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Abstract 

Parlett, B.N., Symmetric matrix pencils, Journal of Computational and Applied Mathematics 38 (1991) 
373-385. 

A significant number of matrix eigenvalue problems, quadratic or linear, are best reformulated as pencils 
(A, M) in which both A and M are real and symmetric. Some examples are given and then the canonical forms 
are re-examined to explain the role of the sign characteristic attached to real eigenvalues. In addition we 
examine the limitations on the use of the Rayleigh quotient functional (x, Ax)/(x, Mx) in describing the 
eigenvalues. This sheds new light on the class of definite pencils and the stability of their eigenvalues under 
perturbations. The reduction of indefinite pencils to useful sparse forms is mentioned. 

Keywords: Generalized eigenvalue problem, matrix pencils, Rayleigh quotient, equivalence, congruence and 
rotation transformations. 

1. Introduction and summary 

This study is concerned with the generalized linear eigenvalue problem 

(H-XA)z=O, (1) 

where H and A are symmetric matrices in RnX”, det(H-XA)#O for some X, ZEC” and 
X E C. The ordered pair ( H, A) defines a regular symmetric pencil. Many of the results extend, 
with some care, to regular complex Hermitian pencils. Moreover, (H, A) is really just a 
representative of the class of indistinguishable pencils { ( TH, d), 7 # O}. 

The nature of solutions to (1) is well understood. At one extreme, when A is symmetric 
positive definite (we write A is spd, hereafter), there exists a full set of linearly independent 
eigenvectors in R” whereas, at the other end, when both H and A are indefinite, the full 
complications of complex eigenvalues and a nontrivial Jordan canonical form may be present. 
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In the classical case, when A is spd, the leading role in the analysis is played by the Rayleigh 

quotient functional 

x’Hx 
p(x):=xtAx. x(#O)ER”. 

The (ordered) eigenvalues A of (I) may then be characterized by the Courant-Fischer minmax 
and maxmin values of p. Moreover the eigenvectors z of (1) determine the simultaneous 
diagonalization of the two quadratic forms x’Hx and x’Ax; Z’HZ = A, Z’AZ = I. 

The purpose of this study is to clarify what happens to the connection between simultaneous 
diagonalization, the Rayleigh quotient, and solutions to (1) as the class of pencils is broadened 
to include first definite pencils and, beyond that, indefinite pencils. These and other terms are 
defined in Sections 2-5, 7. For simplicity we use the noun symmetry to correspond to two 
adjectives: real symmetric and Hermitian. 

It is well known that definite pencils can be diagonalized by congruence transformations but 
definiteness is not necessary. Our curiosity was aroused by the following result, see [8]. 

Theorem 1. A symmetric pencil (H, A) with invertible A is definite if, and only if, 
(a) A -‘H is similar to a diagonal matrix, 
(b) each eigenvalue of A ~ ‘H is real, 
(c) the eigenvalues of positive type are separated from those of negative type. 

It is (c) that is puzzling. In our context a real eigenvalue A is of negative type if its eigenvector 
x satisfies x*Ax -c 0. Since A-’ exists, all eigenvalues are finite and so no eigenvector z has 
zTAz = 0. When (a) and (b) hold but (c) fails, then we have a pencil that can be diagonalized but 
is not definite. Yet Gantmacher [5] in his treatment of pencils never mentions grouping real 
eigenvalues in this way. 

In later sections we explain our view that for eigenvalue-eigenvector problems (and there are 
other instances of pencils) the sign characteristic is superfluous. However in a context in which 
congruence transformations are the only ones permitted, then the sign characteristic does have a 

place. 
Let us turn next to the beautiful minmax and maxmin characterization of the eigenvalues of a 

