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Abstract Zirconium incorporated mesoporous MCM-48 solid acid catalysts with the different

Si/Zr molar ratios were prepared by modification with H2SO4 and NH4NO3 solution, respectively.

Their physicochemical properties were characterized by XRD, TEM, NH3–TPD and N2 physical

adsorption. The catalytic performances of these catalysts were investigated by using the alkylation

reaction of phenol and tert-butyl alcohol as the target reaction. The results reveal that the SO4
2�/

ZrMCM-48 and H-ZrMCM-48 catalysts still maintained the cubic mesporous structure of MCM-

48, but the mesoporous ordering decreased. Under comparable conditions, the catalytic activity of

SO4
2�/ZrMCM-48(25) solid acid catalyst is the highest among all catalysts. The lower reaction

temperature is favorable for formation of the 2,4-DTBP and the 4-TBP is easily formed at the

higher reaction temperature.
ª 2014 Production and hosting by Elsevier B.V. on behalf of University of Bahrain.
1. Introduction

Alkylation of phenol with tert-butyl alcohol, an interesting
industrial organic reaction, has received great interest due to
its industrial and academic relevance (Dapurkar and Selvam,

2003; Huang et al., 2006). The butylated phenols like 2-t-butyl
phenol (2-TBP), 4-t-butyl phenol (4-TBP) and 2, 4-di-t-butyl
phenol (2,4-DTBP) are widely used as starting materials or

important intermediates in some areas such as phenol resins,
petrochemicals, fine chemicals, antioxidants, rubber chemicals,
heat stabilizers of polymeric materials and agrochemical (Math-

ew et al., 2004; Ojha et al., 2005; Gui et al., 2008). Conventional,
alkylation of phenol with tert-butyl alcohol were carried out by
homogeneous liquid acid catalysts including sulfuric acid, phos-

phoric acid and hydrofluoric acid. However, several problems
have emerged along with the use of these acid catalysts: increas-
ing waste disposal costs, environmental non-friendliness,
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corrosiveness and low reaction selectivity (Elavarasan et al.,
2011; Li et al., 2009; Ronchin et al., 2012; Yadav and Pathre,
2006). This greatly limits their industrial applications. Thus,

some efforts to replace traditional homogeneous liquid acid cat-
alysts by novel heterogeneous solid acid ones have been made
due to some advantages of these solid acid catalysts such as high

reactivity, no corrosion, environmental friendliness, easy han-
dling, inexpensive and easy to recover and reuse (Chen et al.,
2007; Jiang et al., 2008; Sohn et al., 2006).

Recently, many efforts for the target reaction were carried
out by environmentally friendly heterogeneous solid acid cata-
lysts such as cation-exchanged resins, zeolite, clay-based cata-
lysts and mesoporous molecular sieves due to societal,

environmental and economic pressure (Badamali et al., 2000;
Chandra and Sharma, 1993; Dumitriu and Hulea, 2003; Krish-
nan et al., 2002; Subrahmanyam et al., 2005). Among solid acid

catalysts, cation-exchanged resins exhibit good performance,
but they are thermally unstable at higher reaction temperature.
Microporous zeolites are usually regarded as the environmen-

tally friendly catalysts because of their high acidity, highly ther-
mal stability and easy separation from reaction products
(Anand et al., 2003; Zhao et al., 2006). However, these micropo-

rous materials possess small pore size (<2 nm), which severely
limited the formation of butylated products like 2,4-DTBP.

M41S family mesoporous materials, discovered in 1992
(Kresge et al., 1992), have some potential applications in the

fields of catalysis, adsorption, materials science and petrochem-
ical industry owing to their high surface areas and tunable pore
diameters (Du et al., 2011; Subashini and Pandurangan, 2007).

