, cf. e.g. [13].) Hence we can assume that
eitherm > 0 or max N, k) > 3. Then we have

Vpo(L)y=No=Nk>2N+k>2(N—-m)+k=p+o.

In the case ofz > 0 the second inequality in the above chain is strict, while in the case of
max(N, k) > 3 the first inequality is strict (recall that both > 2 andk > 2). O

Next find a normal form for the polynomial associated with

Lemma 2.2. Assume that L has at least one nonconstant coefficient V;(x) and satisfies
the conditions of Lemma 2.1 Then there exist numbers p and o, such that the polynomial
(p, o)-associated with L hasthe form

f=(" —xx)", a0, (2.5)

Proof. We choose the integegsando as explained above so that tlidhas the form (2.4).
This is possible due to the assumption thahas at least one nonzero coefficient. First
assume that in (2.3) we hake> 1. In this case according to Lemma 2,1, (L) > p +o.
Hence we can apply Lemma 1.1. Note that the polynortrab )-associated wittd (M)

has the formg = y X', hence the case (i) is ruled out. If we assume that the case (ii) of
Lemma 1.1 holds than expandingwe see that the second coefficient in the expansion
of L in 9, i.e. the coefficientay_1 is not zero which contradicts (0.3). By the same
reason the case (iv) is possible only with=v =1v' =1, u = —u' # 0 anda = B8 or
equivalent to it. Then applying the a linear automorphigidefined byw (3) = 3 + ux,

¥ (x) = x we can bring the polynomiaf into the formf = Y¥(Y + 2uX)%, keepingg
untouched (but no# (M)). Finally, if f has the form (2.3) wittk = 1 then it is exactly
f=Y"yN-" 4 xX). Summing up the above two cases as well as (ii) we get that in
generalf has the form:

f=Y"(r" =2X)", k>1 ar#0. (2.6)
Now we want to show that = 0. Perform the automorphish = @5, where Sp(d) =

/\‘1%. Thi§ autom_orphism maps into a new elemend (L) with a new polynomialfy
(p, o)-associated with. of the form:

fo= (=0 x*y", 2.7)
while the polynomial associated with(6 (M)) will become
go=70(X’ +/\_1Y’)l, yo#0. (2.8)

We are going to use tha® (L) acts nilpotently on®(@(M)). In what follows we
will drop the non-essential coefficienis’ and (—1)*. Let us compute consecutively
adjp(L)(qb(e(M))) with s =1,.... As we will be interested only on the terms with highest
weight we will drop the rest. Then we have

D(L)=3"xF+---, (2.9)
BOM)) = (x +1729") .. (2.10)
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Expand the highest weight terms (2.10) as

(x + 27197 =Y chadp =D 4 (2.11)
By linearity we have
acfp(L)(fp(@(M)))
= adia,,xk)(x + rla Zc eyl adZd" . (xjar(l_j)) + .- (2.12)

We will consider separately two cases: witk: n andn > k.
(1) Letk > n. Simple computation gives that
s—1
(ad,, 4, ) = [T1nl + (k = m)j1o Dl sk=b
j=0
Having in mind thakz > 1 andk —n > 0 we get that the coefficient at the highest power of
is always positive for any > 1, which shows that (2.11) cannot be zero. This contradicts
the fact thatL acts nilpotently ot (M).
(2) Letn > k. We have
s—1
a%n A)(alr) — (_1)5 H[l?k +(n— k)j]as(n—1)+lrxs(k—1) 4,
j=0
By the same argument the coefficient at the highest powglismot zero for any. This
shows that eithet = 0 ork = 0. But from the assumption (2.3) it follows thatannot be
zero. O

Now we perform the main induction step.

Lemma 2.3. Assume the conditions of the above lemma. Then there exists a polyno-
mial S(3) with degS(d) =r + 1 > 3, such that the image L1 of L under the action of
the corresponding automor phism ¥ hasthe form:

Li=Ws(L) = (=0)"x" + ) cj@x/, ¢;(®) eCld], cx-1=0. (2.13)
j<k

Proof. Use the obvious fact that the elemeatandd” — Ax are generators od1. Then
Lemma 2.2 shows that the elemdntan be written in the form:

—ax) > b (97— ax) o (2.14)

Apply the automorphisn@ from the proof of the previous lemma, i¥.9) =9, ¥ (x) =
x + 27197, PutLy = ¥ (L), 61 = ¥ (6(M)). Then one can writd.1 (dropping the non-
essential constant factor) in the form:
k—1
Li=x 43 "bj@)x/, b;®)eClo]. (2.15)
j=0
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Notice that in the above expression all the terms affehave weights less thaN in the
chosen filtration. In particular fdf,_1 # 0 we have:

Voo (1 (@)x* ) < N =kr. (2.16)

Assume thaby_1 # 0. Having in mind that our filtration can be chosen so that r,
o = 1 the inequality (2.16) can be rewritten as déeg; + r(k — 1) < kr. This shows
that the degree ob;_1 is less thanr. By an appropriate automorphis#p we can
kill bx—1. The composition¥y o ¥ is the automorphisn@z we are looking for. Notice
that S(9) = ¢+ + Sp(d), where degp < r andc # 0. Hence the degree ¢fis exactly
r+1. O

Let us give the proofs of the main results.