symmetric matrix. This characterization can be adapted to definite pencils. This pleasing result 
seems to be due to Stewart [ll], but the Crawford number utilized in his perturbation theory 
does not seem to be the most natural measure of the stability of the spectrum of a definite pencil. 
This is discussed in Section 5. Some work has been done on extending the characterization 
beyond definite pencils. Suppose a symmetric pencil (H, A) with invertible A has a mixture of 
real and complex eigenvalues. Might it be possible to describe the real eigenvalues, or some of 
them, as minmax or maxmin values of the Rayleigh quotient? Some ingenious results of this type 
are presented in [8]; the difficulty is that the domains over which the Rayleigh quotient varies 
must be limited in some way, because, for an indefinite pencil, the Rayleigh quotient can take on 
all possible values. Thus even if the eigenvalue with largest real part is actually real, it is not the 
maximum of the Rayleigh quotient. Even with restrictions to vectors of one type (+ or -) the 
actual index of an eigenvalue that can be characterized as a minmax is not easy to ascertain. We 
conclude that the class of definite Hermitian pencils seems to be the broadest extension of the 
class of Hermitian matrices that retains the classical properties. See [4,6,11] for good discussions 
of pencils. 
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In order to clarify the distinction between symmetric generalized eigenvalue problems and 
quadratic forms we present two different applications of matrix pencils in the next section. After 
that, we discuss equivalence, congruence, definite pencils and diagonalization. Householder 

conventions will be followed closely: capital letters for matrices, lower case for column vectors, 
Greek for scalars. 

2. Contrasting applications 

2.1. Viscous damping 

The equations of motion governing small displacements q( t ) of a system, from an equilibrium 
position may be written in the form 

M&) + Q(t) + &!(t) =.M, (3) 

where M, C and K are the n X n mass, damping and stiffness matrices and 4 is the acceleration 
vector. For solid structures attached to the Earth M will be symmetric positive definite. There 
are many possible forms for C but the only one of interest here is positive semi-definite C, often 
called viscous damping. In most coordinate representations the stiffness matrix K will be 
positive definite. 

To understand the response q to a variety of external forces f it is useful to know the 
dominant modes under free vibration. These mode shapes w, are solutions to the quadratic 
eigenvalue problem 

(XtM+hC+K)w,=O, i= l,..., 2n. (4) 

In general X, will be complex but under certain conditions (completely overdamped systems) all 
A, may be real. 

An attractive way to rewrite (4) as a linear eigenproblem is 

(5) 

This equation is of the form (hA - H)z = 0 where A and H are symmetric but indefinite. A 
single symmetric matrix A is indefinite if its quadratic form X’AX is not of one sign. Symmetry 
has practical advantages. 

The important point about (5) is that it is not the only legitimate linearized version of (4). 

Another version is 

(6) 

Equation (6) makes one matrix positive definite but at the expense of symmetry in the other. 

2.2. Conservative systems 

In classical mechanics the representations of potential energy (Vq, q) = qfVq and kinetic 
energy (TQ, 4) = 4’Tg are of fundamental importance. In particular the ratio (Vx, x)/( TX, x) 
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is an important instance of a (generalized) Rayleigh quotient. In this context linear reversible 
changes of variable lead naturally to congruence transformations because it is the quadratic 
forms that are fundamental. However, (TX, x) is positive definite and in such cases congruence 
is the same as symmetry-preserving equivalence because the diagonal canonical form (under 
strict equivalence) can be achieved by congruence. 

The moral is that in problems such as Section 2.2 congruence is the proper tool while in 
problems such as Section 2.1 there is no reason not to use symmetry-preserving equivalence 
transformations. 

3. Equivalence 

Let us recall some definitions. 

Definition 2. If B and C are square matrices with entries that are polynomials over a field, then 
B is equivalent to C if there exist invertible matrices E and F, whose entries may be 
polynomials, such that 

C = EBF. 

Definition 3. If B and C are square matrices with entries that are polynomials over a field, then 
B is strictly equivalent to C if there exist invertible matrices E and F, with entries in the field, 
such that 

C = EBF. 

Definition 4. If a square matrix A - XB has a determinant that does not vanish for some values 
of A, then the pencil ( A, B) is regular (or nondegenerate). 

Notice that if B is invertible, then the pencil is certainly regular. The basic result on strict 
equivalence has been known for many years. See [5, vol. 21. 

Theorem 5. Two regular pencils are strictly equivalent if, and only if, they have the same 
elemtntary divisors. 

