
Bull. Sci. math. 126 (2002) 605–614

Strictly nilpotent elements and bispectral operators
in the Weyl algebra
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Abstract

In this paper we give another characterization of the strictly nilpotent elements in the Weyl
algebra, which (apart from the polynomials) turn out to be all bispectral operators with polynomial
coefficients. This also allows to reformulate in terms of bispectral operators the famous conjecture,
that all the endomorphisms of the Weyl algebra are automorphisms (Dixmier, Kirillov, etc).
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0. Introduction

In a recent series of papers [13–15] there has been made an attempt to broaden the
classification of bispectral operators that was started by Duistermaat and Grünbaum in [9]
and continued by Wilson in [18]. The present paper could be considered as yet another step
in this direction. I believe, however, that the results could be of interest also to specialists in
other areas of research, in particular connected to the Weyl algebraA1. For this reason I will
try to present the material without using any specific knowledge on bispectral operators.
To explain the main message of the paper let me first recall some definitions and results.

In what follows we will consider the algebraA1 in its standard realization – i.e. as the
algebra of differential operators with polynomial coefficients. An elementM ∈ A1 is said
to act nilpotently on a non-constant elementH ∈ A1, when there exists a positive integerm

such that admM(H ) = 0. An element isstrictly nilpotent if it acts nilpotently on all elements
ofA1. Slightly paraphrasing Dixmier the strictly nilpotent elements are characterized as
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those that belong to the orbits of the operators with constant coefficients under the action
of the automorphism group Aut(A1) of A1.

Now I pass to the other main object of the present paper – the bispectral operators. They
have been introduced by Grünbaum (cf. [10]) in his studies on applications of spectral
analysis to medical imaging. Later it turned out that they are connected to several actively
developing areas of mathematics and physics – the KP-hierarchy, infinite-dimensional
Lie algebras and their representations, particle systems, automorphisms of algebras of
differential operators, non-commutative geometry, etc. (see e.g. [1–3,5–7,11,16–19], as
well as the papers in the proceedings volume of the conference in Montréal [12]).

An ordinary differential operatorL(x, ∂x) is called bispectral if it has an eigenfunction
ψ(x, z), depending also on the spectral parameterz, which is at the same time an
eigenfunction of another differential operatorΛ(z, ∂z) now in the spectral parameterz.
In other words we look for operatorsL, Λ and a functionψ(x, z) satisfying equations of
the form:

Lψ = f (z)ψ, (0.1)

Λψ = θ(x)ψ, (0.2)

where the functions are defined in some open sets ofC andC2. A simple consequence of
the above definition is that the bispectral operatorL acts nilpotently on the functionθ(x).
This is the well known ad-condition from [9] which is widely believed to be not only
necessary but also a sufficient condition for the bispectrality ofL, provided thatL is
normed as follows:

L = ∂N +
N−2∑

j=0

Vj ∂j , (0.3)

i.e. VN = 1 andVN−1 = 0. In fact for operators inA1 the first condition, i.e.VN = 1
suffices as by conjugatingL by exp(Q(x)) with an appropriate polynomialQ(x) the
second condition can be achieved remaining inA1. In what follows we will also use this
relaxed norming condition, i.e. we will assume thatL has the form:

L = ∂N +
N−1∑

j=0

Vj ∂j , (0.4)

We are ready to formulate our main results.

Theorem 0.1. A differential operator from A1 of the form (0.4) is bispectral if and only if
it is strictly nilpotent.

This result will be an easy consequence of the following theorem which will be
formulated purely in terms of the Weyl algebra, i.e. without referring to bispectral
operators.

Theorem 0.2. An element L ∈ A1 is strictly nilpotent if and only if it is either a polynomial
in x or has the form (0.4)and acts nilpotently on some non-constant polynomial θ(x).
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In other words the strictly nilpotent operators (of non-zero order) are exactly those that
satisfy the ad-condition and (0.4).

The theorems announced above constitute the main body of the paper.
Next I will explain some further connections between the Weyl algebra and bispectral

operators.
In the fundamental paper [9] Duistermaat and Grünbaum classified the bispectral

operators of order two. Roughly speaking they are Darboux transformations of some Bessel
operators the only exception being the Airy operator. Another important result, due to
Wilson [18], is that all bispectral operators of rank 1 are Darboux transformations of
operators with constant coefficients. (This is not the original form of Wilson’s theorem
but a well known reformulation, cf. e.g. [14].) In [3] we suggested a general scheme for
producing bispectral operators by application of Darboux transformations out of “simple”
ones which apparently works for all differential operators (see also [14]). Now it seems
that the most difficult problem in the classification of bispectral operators is not to
perform Darboux transformations but to find a reasonable class of operators that could
be considered “simple”. The results of the present paper show that inA1 all “simple”
operators are those that satisfy thecanonical commutation relation (CCR for brevity)

[L, P ] = 1; (0.5)

One can reinterpret the main results also as follows.