Recently, the catalytic activities of some mesoporous solid acid
catalysts have been evaluated by t-butylation of phenol (Savi-
dha et al., 2004; Vinu et al., 2004) and the experimental results

reveal that mesoporous solid acid catalyst is more ideal one
for t-butylation of phenol as compared with the other solid acid
catalysts like cation-exchange resin and microporous material.

However, many of the previous reports focused on the study
on mesoporous MCM-41 solid acid catalysts. Little attention
is paid to investigation on mesoporous MCM-48 solid acid cat-
alysts. Compared with the one-dimensional channel structure of

MCM-41,MCM-48was found to be amore potent and interest-
ing candidate as catalyst or catalyst support due to its attractive
and unique cubic arrangement of three-dimensional interwoven

structure (Zhao et al., 2010a).
In this paper, we prepared several SO4

2�/ZrMCM-48 andH-
ZrMCM-48 solid acid catalysts by the impregnation method.

The catalytic performances of these solid acid catalysts were
investigated by the alkylation of phenol with tert-butyl alcohol.
Among the four solid acid catalysts, we found that the SO4

2�/
ZrMCM-48(25) catalyst is the most promising and gives the

highest phenol conversion under the comparable conditions.

2. Experimental

2.1. Materials

The chemicals used in this work were tetraethyl orthosilicate
(TEOS) as a silica source, zirconium sulfate (Zr(SO4)2Æ4H2O)
as Zr source, cetyltrimethyl ammonium bromide (CTAB) as

a surfactant, respectively, and sodium hydroxide (NaOH), so-
dium fluoride (NaF), concentrated sulfuric acid (H2SO4),
ammonium nitrate(NH4NO3), phenol and tert-butyl alcohol.
All chemicals were of analytical grade and they are purchased
from Shanghai Chemical Reagent Corporation, PR China.

2.2. Synthesis of Zr incorporated MCM-48 mesoprous
molecular sieves

A detailed synthesis procedure for Zr incorporated MCM-48

mesoporous molecular sieve has been reported in our previous
publication (Jiang et al., 2011). The typical composition for the
synthesis of Zr incorporated MCM-48 was: 1TEOS: x Zr:

0.65CTAB: 0.5NaOH: 0.1NaF: 62H2O (x = 0.02 and 0.04,
respectively). The calcined samples were designated as
ZrMCM-48(x), where x is the molar ratio of Si/Zr in synthesis

gel.

2.3. Preparation of SO4
2�/ZrMCM-48 solid acid catalysts

SO4
2�/ZrMCM-48 solid acid catalysts were prepared by the

wet impregnation method. Typically, 2 g of the calcined
ZrMCM-48 sample was dissolved in 0.4 mol/L of H2SO4 solu-
tion with stirring for 1 h. The obtained suspension was stati-

cally placed at ambient temperature for 8 h till the
suspension was deposited. After evaporating the solvent,
the residual solid was dried at 100 �C for 12 h in an oven.

The dried sample was calcined at 550 �C for 3 h in air at a heat-
ing rate of 2 �C/min, and denoted as SO4

2�/ZrMCM-48(25)
and SO4

2�/ZrMCM-48(50).

2.4. Preparation of H-ZrMCM-48 solid acid catalyst (Sakthivel
et al., 2003)

The calcined ZrMCM-48 samples were converted into acidic

form by repeated ion exchange with 1 mol/L NH4NO3 solution
at 80 �C with stirring for 1 h, followed by calcination at 550 �C
for 6 h in air, and the protonated form was obtained, denoted

as H-ZrMCM-48(25) and H-ZrMCM-48(50). For comparison,
the H-MCM-48 and H-Y catalysts were prepared in the same
manner.

2.5. Thermal and hydrothermal treatment of ZrMCM-48 sample

Thermal stability test, 1 g of calcined ZrMCM-48(50) sample
was calcined again at different temperatures (700 and

800 �C) for 4 h in air, respectively. The obtained samples were
designated as ZrMCM-48(50)-700 and ZrMCM-48(50)-800,
correspondingly.