Our interest is mainly in symmetric pencils whose second members are invertible. In such 
cases (g, 2) is strictly equivalent to (H, A) only if a-‘A is similar to A -‘H. When A -‘H has a 
full set of eigenvectors, then the elementary divisors are linear and two such pencils are strictly 
equivalent if, and only if, they have the same set of eigenvalues. However, even when the pencil 
does not possess a full set of eigenvectors, the canonical form, under strict equivalence, is just the 
real Jordan normal form of A -‘H. Symmetry may be restored by allowing the second term to 
differ from Z. 

Here is an example of a real Jordan block corresponding to a complex conjugate pair of 
eigenvalues (Y + ip, i2 = - 1, 

-p 1 0 0 0 

;a0100 

0 0 (Y 
J= 

-p 1 0 

0 0 p (Y 0 1’ 

0 0 0 0 (Y -p 

0 0 0 0 p (Y 
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Let i denote the reversing matrix; r”= (e,, _ . . , e,) if I = (e,, _ _ . , e,). Then (IJ, f) is the regular 
symmetric canonical form corresponding to J under strict equivalence. In general the symmetric 
canonical form is a direct sum of blocks of the form (fJ, r”). 

In [5, vol. 21 attention is given to complex symmetric matrices (not Hermitian) but these are of 
no concern here. Complex Hermitian pencils have Hermitian canonical forms as above. 

To summarize: every symmetric pencil (H, A) with invertible A is strictly equivalent to the 
symmetrized version of the real (Jordan) canonical form of A-‘H. (H, A) is diagonalizable if, 
and only if, the real Jordan form is diagonal. 

4. Congruence 

Any real quadratic form + in n real variables x(l), x(2), . . . , x(n) may be written compactly 
as 

+(x) := X’AX = (Ax, x), 

where A is a real symmetric n X n matrix. Any reversible linear change of variables x + y = F-lx 
induces a corresponding change in the matrix representation 

+(x) = (F~)‘A(F~) =y’(F’AF)y. 

The transformation 

A + F’AF 

with real invertible F is called a congruence tran.sformation. A matrix pencil (H, A) may be 
regarded as a single matrix whose entries hjj - Xa,, are linear polynomials in the parameter A. 
Consequently there is some possibility for confusion in discussing congruence transformations of 
matrix pencils. Are the entries in F allowed to be functions of h? In order to be clear the term 
strict congruence is used to emphasize that the entries of F must belong to the basic scalar field, 
usually R or C. However we shall be concerned exclusively with strict congruence and strict 
equivalence and so will sometimes suppress the adjective strict. 

If a real symmetric pencil (H, A) is (strictly) congruent to a diagonal pencil (A,, A,) via F, 
then the columns of F are eigenvectors of (1) and then, a fortiori, ( H, A) is also (strictly) 
equivalent to (A,, A,). 

The canonical form under congruence is quite complicated to state and we do not need all the 
details, see [6]. It is based on the Jordan form of A-‘H and in all respects except one is the 
symmetrized version of the canonical form under equivalence. For complex eigenvalues the 
structure was given in the section on equivalence. The part associated with real eigenvalues h 
consists of direct sums of pairs analogous to 

s[y a !I, [8 p !I, 

where 6 = f 1 is the sign associated with X. There is one sign per Jordan block but, in general, 
the blocks belonging to an eigenvalue need not all have the same sign. In fact the sign 
characteristic property belongs to the eigenvector x and is only attributed to X: 

6 = sgn[ x'Ax] . 
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No real congruence transformation can change 6, no Hermitian congruence can change 6, but a 
complex congruence by J-1 can, of course, remove it. Of more significance is the fact that a 
one-sided equivalence transformation by an involutary diagonal matrix can remove 6 without 
spoiling the symmetry. If EH = HE *, EA = AE *, then (EH, EA) is still symmetric. 

To summarize: every symmetric pencil (H, A) with A invertible is strictly congruent to the 
symmetrized version of the real (Jordan) canonical form of A -‘H with the extra sign structure 
for real eigenvalues described above. The sign structure may be removed by an equivalence 
transformation that preserves symmetry, the eigenvalues and the eigenvectors. 