Proposition 0.3. The centralizer C(L) of any bispectral operator in A1 is generated by an
element L′, which together with some other element P satisfy the CCR (0.5).

In view of this re-interpretation it is tempting to conjecture the opposite:

Conjecture 0.4. If two elements L0 and P satisfy the CCR (0.5) they are bispectral.

The results of the present paper allow to easily show that the above conjecture is
equivalent to the famous conjecture of Dixmier–Kirillov:

Conjecture 0.5. If two operators L and P satisfy CCR then they generate A1. In other
words every endomorphism of the Weyl algebra is automorphism.

This equivalence is demonstrated at the end of the last section.
To make the presentation less dependent on [8] we recall some of the results that are

needed in Section 1. Then in the next section we give the proofs of the above results.

1. Preliminaries on the Weyl algebra

Before proceeding with the main results we briefly recollect some of the notions and
results from [8]. The first Weyl algebraA1 is an associative algebra generated over a fieldF

by two elementsp andq , subject to the canonical commutation relation (CCR)[p, q] = 1.
In this paperF will be alwaysC, although most of the results can be reformulated for
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more general fields. In most of the paperA1 will be realized as the algebra of differential
operators of one variablex with polynomial coefficients, wherep = ∂ andq = x. A major
tool in the the study ofA1 is the introduction of suitable filtrations. LetG = ∑

ai,j qipj

and letE(G) be the set of all pairs(i, j), such thatai,j 	= 0. If ρ andσ are two real numbers
put

vρ,σ (G) = sup
(i,j)∈E(G)

(ρi + σj).

Denote byE(G, ρ, σ ) the set of pairs(i, j), such thatρi + σj = vρ,σ (G). With eachG, ρ

and σ we associate a polynomialf (X, Y ) (in the commuting variablesX and Y ) as
follows:

f (X, Y ) =
∑

ai,j ∈E(G,ρ,σ )

ai,j XiY j . (1.1)

f will be calledthe polynomial ρ, σ -associated with G. Now we ready to recall Lemma 7.3
from [8] on the “normal form” of a polynomialf associated with an elementG. To avoid
unnecessary for us terminology we recall it for the particular case that we need. Namely
we consider thatG ∈ A1 act onM ∈ A1 nilpotently. Let ρ, σ be positive integers and
let f andg be the polynomials(ρ, σ )-associated withG andM correspondingly and put
v = vρ,σ (G) andw = vρ,σ (M).

Lemma 1.1. Assume that v + w > ρ + σ and that f is not a monomial. Then one of the
following cases holds:

(i) f w is proportional to gv ;
(ii) σ > ρ, ρ divides σ and

f (X, Y ) = λXα
(
Xσ/ρ + µY

)β ; (1.2)

(iii) ρ > σ , σ divides ρ and

f (X, Y ) = λY α
(
Y ρ/σ + µX

)β ; (1.3)

(iv) σ = ρ, and

f (X, Y ) = λ(µX + νY )α(µ′X + ν′Y )β, (1.4)

where λ, µ, µ′, ν, ν′ ∈ C and α, β are non-negative integers.

At the end we introduce (after Dixmier) the following notations. LetS(∂) be a
polynomial in∂ . Then the automorphismΦS , given by:

ΦS = eadS(∂) (1.5)

is well defined. In the same way for a polynomialR(x) one defines:

ΨR = eadR(x) . (1.6)

A fundamental result from [8] is the following theorem, which will be used in the present
paper.

Theorem 1.2. The group Aut(A1) of automorphisms of A1 is generated by the automor-
phisms (1.5)and (1.6).
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2. Proofs

In this section we are going to give the proofs of the results from the Introduction. No
doubt the central one is Theorem 0.2 from which the rest are easy consequences.

