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Diffractive Ds production in charged current DIS
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Abstract

We present a perturbative QCD calculation of diffractive Ds production in charged current deep inelastic scattering. In the
two-gluon exchange model, we analyze the diffractive process νN → µ−ND+

s , which may provide useful information for
the gluon structure of nucleons and the diffraction mechanism in QCD. The cross section of diffractive Ds production with
xBj = 0.005–0.05 and Eν = 50 GeV is found to be 2.7 × 10−5 pb. In spite of this small cross section, the high luminosity
available at the ν-Factory in the future would lead to a sizable number of diffraction events.

 2002 Elsevier Science B.V.
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Diffractive leptoproduction of mesons has received
much attention [1–3] due to two reasons. First it
is of interest for the study of diffractive production
mechanism within QCD and second, its cross section
is dominantly proportional to the square of the gluon
density in the nucleon, e.g., in the case of diffractive
J/ψ electroproduction.

Aside from the diffractive electroproduction pro-
cesses, the charged-current (CC) induced diffraction
may also be interesting. To the lowest order in per-
turbative QCD, CC diffractive deep inelastic scatter-
ing (DIS) [4] proceeds by the Cabibbo-favored pro-
duction of the (ud̄) and (cs̄) states, and the two-gluon
exchange between the (cs̄) and the nucleon may be the
dominant mechanism for the diffractive production of
charmed strange mesons. With the help of high lumi-
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nosity available at the ν-Factory, neutrino-induced dif-
fraction in CC DIS can shed more light on the QCD
mechanism of diffractive meson production. At the
same time, it is a new way to study the gluon struc-
ture of nucleons.

We now consider the diffractive process (Fig. 1)

(1)νµ +N →µ− +N ′ +D+
s .

We shall be concerned with the kinematic region
where Bjorken variable xBj = Q2/(2p · q) is small.
The three-fold differential cross section is

(2)

dσ
dxBj dQ2 dt

= e2

32(4π)3 sin2 θW

LµνA
νAµ∗

xBjs2(Q2 +M2
W)2

,

where s = (p + l)2 ≈ 2p · l, t = u2 and q2 = −Q2,
p and l are the 4-momentum of the nucleon and the
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Fig. 1. Diagram for the neutrino-induced diffractive D+
s production.

(a)

(b)

Fig. 2. Two of the four sub-diagrams. The other two diagrams are
obtained by interchanging c and s̄ quark lines.

lepton, respectively. The leptonic tensor is

(3)Lµν = Tr
[
/l′γµ(1 − γ5)/lγν

]
.

To the lowest order in perturbative QCD, the
hadronic current Aµ can be calculated from the
colorless two-gluon exchange subprocesses shown in
Fig. 2. We will use the nonrelativistic approximation
writing the D+

s vertex in the form gD(/q
D + MDs )γ5.

The constant gD specifies the cs̄ coupling to the D+
s .

We choose the D+
s wave function as

(4)ΨD+
s
(z, κT )= δ(2)(κT )δ(z−mc/MDs ),

where z and z̄ = (1 − z) denote the fractions of D+
s

momentum carried by the c and s̄ quarks, respectively,
κ is their relative momentum. Here we take MDs ≈
mc +ms .

We first evaluate the gluon loops in the Feynman
diagrams shown in Fig. 2. It is convenient to perform
the loop integration in terms of Sudakov variables
[3]. That is, for all particles the 4-momentum are
decomposed in the form

(5)ki = αiq
′ + βip

′ + kiT ,

where p′ and q ′ are respectively the light-like mo-
menta of the nucleon and W+ boson, that is, p′2 =
q ′2 = 0. In particular,

(6)p = p′ + α
N
q ′, q = q ′ + β

W
p′,

with αN = m2
N
/(2p′ · q ′) and βW = −Q2/(2p′ · q ′).

We consider the limit 2p′ ·q ′ �m2
N
,Q2, then we have

2p′ · q ′ ≈ 2p · q .
Within the nonrelativistic approximation the quarks

with momenta (see Fig. 2) zqD + κ and z̄qD − κ are
almost on mass shell. The integration over the gluon
longitudinal momentum leads, in the first diagram, the
upper quark with momentum zqD − k + κ to be on
shell, leaving only the quark propagator (r2

1 − m2
s )

−1

to be integrated over in the gluon k
T

integration.
Using the Sudakov decomposition, we find

(7)r2
1 −m2

s = −1
z

(�Q2 + k2
T

)

where �Q2 = z(1 − z)
(
Q2 + M2

Ds

)
, which is the

relevant effective perturbative QCD factorization scale
[5].

Taking the CKM matrix element Vcs = 1, we
write the contribution given by the Feynman graph in
Fig. 2(a) as

A
µ
1 = iegDg

4
s Fc

8
√

2 zπ sin θW

×
∫

dk2
T Tr

[
γ5

(
z/qD +MDs

)
/p
(
z/qD − /k +mc

)
× γ µ(1 − γ5)(/r1 +ms)/p

]
φ(k)

(8)× [
(2p · q)k2(k − u)2(r2

1 −m2
s

)]−1
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where Fc = 2/3 is the color factor, and φ(k) describes
the emission of the gluon pair by the proton [3],

(9)φ(k) = 3π
4αs

fBFKL
(
x, k2

T

)
.

where fBFKL is the gluon density unintegrated over
kT that satisfies the BFKL equation which effectively
resums the leading αs ln[1/x] contributions, with

(10)x ≈ βDs − β
W

= Q2 +M2
Ds

2p · q .