Example 6. The symmetric regular pencils 

[diag(3, - 2, l), diag(1, - 1, l)] and [diag(3, 2, l), diag(1, 1, l)] 

are strictly equivalent but not strictly congruent, although they have the same eigenvalues and 

eigenvectors. 

5. Definite pencils 

Let us review those special cases when a symmetric pencil (H, A) has a full set of independent 
real eigenvectors or, in other words, when the quadratic forms for H and A may be diagonalized 
simultaneously. 

Case 1. A = I (the standard form). 
Case 2. A is symmetric positive definite (spd) (the classical pencils). 
Case 3. (H, A) is definite and n > 2. Definitions are given below. 
Cases 1 and 2 are the classical cases and we assume that the reader is familiar with them. A 

central role is played by the Rayleigh quotient p defined in Section 1. Being homogeneous of 
degree 0, p acts on the l-dimensional subspaces of 04” and one may verify that the only critical 
points of p, where the gradient vanishes, are the eigenspaces of (H, A). 

In order to use p in the study of pencils with singular A it is necessary to allow p to have 
poles. This provokes no difficulties but the danger, when both H and A are indefinite, is that p 
will not be well defined if both numerator and denominator vanish simultaneously. This suggests 
the following terminology. 

Definition 7. A real symmetric pencil (H, A) is definite if its Rayleigh quotient p(x) := 
x * Hx/x *Ax is well defined in [w U cc, for all nonzero x E [w “. 

We hope that a few readers will share our preference for a definition that is conceptual rather 
than merely technical. The usual definitions follow. 

Definition 8. A real symmetric pencil (H, A) is definite if 

(x*Hx)~ + (x*Ax)‘> 0, 

for all nonzero x E Iw”. 
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Definition 9. A real symmetric pencil (H, A) is 
qH + CYA is spd. 

Clearly Definitions 7 and 8 are equivalent 
denominator’ > 0 for all the Rayleigh quotients. 
more subtle. 

Example 10. 

definite if there exists 9 E Iw, (Y E [w such that 

since Definition 8 states that numerator’ + 
The connection between Definitions 8 and 9 is 

It is a good exercise to verify that for this example p(x) alternates between - 00 and + cc 
(which are identified in II3 U co) with no stationary points. This pencil is definite according to 
Definition 8 since (x’Hx)* + (x’Ax)* = (x(l)* + x(2)*)* but trace(qH + aA) = 0 for all 77 and cx 
and so the pencil cannot be definite according to Definition 9. Moreover, having no real 
eigenvalues, the pencil cannot be diagonalized. 

Nevertheless this pencil is the exception and not the rule as the theorem below reveals. It is 
only in US* that the mismatch between Definitions 8 and 9 can occur. One way to avoid continual 
reference to the case n = 2 is to change Definitions 7 and 8 to 7 * and 8 * by allowing x to range 
over C n rather than [w n even 

The choice x = (1, J-1) * 
as an Hermitian pencil. 

Returning to the real case 
theorem. 

when H and A are real. 
shows that the pencil in Example 10 is not definite when regarded 

and the connection between Definitions 8 and 9 we cite the next 

Theorem 11. If the n X n real symmetric pencil (H, A) is definite by Definition 8 and n > 2, then 
the pencil may be diagonalized by a real congruence transformation. 

A difficult proof, due to John Milnor, appears in an early edition of Greub’s Linear Algebra in 
the 1950s. Easier proofs are given in [2]. A corollary of Theorem 11 is that, for n # 2, Definitions 
8 and 9 are equivalent. However a definite Hermitian pencil may be diagonalized by a Hermitian 
congruence whatever the dimension. 

6. Congruence versus equivalence 

Now it is time to return to the problem mentioned in the introduction. There it is stated that a 
symmetric pencil with invertible A is definite if, and only if, it is diagonalizable and the 
eigenvalues of positive type are separated from the eigenvalues of negative type, as indicated in 
Fig. 1. 