The proof of Theorem 0.2 uses an induction reminiscent of “Fermat’s method of infinite
descent”, the main step of which in our case reduces the number of the factors of the
orderN of L. This will be done as follows. We can suppose thatL depends onx, i.e.
it is not a polynomial in∂ . First choose appropriatelyρ and σ in such a way that the
polynomial f , (ρ, σ )-associated withL has two terms, the first one beingY N . Then
show thatf has the form from Lemma 1.1, (iii) withα = 0. The next step is to apply
an appropriate automorphism ofA1, sending our operatorL to another one with similar
properties but reducing the number of factors of the orderN .

We need some preparations for the proof. WriteL in the form:

L =
∑

(i,j)∈E(L)

ai,j xi∂j (2.1)

with a0,N = 1, ai,N = 0, i > 0. We would like to consider now the non-trivial cases when
at least one point(i, j) with i > 0 belongs toE(L), i.e. we assume thatL depends non-
trivially on x. Assuming that we will explain how to choose the weightsρ andσ to fit our
purposes. Draw the line in the planeR2 passing through the point(0, N) and at least one
other point, say(k, m) with k > 0 and such that all other points remain below or on the
line. Then one can chooseρ andσ to be one non-zero solution in integers of the equation
Nσ = kρ + mσ . The solution does not depend on the specific(k, m). This gives that the
polynomialf , (ρ, σ )-associated withL has the form:

f (X, Y ) = Y N + ak,mXkY m + · · · , ak,m 	= 0. (2.2)

Here we have chosen the pair(k, m) so thatk is the greatest possible. Our main concern
will be to study the polynomialf associated withL. Introduce also the following object.
Let M be an element from the orbit ofx, which does not commute withL and has the
form:

M = ΨR1 ◦ ΦS1 ◦ · · · ◦ ΨRl ◦ ΦSl (x), (2.3)

whereRj , Sj are polynomials with degRj � 3, degSj � 3. The numberl could be zero.
In this caseM = x.

Lemma 2.1. Assume that L is given as in (0.3)and that it acts nilpotently on a non-constant
polynomial θ(M) in M , where M is given in (2.3). Let k > 1 in the above expression (2.2)
of f . Then vρ,σ (L) > ρ + σ .

Proof. Writing f in the form:

f = Y m
(
Y N−m + ak,mXk + · · ·), ak,m 	= 0 (2.4)

we can chooseσ = k andρ = N − m. If m = 0 andk = N = 2 then according to [8],
Lemma 7.4 the elementL is strictly semisimple and hence acts nilpotently only on
elements of its centralizerC(L), which cannot be true sinceM does not commute withL.
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(A simple independent proof is also possible, cf. e.g. [13].) Hence we can assume that
eitherm > 0 or max(N, k) � 3. Then we have

vρ,σ (L) = Nσ = Nk � N + k � (N − m) + k = ρ + σ.

In the case ofm > 0 the second inequality in the above chain is strict, while in the case of
max(N, k) � 3 the first inequality is strict (recall that bothN � 2 andk � 2). ✷

Next find a normal form for the polynomial associated withL.

Lemma 2.2. Assume that L has at least one nonconstant coefficient Vj (x) and satisfies
the conditions of Lemma 2.1. Then there exist numbers ρ and σ , such that the polynomial
(ρ, σ )-associated with L has the form

f = (
Y r − λX

)k
, λ 	= 0. (2.5)

Proof. We choose the integersρ andσ as explained above so that thef has the form (2.4).
This is possible due to the assumption thatL has at least one nonzero coefficient. First
assume that in (2.3) we havek > 1. In this case according to Lemma 2.1vρ,σ (L) > ρ + σ .
Hence we can apply Lemma 1.1. Note that the polynomial(ρ, σ )-associated withθ(M)

has the formg = γ Xl , hence the case (i) is ruled out. If we assume that the case (ii) of
Lemma 1.1 holds than expandingf we see that the second coefficient in the expansion
of L in ∂ , i.e. the coefficientaN−1 is not zero which contradicts (0.3). By the same
reason the case (iv) is possible only withλ = ν = ν′ = 1, µ = −µ′ 	= 0 andα = β or
equivalent to it. Then applying the a linear automorphismΨ , defined byΨ (∂) = ∂ + µx,
Ψ (x) = x we can bring the polynomialf into the formf = Y α(Y + 2µX)α , keepingg

untouched (but notθ(M)). Finally, if f has the form (2.3) withk = 1 then it is exactly
f = Y m(Y N−m + λX). Summing up the above two cases as well as (ii) we get that in
generalf has the form:

f = Y n
(
Y r − λX

)k
, k � 1, λ 	= 0. (2.6)