To relate fBFKL to the conventional gluon density,
which satisfies GLAP evolution, we must integrate
over k2

T

(11)xg
(
x, �Q2) =

�Q 2∫ dk2
T

k2
T

fBFKL
(
x, k2

T

)
.

In analogy to the derivation of (8), we find the sum
of the four diagrams in Fig. 2 is

Aµ =
4∑

i=1

Ai
µ = 3πiz(1 − z)egDg

2
s Fc(2p · q)√

2 sin θW

(12)

×
∫ dk2

T q
D
µ

�Q2(�Q2 + k2
T )

∂(xg(x, k2
T ))

∂k2
T

.

To the lowest order in k2
T , we have

(13)

Aµ = 3πiz(1 − z)egDg
2
s Fc(2p · q)qDµ√

2 sin θW �Q4

(
xg

(
x, �Q2)).

So far we have calculated only the imaginary part
of the amplitude. We can use dispersion relations [2,6]
to determine the real part, and numerically we find it to
be not negligible. Including the real part contribution
as a perturbation we now rewrite the differential cross
section (2) as

(14)

dσ
dxBj dQ2 dt

= e2(s − 2p · q)|A|2
16(4π)3 sin2 θW xBjs(Q2 +M2

W)2
,

where

A= 12π2iegDαs(�Q2)Fc√
2 sin θW �Q2

(15)×
[
xg

(
x, �Q2) + iπ

2
∂(xg(x, �Q2))

∂ ln x

]
.

Since we are concerned with small x , the effect
of the nonzero value of |t|, of which the minimum is
x2m2

N
, is expected to be small. Then we can integrate

out t by

(16)
∫

dt e−bt = 1
b
,

where we will use the experimental slope value b =
3.3 GeV−2 as in similar processes [7].

To give numerical results, we take the input para-
meters as follows: MW = 80.4 GeV, mc = 1.5 GeV,
ms = 0.5 GeV. The running strong coupling constant
is chosen with αs(m

2
c) = 0.27. For the gluon distribu-

tion function, we select the Glück–Reya–Vogt (GRV)
next-to-leading order (NLO) set [8]. The constant gD
can be expressed in terms of the decay constant by

(17)〈0|c̄γµ(1 − γ5)s|D+
s 〉 = fDs q

D
µ ,

which gives gD = fDs /4. Here we choose fDs =
280 MeV [9].

In Fig. 3 (solid lines) we show the results ob-
tained for the differential cross sections dσ/dxBj and
dσ/dQ2. The neutrino energy has been chosen as
Eν = 50 GeV. For the plot of xBj-dependence, Q2 has
been integrated from 0.5 GeV2 to the upper bound
given by the constraint on inelasticity y = Q2/(2xBjp ·
l) < 1. In the plot of Q2-dependence, xBj has been
integrated from lower bound to 0.05 and taking the
same kinematic constraint mentioned above. Integrat-
ing over Q2 and xBj in the kinematical region speci-
fied above gives a value for the total cross section of
σ = 2.7 × 10−5 pb.

To see the sensitivity of the differential cross
sections to the neutrino energy, we also present the
results for Eν = 40 GeV in Fig. 3 (dotted lines). The
kinematic regions of Q2 and xBj are the same as in
the Eν = 50 GeV case except that the upper bound
of xBj is chosen as 0.065. Integrating out all variables
gives the total cross section of σ = 2.0 × 10−5 pb. In
spite of the small cross section, the high luminosity
available at the ν-factory in the future [10] would lead
to a sizable number of events of the order of magni-
tude 104.

Some discussions are in order. First, in the two
gluons exchange processes in general we should en-
counter the so-called off-diagonal gluon distribution
function [11]. But it is expected that for small x there
is no big difference between the off-diagonal and the
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Fig. 3. Differential cross sections as a function of xBj and Q2. The
neutrino energy has been chosen as Eν = 50 GeV (solid lines) and
Eν = 40 GeV (dotted lines).

usual diagonal gluon densities [12]. So in the above
calculations we have estimated the small x production
rate by approximating the off-diagonal gluon density

by the usual gluon density. This situation is similar to
many diffractive production processes at hadron col-
liders [13,14] (for detailed discussions, see [13]).

Second, we have used �Q2 = z(1 − z)
(
Q2 +M2

Ds

)
as the energy scale for the application of the perturba-
tive QCD. The applicability of pQCD is guaranteed by
the large value of M2

Ds
≈ (mc + ms)

2. So Q2 can be
chosen to be rather small, say, 0.5 ∼ 1.0 GeV2.

Third, we have used nonrelativistic approximation
to describe the Ds wavefunction, and this will cause
some uncertainties in our calculation. Relativistic
effects can be quite important and should be further
considered in a similar way as in [3,15].

In conclusion, we have calculated the diffractive
Ds production rate in the neutrino-induced charge
current DIS process in the two-gluon exchange model
in QCD, and found the diffractive production of Ds to
be observable with the high luminosity available at the
ν-Factory in the future.

Note added

After the calculation in this work was completed,
B. Lehmann-Dronke and A. Schäfer [16] published a
preprint treating a similar process to that we consid-
ered. But they analyzed exclusive Ds production in
the large xBj region, whereas we studied the diffractive
production of theDs meson in the two-gluon exchange
model with small xBj. Although calculated in different
methods and in different kinematic regions, our total
cross section has the same magnitude as theirs.
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