Hydrothermal stability test, 1 g of the ZrMCM-48(50) sam-
ple was respectively added into a 100 ml Teflon-lined stainless
autoclave containing 80 ml of H2O and hydrothermally treated

at 100 �C for different times (12, 24 and 48 h). After this treat-
ment, the hydrothermally treated sample was subsequently fil-
tered and dried in an oven at 120 �C. The hydrothermal treated

samples were denoted as ZrMCM-48(50)-12 h, ZrMCM-
48(50)-24 h and ZrMCM-48(50)-48 h.

2.6. Characterization

XRD patterns were recorded on a powder XRD instrument
(Rigaku D/max 2500PC) with Cu Ka radiation (k = 0.154
18 nm) operating at 40 kV and 50 mA in the 2h range of
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Figure 1 Low-angle XRD patterns of various samples.
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1–10�. N2 adsorption–desorption isotherms at 77 K were re-
corded with a NOVA2000e analytical system made by Quanta-
chrome Corporation (USA). Prior to measurement, all

samples were outgassed at 300 �C for 3 h. The specific surface
area was calculated by the BET method. Pore size distribution
was calculated by the BJH method. Transmission electron

microscopy (TEM) morphologies of samples were observed
on a Philips TEMCNAI�12 with an acceleration voltage of
100–120 kV. NH3 temperature–programmed desorption

(NH3–TPD) profiles of the samples were carried out on a
TP-5000 adsorption instrument made by Tianjin Xianquan
Corporation (China). About 100 mg sample with particle sizes
in a range of 240–425 lm was pretreated in helium gas at the

flowing rate of 30 ml/min at 200 �C for 1 h. After that, the
ammonia gas was adsorbed to saturation at room temperature
following by flushing the samples with helium gas at 80 �C for

40 min until the integrator baseline was stable. NH3–TPD
curves were obtained at a heating rate of 10 �C/min
from 100 to 700 �C. The TPD was measured with a TCD

detector.
Figure 2 TEM images of various samples. (A) ZrMCM-48(50); (B)

48(25); (E) H-ZrMCM-48(50); (F) H-ZrMCM-48(25).
2.7. Catalytic test

The alkylation of phenol with tert-butyl alcohol was carried
out in a fixed-bed flow reactor (WFD-3030) with a stainless
ZrMCM-48(25); (C)SO4
2�/ZrMCM-48(50); (D) SO4

2�/ZrMCM-
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Figure 3 N2 adsorption–desorption isotherms of various

samples.
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steel reaction tube. Before the start of the reaction, the cata-
lysts were activated at 400 �C in air for 10 h followed by cool-

ing to room temperature in nitrogen atmosphere. In a typical
run, 500 mg of catalyst was placed in the reaction tube, and
the reactant mixture, i.e., phenol and tert-butyl alcohol, was

fed into the preheating reactor using a liquid injection pump
(WMCB102-A) at a flowing rate of 60 ml/min using N2 as
the carrier gas. In this case, the preheating temperature was

kept at 75 �C. After that, the preheated reactant mixture with
a flowing nitrogen entered into the fixed-bed flow reactor to
process alkylation reaction. The effluents were cooled to room
temperature in air and collected at every 2 h interval. The

products were analyzed by SP-2000 gas chromatograph fitted
with a SE-54 capillary column coupled with FID.

3. Results and discussion

3.1. XRD analysis

The low-angle powder XRD patterns of the ZrMCM-48,
SO4

2�/ZrMCM-48 and H-ZrMCM-48 samples are shown in

Fig. 1. It is observed that the ZrMCM-48(50) sample exhibits
a high intensity diffraction peak (211) followed by a small
peak (220) in the 2h range of 2–3� and several diffraction

peaks are also noted in the 2h range of 3–6�, suggesting the for-
mation of the typical Ia3d cubic mesoporous framework with
high order. This is consistent with the results of the Refs.
(Zhang et al., 2012; Zhao et al., 2010b). For ZrMCM-48 sam-

ples, an obvious decrease in the intensity of diffraction peak is
seen with the increase in zirconium content, suggesting that the
cubic mesoporous structure was partially collapsed. Besides, it

can be noted from Fig. 1 that the SO4
2�/ZrMCM-48 and
Table 1 Specific surface areas, average pore sizes and pore

volumes of the samples.