Eigenvalues 

[. _ 1 1. 1, 

negative type positive type 

Fig. 1. 
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The critical observation is that for some regular Hermitian pencils there are equivalence 
transformations that preserve symmetry but are not congruences. It is legitimate to use such 
transformations on eigenvalue problems. 

Furthermore a symmetry-preserving equivalence can change the inertia of each matrix and 
hence change the sign types of the eigenvalues. In particular all finite eigenvalues can be given 
positive type and condition (c) of Theorem 1 is automatically fulfilled. 

If the pencil arises in an eigenvalue problem, then the sign characteristic is an artefact of 
applying too small a transformation class. On the other hand, if the quadratic forms associated 
with H and A are of primary interest, then only congruence transformations are legitimate. 

So far the pencils we have met that are not definite have all arisen in eigenvalue problems. 
Notice that the first pencil in Example 6 is diagonal but not definite since, for zt = (1, fi, l), 

Z’HZ = 0 = z’Az. 

The situation may be summarized formally. 

Definition 12. Two regular Hermitian pencils are indistinguishable for the eigenproblem if they 
have the same elementary divisors and the same associated reducing subspaces. 

Reducing subspaces for pencils are the analogues of invariant subspaces for linear operators; 

Example 13. If E is invertible and EH = HE * and EA = AE *, then 
ble from a regular Hermitian pencil (H, A). 

Theorem 14. If (H, A) is regular, Hermitian and diagonalizable by 
indistinguishable from a definite pencil. 

Proof. Let (H, A) be diagonalized by 2: 

Z*HZ=A, Z*AZ=A. 

(EH, EA) is indistinguisha- 

strict congruences, then it is 

A and A are diagonal and Hermitian and therefore real. If (H, A) is regular, then there are real 
u and 7 such that 

det(aH-TA)= ldet(Z)12fi(ohi-78,)fO. 
i=l 

Let 

*=diag($,,...,Gj), where 4; = sign( ah, - rai), 

so that UYPA - TTPA is positive definite. Now choose invertible E := Z- * 32 * and verify that (i) 
(EH, EA) is Hermitian, (ii) a( EH) - T( EA) is congruent to the spd matrix u!PA - r?PA and 
thus spd, and (iii) Hz6 = AzX if, and only if, EHzS = EAzX. By Definition 9 of definiteness, 
(EA, EH) is definite and, by (iii), it is indistinguishable from (H, A). Cl 

Thus, for eigenvalue problems, by choosing an appropriate representative for each class of 
indistinguishable regular Hermitian pencils the definite pencils do mark the limit of diagonaliza- 
bility. In the next section we see to what extent the definite pencils mark the limit of the ability 
of the Rayleigh quotient to give a full account of spectrum. 
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7. Rotating a pencil 

An easy modification of a single symmetric matrix is translation (or shifting): A + A - ~1. 
The eigenvectors are preserved and the eigenvalues are just translated by 0. It is also possible to 
shift a matrix pair: H + H - UA, with the same effect. However, there is no intrinsic reason to 
preserve the second matrix A. So, given a pencil (H, A) there is no difficulty, in principle, in 
working with any linear fractional transformation (LFT) of it: H + Ha + A/3, A -+ Hy + A6 
with a8 # by. The eigenvectors are preserved and the eigenvalues are transformed by the same 
LFT. 

It is appropriate for pencils to define an eigenvalue as an ordered pair (77, CX) or, more 
precisely, as the ray { r( q, a); 7 E W} where 

Hcxz=Aqz, ZEC”, a>O. 

This acknowledges the projective nature of the generalized eigenvalue problem. However, when 
the eigenvalues are real, a ray in lT&’ 2 through (0, 0) may be characterized by its slope. Instead of 
designating (X, 1) as the representative of the ray, it is more convenient to use intersection with 
the unit circle (sin +, cos $). 

This representation has been used to good effect in [3,11,12]. 
It is necessary to identify both + = HIT, + = - 471 with infinite eigenvalues and, more 

generally, to state the next convention. 

Convention. 