Now we want to show thatn = 0. Perform the automorphismΦ = ΦS0 whereS0(∂) =
λ−1 ∂r+1

r+1 . This automorphism mapsL into a new elementΦ(L) with a new polynomialf0
(ρ, σ )-associated withL of the form:

f0 = (−λ)kXkY n, (2.7)

while the polynomial associated withΦ(θ(M)) will become

g0 = γ0
(
Xl + λ−1Y r

)l
, γ0 	= 0. (2.8)

We are going to use thatΦ(L) acts nilpotently onΦ(θ(M)). In what follows we
will drop the non-essential coefficientsγ ′ and (−λ)k . Let us compute consecutively
ads

Φ(L)(Φ(θ(M))) with s = 1, . . . . As we will be interested only on the terms with highest
weight we will drop the rest. Then we have

Φ(L) = ∂nxk + · · · , (2.9)

Φ(θ(M)) = (
x + λ−1∂r

)k + · · · . (2.10)
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Expand the highest weight terms (2.10) as
(
x + λ−1∂r

)l =
∑

cl
j xjλ−l+j ∂r(l−j) + · · · . (2.11)

By linearity we have

ads
Φ(L)

(
Φ(θ(M))

)

= ads
(∂nxk)

(
x + λ−1∂r

)l =
l∑

j=0

cl
j λ−l+j ads

(∂nxk)

(
xj ∂r(l−j)

) + · · · . (2.12)

We will consider separately two cases: withk � n andn � k.
(1) Let k � n. Simple computation gives that

(
ads

(∂nxk)
(xl)

) =
s−1∏

j=0

[nl + (k − n)j ]∂s(n−1)xl+s(k−1) + · · · .

Having in mind thatn � 1 andk−n � 0 we get that the coefficient at the highest power ofx

is always positive for anys � 1, which shows that (2.11) cannot be zero. This contradicts
the fact thatL acts nilpotently onθ(M).

(2) Let n � k. We have

ads
(∂nxk)

(
∂lr

) = (−1)s

s−1∏

j=0

[lrk + (n − k)j ]∂s(n−1)+lrxs(k−1) + · · · .

By the same argument the coefficient at the highest power in∂ is not zero for anys. This
shows that eithern = 0 or k = 0. But from the assumption (2.3) it follows thatk cannot be
zero. ✷

Now we perform the main induction step.

Lemma 2.3. Assume the conditions of the above lemma. Then there exists a polyno-
mial S(∂) with degS(∂) = r + 1 � 3, such that the image L1 of L under the action of
the corresponding automorphism ΨR has the form:

L1 = ΨS(L) = (−λ)kxk +
∑

j<k

cj (∂)xj , cj (∂) ∈ C[∂], ck−1 ≡ 0. (2.13)

Proof. Use the obvious fact that the elements∂ and∂r − λx are generators ofA1. Then
Lemma 2.2 shows that the elementL can be written in the form:

L = (
∂r − λx

)k +
k−1∑

j=0

bi,j

(
∂r − λx

)j
∂i . (2.14)

Apply the automorphismΨ from the proof of the previous lemma, i.e.Ψ (∂) = ∂ , Ψ (x) =
x + λ−1∂r . Put L1 = Ψ (L), θ1 = Ψ (θ(M)). Then one can writeL1 (dropping the non-
essential constant factor) in the form:

L1 = xk +
k−1∑

j=0

bj (∂)xj , bj (∂) ∈ C[∂]. (2.15)
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Notice that in the above expression all the terms afterxk have weights less thanN in the
chosen filtration. In particular forbk−1 	= 0 we have:

vρ,σ

(
bk−1(∂)xk−1) < N = kr. (2.16)

Assume thatbk−1 	= 0. Having in mind that our filtration can be chosen so thatρ = r,
σ = 1 the inequality (2.16) can be rewritten as degbk−1 + r(k − 1) < kr. This shows
that the degree ofbk−1 is less thanr. By an appropriate automorphismΨ0 we can
kill bk−1. The compositionΨ0 ◦ Ψ is the automorphismΨR we are looking for. Notice
thatS(∂) = c∂r+1 + S0(∂), where degS0 � r andc 	= 0. Hence the degree ofS is exactly
r + 1. ✷

Let us give the proofs of the main results.