Sample Surface

areas m2/g

Average

pore size nm

Pore volume

cm3/g

ZrMCM-48(50) 1246.99 2.50 0.92

ZrMCM-48(25) 1007.08 2.50 0.76

SO4
2�/ZrMCM-48(50) 975.16 2.46 0.71

SO4
2�/ZrMCM-48(25) 937.37 2.45 0.68

H-ZrMCM-48(50) 1059.33 2.45 0.85

H-ZrMCM-48(25) 724.02 2.74 0.61
H-ZrMCM-48 samples have obvious mesoporous characteris-

tic peaks of MCM-48, showing that these samples still retained
the cubic mesoporous framework, but the mesoporous order-
ing slightly deteriorated as compared with the parent

ZrMCM-48 samples.

3.2. TEM analysis

Fig. 2 presents the TEM images of various samples. Clearly, it

can be noted that all samples exhibit a well-defined ordered
mesoporous structure of MCM-48. At the same time, as shown
in Fig. 2c–f, it was found that the mesoporous frameworks of

the four solid acid catalysts were slightly damaged, but these
catalysts still retained good mesoporous ordering. This further
indicates that introduction of SO4

2� or H+ has little influence

on mesoporous structures of ZrMCM-48 mesoporous molecu-
lar sieves.

3.3. Results of nitrogen physical adsorption

Fig. 3 illustrates the N2 adsorption–desorption isotherms of all
samples. As can be seen from Fig. 3, the isotherms in all cases
exhibit the typical IV type adsorption isotherms with hysteresis

loop, typical indication of mesoporous materials (Yang et al.,
2005). A sharp inflection corresponding to the capillary con-
densation within uniform mesopores was observed in the rela-

tive pressure range of 0.25–0.4, which indicates that the SO4
2�/

ZrMCM-48 or H-ZrMCM-48 samples obtained after impreg-
nation using H2SO4 or NH4NO3 solution still have typical

mesoporous framework. Therefore, it can be concluded that
there is no obvious influence on mesoporous structure of
ZrMCM-48 samples after the introduction of SO4

2� or H+.
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Table 1 listed the corresponding textural properties includ-
ing the BET surface areas, BJH pore sizes and pore volumes.

As shown in Table 1, we can see that the specific surface areas
and pore volumes of the ZrMCM-48 samples decreased with
the increase in Zr content, indicating that the higher Zr content

deteriorated the mesoporous structure of ZrMCM-48 sample,
which is in agreement with the analysis results of XRD. Fur-
ther, the BET surface areas of the SO4

2�/ZrMCM-48 or H-

ZrMCM-48 samples decreased as compared with the parent
ZrMCM-48 samples, suggesting that the mesoporous struc-
tures of these samples were slightly damaged. Combined with

the analytic results of the N2 adsorption–desorption isotherms,
these samples still retained the cubic mesoporous structure of
MCM-48. On the other hand, from Table 1, pore size can be
seen in the range of 2.45–2.74 nm, indicating that these sam-

ples have the uniform pore size distribution.

3.4. NH3–TPD analysis

The acid site distributions in H-ZrMCM-48 and
SO4

2�/ZrMCM-48 samples were determined by NH3–TPD
measurement. According to the Ref. (Dapurkar and Selvam,
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2003; Sakthivel et al., 2000), the desorption peak around

423–443 K is due to surface hydroxyl groups from weak acid
sites (type I); the two desorption peaks at the range of 453–
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weak Lewis acid sites (type IV). A schematic representation of
the various acidic sites is shown in Scheme 1.
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can be noted, showing that the two samples have certain num-
ber of weak acid sites and the strong acid sites are lacking. Fur-
ther, we can also observe that with the increase in zirconium

content, the area and intensity of the NH3 desorption peak in-
crease, indicating that the ZrMCM-48 with higher Zr content
has much more weak acidic sites (see Fig. 4).