Proof of Theorem 0.2. If the second coefficien¥Vy_1 of L is not zero then apply
appropriate automorphistg, whereR’" = —Vy_1. This will bring our operatolL into
the situation of Lemma 2.1 with/ = x. If the numbelk from (2.5) is equal to 1 theh is

the generalized Airy operator, hence in the orbidoBo assume that the numbes 1. If

we assume that all the coefficientslofre constant then the theorem is again proven. Now
assume that at least one coefficientlofs not constant. Then according to Lemma 2.3
we can find an automorphisiir which sendd. into (2.13). Notice that the operatén
from (2.13) has the properties @éf required by Lemma 2.2 (witlh and—9 exchanging
their places) but its ordér is strictly less than the ordéy of L. This shows that after a
finite number of steps we will come to either a polynomiakior in 9, thus proving that

L is in their orbits. O

The next corollary follows from the proof of the last theorem (but not from the theorem
as stated).

Corollary 2.4. Let the operator L satisfy the conditions of Theorem 0.1 Then it has the
formsimilar to (2.2). More precisely L isa polynomial in the element K of the form

K=®10Wi0---0¥od1(x), (2.17)

where ¥; = Wg,, ®; = &s;, j=1,...,1, and the polynomials have degrees > 3.
The automorphism &;,1 is either of the same form or is defined by @;.1(x) = 9,
@141(9) = —x.

Proof of Theorem 0.1. If L is normalized as in (0.3) and bispectral it acts nilpotently
on some nonconstant polynomélx). Hence by Theorem 0.2 it is strictly nilpotent. The
opposite also follows easily. Suppose tlatelongs to the orbit of some nonconstant
polynomial ind, sayQ(9). We need to consider only the case wheis not a polynomial
in x. Then there exists an automorphignsuch that. = Q(¢—1(3)). Denote byLg the
operator (9).

Let bg be the standard anti-involution:

bo(x) =9;, bo(dx) =z. (2.18)
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(As usually treating bispectral operators we use different variablkesrdz for the two
copies ofA1.) Now define (cf. [3]) the anti-involutioh = bg o ¢. It is enough to show that
Lo is bispectral. Then the bispectrality bfwill follow immediately asL is a polynomial
of Lg. We have

Lo=b""z) = 0by'(2) = ¢ (). (2.19)
Define
A=b(x)=bgop 1(x). (2.20)

We have only to exhibit the wave functiaf(x, z), so that (0.1) and (0.2) are satisfied
with Lo, A, f(z) =z and6(x) = x. We can always assume thap is normalized as

in (0.3). Otherwise we can apply appropriate automorphism as explained above and bring it
to this form. The pointis that we would like to use Corollary 2.4, which assures that the the
polynomials, defining the automorphisprare of degree 3 or more except #y;1. Then

we can apply the theorem from [4] which gives the wave function in explicit form.

In what follows it would be convenient to consider the polynomials afso bispectral.
(In fact allowing the wave function to be distribution they are, cf. [3].)

In view of Theorem 0.1 it is obvious that the centralizer of each bispectral opdrator
is generated by (d), where ¢ is the automorphism, defining from the proof of
Corollary 2.4. Introduce also the operatgix). Then obviously they satisfy the CCR

[$(9), $(x)] =1. (2.21)

This gives the proof of Proposition 0.3 0

Itis tempting to try to prove the opposite, i.e. Conjecture 0.4. This conjecture seems to
be difficult to prove. The results of the present paper allow to show that it is equivalent to
Conjecture 0.5.

We will give the simple proof of the equivalence of the two conjectures in the following
form.

Proposition 2.5. Let L, P be two operators from A; that satisfy the CCR (0.5). The
following two statements are equivalent:

(1) L and P generate Aq;

(2) L and P are bispectral.

Proof. Let L and P be bispectral. According to Theorem QLlis in the orbit of some
0(9),i.e. L =¢(Q(d)). PutM = ¢~1(P). Then the paifQ(d), M) also satisfies (0.5).
Obviously M has at least one term depending.anThis automatically give tha is a
polynomial of degree one, i.€2 = ad + b, a # 0. HenceM has the formM = a—1x +
R(9) with some polynomiaR. This shows that the paiQ (d), M) generated;. The same
is true for their image&., P under the automorphisgi, thus proving2) — (1).

The opposite is obvious. Really. Lét and P generateA;. Then they are strictly
nilpotent, hence bispectral.0
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