$7 + w is identified with - $r + w, 0<0<+7. (7) 

The normalization (Y > 0 in the Cartesian representation (17, (u) corresponds to - HIT < + < in 
in the polar representation. If the eigenvalues of a definite pencil are {(sin 8,, cos 0,) i = 1,. . . , n }, 

then we refer to the { 0, } as the polar or angular eigenvalues. 
A simple instance of an LFT is the counter-clockwise rotation: 

(K A) 5 (H,, A,)=(H, A) -Isin’ . 
I cos + 1 

The eigenvectors are preserved and the polar eigenvalues are translated by +, 

*, + 
i 

‘i++, if 8,++6 $rr, 

6, + + - IT, otherwise. 

This simple transformation suggests that rotations of definite pencils are the natural analogues of 
translations of symmetric matrices. 

Given any definite Hermitian pencil we may consider the class of all its rotations. In each such 
class there is a distinguished pair (H,, A,) for which A, is spd and 

L,X M 
cond(AW) := Xmin[ A,] =mincond[A,], 

where the minimum is over all $I in [ - +T, $rr] for which A, is spd. We call cond( A,) the 
condition number of the whole rotation class for the eigenvalue problem. Note that the eigenvec- 
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tors are invariant and hence orthogonal with respect to each inner product A, for which A, is 
spd; z*A+zj = 0, i #j. The unit ball for A, is the most nearly spherical of all the candidates and 
gives the best indication of the (Euclidean) angles between the eigenvectors. Indeed if a given 
pair (H, A) happens to be a rotation of a standard pair (M, I), then this fact will be revealed by 

(H,, AJ, i.e., H,=M, A‘,=I. 
The quantity cond( A,) also arises in perturbation theory for eigenvalues of definite pairs 

(H, A). Suppose that A is spd and that H = H(T), A = A( 7) are smooth functions of r in some 
interval of 7 values. Differentiate the eigenvalue equation Hz cos 8 = AZ sin 8 and let i = 
dz/dT, etc., to find 

(fi~+Hi)~0~8-H~sin8.~=(kz+Ai)sin8+Azcos8.8. 

Premultiply by z * and cancel common terms: 

z*Az(sin8 tan8+cos8)8=z*(ficos8-ksinB)z, 

so 

e = cos 8. 
z*(kcos 0-k sin S)z 

z*Az 

This result may be applied to any rotation with A, spd: 

b=(e++j’=C0S(e++ 
z*[~+cos(~+~) -A, sin(8++)]z 

z *A,z 

=cos(e+~j~ 
z*(ficos 0-k sin 0)~ 

z *A,z 3 

since the numerator is invariant under rotation. However neither it nor the denominator is 
properly scaled for separating the perturbation term. It is tempting to use ( 11 H 11’ + 11 A 1) *)l/* 

to get 

8=cos(e++j- ( II H II * + II A II *Y* . z*(dcos 0-k sin 0)~ 

z *A+,z 
w11*+ lIAl12Y2 ’ 

lel ~ (IlWl*+ l/All*)“* . 11~112+ Ilhl* 
‘min[ Ag] II H II * + II A II * 

The first term could be called the condition number for all the eigenvalues and leads to the 
problem of maximizing Ami, [ A+]. Stewart [ll] shows that 

max Xmin[A+] =c(H, A) := ,,I$I~ [(x*Hx)*+ (x*Ax)*]~‘*, 
+ 

where c( H, A) is called the Crawford number of the pencil. However ( 11 H II* + (1 A II *)I’* > 
I( A, )I and if we look again at the expression for e it seems preferable to rewrite it as 

B=cos(e+~)~~~ 
Z*(~~COS 0-A sin ejz 

+ IV,lI ’ 
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to obtain 

]bl <cond(A,). 
( II Q II 2 + II k II 2)1’2 

Il4II . 

The case A, = Z reproduces the well-known results for the standard symmetric eigenvalue 
problem, ](tan 13). 1 6 II fi 11, and encourages us to suggest that cond( A,) is a good choice for 
condition number. Neither c( H, A) nor cond( A,) are easy to compute. 

If an eigenvalue of a pencil is to be defined as a set of pairs, then the definition of the 
Rayleigh quotient must be modified in the same way: 

p(x; H, A) := {~(x*Hx, x*Ax), MO}. 