3.5. Thermal and hydrothermal stability test

Fig. 5 illustrates the N2 adsorption–desorption isotherms of

the ZrMCM-48(50) sample after calcination at 700 and
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distribution, and the mesoporous structure was not signifi-

cantly changed from calcination temperature of 800 �C, sug-
gesting that the resulting ZrMCM-48(50)-800 sample has
good thermal stability.

Fig. 6 presents the XRD patterns of the ZrMCM-48(50)
sample after hydrothermal treatment at 100 �C for 0, 12, 24
and 48 h, respectively. It is noted that the characteristic diffrac-

tion peaks (211) and (220) existed obviously in the XRD pat-
tern of the ZrMCM-48(50)-12 h sample, and the weak
diffraction peaks (420) and (322) can be seen. It indicates that
the cubic Ia3d mesoporous structure still retained after the

ZrMCM-48(50) sample was hydrothermal treated at 100 �C
for 12 h. However, as the hydrothermal treatment time in-
creases to 24 h, the intensity of the diffraction peaks (211)

and (220) became weak, and the diffraction peaks (420) and
(322) disappeared, showing that the ordered mesoporous
structure was partial loss, the mesoporous ordering deterio-

rated. When the hydrothermal treatment time increased to
48 h, the cubic mesoporous framework was completely col-
lapsed. The intensity of basal peak (211) gradually decreased

with an increase in hydrothermal treatment time, indicating
that the ordering of ZrMCM-48 sample gradually degraded.
It is reasonable to conclude that the resulting ZrMCM-48 sam-
ple possesses good hydrothermal stability.
3.6. Catalytic activity

3.6.1. Effect of reaction temperature on phenol conversion and

product selectivity

The effect of different reaction temperatures on phenol conver-
sion and product selectivity of alkylation of phenol with
tert-butyl alcohol over various catalysts is shown in Fig. 7.

According to Fig. 7, we found that the conversion of phenol
over all catalysts increased with the increase in temperature
from 100 to 140 �C, which may be attributed to the domina-

tion of the alkylation at lower temperature up to 140 �C, the
phenol conversion reaches a maximum in all cases. Beyond this
temperature, viz. at the temperature range of 140–180 �C, the
conversion of phenol decreased with the increasing of reaction
temperature. This behavior could be due to the fact that the
speed of dealkylation reaction is faster than that of alkylation

reaction at the higher temperature (Elavarasan et al., 2011).
Additionally, it is noted that the phenol conversion is related
to the Zr content in sample. For example, when SO4

2�/
ZrMCM-48 catalysts were respectively used in the alkylation

reaction at 140 �C, the phenol conversions increased from
77.3% to 91.6% with the variation of the Si/Zr molar ratio
from 50 to 25, implying that the solid acid catalyst with higher

Zr content exhibits higher catalytic activity. This is probably
attributed to an increase in amount of acid sites with an in-
crease in Zr content (see Fig. 4). The related results obtained

at other reaction temperatures are shown in Fig. 7. A similar
trend was also observed over H-ZrMCM-48 solid acid cata-
lysts. Further, it can be noted that the phenol conversion over
the SO4

2�/ZrMCM-48(25) catalyst is the highest among all

catalysts and reaches 91.6%, suggesting that the SO4
2�/

ZrMCM-48(25) catalyst exhibits the highest catalytic activity.
This is probably attributed to the amount of the strong acid

sites for SO4
2�/ZrMCM-48(25) which is much more than that

of other catalysts (Savidha et al., 2004).
Moreover, as can be observed from Fig. 7 the major prod-

ucts over all catalysts are 4-TBP, 2-TBP and 2,4-DTBP,
respectively. No 2,6-DTBP and 2,4,6-TTBP were observed.
As the reaction temperature increased from 100 to 180 �C,
the selectivity to 4-TBP increased while the selectivity to
2-TBP and 2,4-DTBP decreased. This may be due to the fol-
lowing reasons: the steric hindrance of 2-TBP increased with
the increase in reaction temperature (Wu et al., 2006). The



Table 2 Catalytic performance of H-MCM-48 and H-Y for tert-butylation of phenol.