Proof of Theorem 0.2. If the second coefficientVN−1 of L is not zero then apply
appropriate automorphismΨR , whereR′ = −VN−1. This will bring our operatorL into
the situation of Lemma 2.1 withM = x. If the numberk from (2.5) is equal to 1 thenL is
the generalized Airy operator, hence in the orbit of∂ . So assume that the numberk > 1. If
we assume that all the coefficients ofL are constant then the theorem is again proven. Now
assume that at least one coefficient ofL is not constant. Then according to Lemma 2.3
we can find an automorphismΨR which sendsL into (2.13). Notice that the operatorL1
from (2.13) has the properties ofL required by Lemma 2.2 (withx and−∂ exchanging
their places) but its orderk is strictly less than the orderN of L. This shows that after a
finite number of steps we will come to either a polynomial inx or in ∂ , thus proving that
L is in their orbits. ✷

The next corollary follows from the proof of the last theorem (but not from the theorem
as stated).

Corollary 2.4. Let the operator L satisfy the conditions of Theorem 0.1. Then it has the
form similar to (2.2). More precisely L is a polynomial in the element K of the form

K = Φ1 ◦ Ψ1 ◦ · · · ◦ Ψl ◦ Φl+1(x), (2.17)

where Ψj = ΨRj , Φj = ΦSj , j = 1, . . . , l, and the polynomials have degrees � 3.
The automorphism Φl+1 is either of the same form or is defined by Φl+1(x) = ∂ ,
Φl+1(∂) = −x .

Proof of Theorem 0.1. If L is normalized as in (0.3) and bispectral it acts nilpotently
on some nonconstant polynomialθ(x). Hence by Theorem 0.2 it is strictly nilpotent. The
opposite also follows easily. Suppose thatL belongs to the orbit of some nonconstant
polynomial in∂ , sayQ(∂). We need to consider only the case whenL is not a polynomial
in x. Then there exists an automorphismφ such thatL = Q(φ−1(∂)). Denote byL0 the
operatorφ(∂).

Let b0 be the standard anti-involution:

b0(x) = ∂z, b0(∂x) = z. (2.18)
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(As usually treating bispectral operators we use different variables –x andz for the two
copies ofA1.) Now define (cf. [3]) the anti-involutionb = b0 ◦ φ. It is enough to show that
L0 is bispectral. Then the bispectrality ofL will follow immediately asL is a polynomial
of L0. We have

L0 = b−1(z) = φ ◦ b−1
0 (z) = φ(∂x). (2.19)

Define

Λ = b(x) = b0 ◦ φ−1(x). (2.20)

We have only to exhibit the wave functionψ(x, z), so that (0.1) and (0.2) are satisfied
with L0, Λ, f (z) = z and θ(x) = x. We can always assume thatL0 is normalized as
in (0.3). Otherwise we can apply appropriate automorphism as explained above and bring it
to this form. The point is that we would like to use Corollary 2.4, which assures that the the
polynomials, defining the automorphismφ are of degree 3 or more except forΦl+1. Then
we can apply the theorem from [4] which gives the wave function in explicit form.✷

In what follows it would be convenient to consider the polynomials ofx also bispectral.
(In fact allowing the wave function to be distribution they are, cf. [3].)

In view of Theorem 0.1 it is obvious that the centralizer of each bispectral operatorL

is generated byφ(∂), where φ is the automorphism, definingL from the proof of
Corollary 2.4. Introduce also the operatorφ(x). Then obviously they satisfy the CCR

[φ(∂), φ(x)] = 1. (2.21)

This gives the proof of Proposition 0.3.✷
It is tempting to try to prove the opposite, i.e. Conjecture 0.4. This conjecture seems to

be difficult to prove. The results of the present paper allow to show that it is equivalent to
Conjecture 0.5.

We will give the simple proof of the equivalence of the two conjectures in the following
form.

Proposition 2.5. Let L, P be two operators from A1 that satisfy the CCR (0.5). The
following two statements are equivalent:

(1) L and P generate A1;
(2) L and P are bispectral.

Proof. Let L andP be bispectral. According to Theorem 0.1L is in the orbit of some
Q(∂), i.e. L = φ(Q(∂)). PutM = φ−1(P ). Then the pair(Q(∂), M) also satisfies (0.5).
ObviouslyM has at least one term depending onx. This automatically give thatQ is a
polynomial of degree one, i.e.Q = a∂ + b, a 	= 0. HenceM has the formM = a−1x +
R(∂) with some polynomialR. This shows that the pair(Q(∂), M) generateA1. The same
is true for their imagesL, P under the automorphismφ−1, thus proving(2) → (1).

The opposite is obvious. Really. LetL and P generateA1. Then they are strictly
nilpotent, hence bispectral.✷
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