Hence an angle in ( - +T , +T] may be associated with p via arctan (x *Hx/x *Ax). In fact it is 
possible to economize on notation and let p stand for either an angle or a ray in aB2 depending 

on the context. 
The minmax characterization of eigenvalues applies to classical pencils (A is spd) with no 

change. If the angular eigenvalues of (H, A) are ordered by 

- +V c 8, G e, G . . . G en c ST, 

then 

0, = min max p(x; H, A) = max min p(y; H, A). 
.Y’ x E.Y’ *,?I yL9t+ 

However, there is a difficulty in applying this to definite pencils because of an indexing problem. 
The minmax values of p are eigenvalues but it is not obvious where, on the unit circle, to start 
counting. One way to describe the ordering is to invoke the optimal rotation angle w. Relabel the 
0, so that 0, + w, when represented in (- id , +T], is minimal among all the 0, + w. Then 
continue labelling clockwise. 

Since each definite pencil is the rotation of a classical pencil, several properties of the latter 
may be reinterpreted for definite pencils. 

8. Indefinite symmetric pencils 

Such pencils cannot be diagonalized by equivalences that preserve symmetry. No stable 
algorithm is available for computing the eigenpairs but, in principle, an extension of the Lanczos 
algorithm can maintain backward stability by working with groups of vectors instead of a single 
vector. 

Here is a summary of the algorithm presented in [lo] for a real symmetric H and A; the 
Lanczos algorithm with indefinite inner product. Input consists of a starting vector ql, the matrix 
A and a real linear operator Op that depends on H, A and a shift u. It is the eigenvalues closest 
to 0 that are wanted. In the simplest instance Op = H and u = 00, next come cases when u is 
real and Op = ( H - UA) -‘A, finally when u is complex, the reader is referred to [lo] for 
definition of Op. In all cases Op is formally self-adjoint with respect to the indefinite inner 
product associated with A: 

COP * x3 r>,4 = (XI OP .Y)AI 

for all x E Iw”, y E Iw” and (u, u)~ = u’Au. 
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The output, in the simplest form, consists of an integer j, a matrix Q = [ql, 

and two symmetric j X j matrices 

fi=diag(o, ,..., w,), w,#O, i= l,..., j, 

T = tridiagonal, 

P ]+I ’ 0. 

The columns of Q have Euclidean length 1 and in exact arithmetic D = Q *A Q. 
The reduced eigenvalue problem 

Ts,=G?s,0,, i=l,..., j, 

, qj] E RnX’, 

(8) 

(9) 
(10) 

is used to generate approximate eigenpairs for the pencil (Op, A), namely (B,, Qs,), i = 1,. . , j. 
In general some of the approximations are good, others are bad. Fortunately there are computa- 
ble error estimates for each pair. Part of the estimate may be formed without computing Qs;, 
namely p,,, ] s,( j) ]/s;L?(2si. If thi s is not small enough, then Qs, is not formed. 

There is an easily monitored upper bound on the condition number of Q: 

%m(Q> 
cond(Q):= (J (Q) G .IilAll 

Ill,” mm; ) wi ) . 

The algorithm is not guaranteed to terminate with j = n. The bound on cond( Q) shows that 
the vulnerability of the algorithm lies in the occurrence of a small value of w,+, before the 
wanted eigenvalues have been approximated well enough. In principle, this weakness may be 
overcome by working with several columns of Q simultaneously. Instead of a 1 x 1 matrix oi 
with tiny ( w, (, the algorithm uses a small Hankel matrix Oi of the form 

[ 

w(2) 
0, = WI ’ 

(p) 
I 

J3) 
I I or 52, = I a, (,J2’ 

I 
J3) 

I 

&p 
r 

(J3) 
I 

(,p 
r 

oJ!3) 
r 

(,p’ 
I 

(J5) 
I 

such that a,,,( 52,) is acceptable. 
Another aspect of the algorithm that needs further work is the efficient solution of the 

eigenproblem for (T, 52). 

Details and numerical examples are given in [lo]. 
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