Catalyst Conversion of phenol/wt% Selectivity of products/wt%

2-TBP 4-TBP 2,4-DTBP

H-MCM-48 2.8 16.77 78.74 6.33

H-Y 81.02 5.55 69.58 22.46

Reaction condition: 0.5 g catalyst, n(tert-butanol)/n(phenol) = 2:1, time = 2 h, temperature = 140 �C, WHSV= 2 h-1.
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other one is that the dealkylation is dominant at higher tem-
perature leading to the effortless formation of 4-TBP with

low steric hindrance. A maximum selectivity to 4-TBP of
93.8% over SO4

2�/ZrMCM-48(25) can be seen at 180 �C,
and accompanied with the maximum selectivity to 2,4-DTBP
of 57.7% at 100 �C, indicating that the higher temperature is

favorable for the formation of 4-TBP and the 2,4-DTBP is eas-
ily formed at the lower temperature. Furthermore, according
to the product distribution, a possible process for the alkyl-

ation reaction of phenol with tert-butyl alcohol over H-
ZrMCM-48 (or SO4

2�/ZrMCM-48) catalysts is shown in
Scheme 2.

3.6.2. Effect of reaction time on catalytic activity

Fig. 8 depicts the effect of reaction time on phenol conversion
over the SO4

2�/ZrMCM-48(25) catalyst in the reaction tem-

perature range of 100–180 �C. As shown in Fig. 8, it is noted
that in the temperature range, the phenol conversion gradually
decreased with the increase of reaction time from 2 to 7 h. This

may be attributed to the deactivation of the catalyst aroused
by longer contact time. After 7 h, we found that the phenol
conversion reaches to 76.2%, indicating that the SO4

2�/
ZrMCM-48(25) catalyst still has high catalytic activity and

suggesting that the SO4
2� is slight loss before and after

reaction.

3.7. Results of alkylation of phenol with butyl alcohol over H-
MCM-48 and H-Y catalysts?

The results of alkylation of phenol with alcohol over H-MCM-

48 and H-Y catalysts under the optimum reaction condition
are listed in Table 2. From Table 2, we found that the phenol
conversion over H-MCM-48 catalyst is only 2.8%. Although

the phenol conversion over H-Y catalyst reaches 81.02%, the
selectivity to 2,4-DTBP is lower than that of the H-ZrMCM-
48 and SO4

2�/ZrMCM-48. This may be due to the following:
the microporous structure of H-Y catalyst limited the forma-

tion of 2,4-DTBP.

4. Conclusions

A series of SO4
2�/ZrMCM-48 and H-ZrMCM-48 solid acid

catalysts were successfully prepared via the wet impregnation
method with H2SO4 and NH4NO3 solution, respectively.

There is no obvious influence on mesoporous structure of
MCM-48 after introducing of SO4

2� or H+ and these solid
acid catalysts still retain the cubic mesoporous framework.

In the alkylation of phenol with tert-butyl alcohol, the
SO4

2�/ZrMCM-48(25) catalyst was found to be the most
promising and gave the highest phenol conversion among all

catalysts. A maximum phenol conversion of 91.6% with
81.8% selectivity to 4-TBP was achieved when the molar ratio
of tert-butyl alcohol: phenol is 2, the WHSV is 2 h�1, the reac-
tion time is 2 h and the reaction temperature is 140 �C.
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