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Abstract

The XXO0 Heisenberg model on a cyclic chain is considered. The representation of the Bethe wave func-
tions via the Schur functions allows to apply the well-developed theory of the symmetric functions to the
calculation of the thermal correlation functions. The determinantal expressions of the form-factors and of
the thermal correlation functions are obtained. The g-binomial determinants enable the connection of the
form-factors with the generating functions both of boxed plane partitions and of self-avoiding lattice paths.
The asymptotical behavior of the thermal correlation functions is studied in the limit of low temperature
provided that the characteristic parameters of the system are large enough.

© 2013 The Authors. Published by Elsevier B.V. Open access under CC BY license
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1. Introduction

The exactly solvable Heisenberg XXZ model is a prominent model describing the interaction
of spins % on a chain. The integrability of the model via the algebraic Bethe Ansatz has led to
important results, going from the spin dynamics up to the exact expressions for the correlation
functions [1-11].

The XXO0 Heisenberg chain is the zero anisotropy limit of the XXZ model, it also may
be considered as a special free fermion case of the XY magnet [12,13]. It appears that XXO0
model is related to many mathematical problems. It is related to the theory of the symmetric
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functions [14] and to the theory of plane partitions. Plane partitions (three-dimensional Young
diagrams) [14—-16] were then discovered to be connected with amazingly wide ranging prob-
lems in mathematics as well as theoretical physics. They are intensively studied, e.g., in prob-
ability theory [17,18], enumerative combinatorics [19], theory of faceted crystals [20,21], di-
rected percolation [22], topological string theory [23], and the theory of random walks on
lattices [16,24-26].

The correlation functions of the XXO0 chain are of considerable interest, and their behavior
was intensively investigated for the system in the thermodynamic limit [9,27-29]. In our paper
we study the asymptotical behavior of the thermal correlation functions in the limit of low tem-
perature provided that the chain is long enough while the number of flipped spins is moderate.
Namely in this limit the thermal correlation functions are related to random matrix models [25].
This connection allows to uncover, in particular, the mapping between the correlation functions
and the low energy sector of quantum chromodynamics [29].

We shall consider the XX0 Heisenberg model on the periodical chain. The representation of
the Bethe wave functions via the Schur functions [14] allows to apply the well-developed theory
of the symmetric functions to the calculation of the thermal correlation functions as well as of
the form-factors. In the present paper we are interested in the correlation functions of two types:
the correlation function of the states with no excitations on n consecutive sites of the chain that
will be called persistence of ferromagnetic string, and the correlation function of the creation
operator of the n excitations on the consecutive sites of the chain that will be called persis-
tence of domain wall. Special attention will be paid to the combinatorial objects appearing in
the calculations (the generating functions of plane partitions and random walks, the g-binomial
determinants) and to the combinatorial interpretation of the obtained results. We will calculate
the leading terms of their asymptotics, provided that the characteristic parameters of the system
are large enough, including the critical exponents of these correlation functions in the low tem-
perature limit, and the related amplitudes. These amplitudes are found to be proportional to the
squared numbers of boxed plane partitions.

The paper is structured as follows.

Section 1 is introductory. The XX0 model and its solution are presented shortly in Section 2,
the considered correlation functions are defined and the amplitudes of the state vectors are written
in terms of Schur functions. This representation allows to calculate the form-factors of operators
in Section 3 applying the formulas of the Binet—Cauchy type. The persistence of ferromagnetic
string as well as the persistence of domain wall are also calculated in this section. In Section 4 we
deal with the combinatorial aspects of the problem. The g-binomial determinants are introduced
and their connection with the generating functions of plane partitions is discussed. It is shown
also that the form-factors, obtained in the previous section, under the special parametrization are
expressed as the generating functions of boxed plane partitions and of the self-avoiding lattice
paths. The asymptotical estimates of the correlation functions are obtained in Section 5. Discus-
sion in Section 6 concludes the paper. In Appendix A we provide some notions concerning boxed
plane partitions and their generating functions. The proof of the determinantal formulas crucial
for this paper is given in Appendix B.

2. XX0 Heisenberg model and outline of the problem

The Heisenberg XX0 model on the chain of M + 1 sites is defined by the Hamiltonian
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Fig. 1. Relation of the spin “down” coordinates u = (8, 5, 3, 2) and partition A = (5, 3,2,2) for M =8, N =4.

M
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Here the periodic boundary conditions U,f M) = a,f are assumed. The local spin operators
of = 2(of £io}) and o obey the commutation rules: [o;", 0, ] = 807, [0F, o1 = +2650*
(6x1 is the Kronecker symbol). The spin operators act in the space fp/4+; spanned over the
states ®,’€W=0 |s)k, where |s); implies either spin “up”, [1), or spin “down”, ||}, state at kth
site. The states |}) = (:)) and ||) = ((1)) provide a natural basis of the linear space C2.

The sites with spin “down” states are labeled by the coordinates u;, 1 <i < N. These coor-
dinates constitute a strictly decreasing partition w0 = (u1, 42, ..., Un), where M > pg > uo >
-+ > upn = 0. The other important partition is A = (A, A2, ..., Ay) of weakly decreasing non-
negative integers: L > A1 > Ay = --- > Ay > 0. The elements A; are called the parts of A.
The length of partition /(X) is equal to the number of its parts. The sum of all parts is the weight
of partition, |A| = ZlNz 1 A;. Partitions A can be represented by Young diagrams. The Young di-
agram of A consists of N rows of boxes aligned on the left, such that the ith row is right on the
(i + Dst row. The length of the ith row is A;. The relation A j = u; — N + j, where 1 < j < N,
connects the parts of A to those of . Therefore, we can write: A = u — §, where §y is the
strict partition (N — 1, N — 2, ..., 1,0). There is a natural correspondence between the coordi-
nates of the spin “down” states u and the partition A expressed by the Young diagram (see Fig. 1).
Throughout the paper bold-faced letters are used as short-hand notations for appropriate N -tuples
of numbers.

The N-particle state-vectors |¥ (uy)), the states with N spins “down”, is convenient to ex-
press by means of the Schur functions [30,31]:

N
way)= Y Sx(ujzv)(l_[ a,;) ), 2
k=1

AS{MN}

~

where summation is over all partitions A satisfying M =M +1 - N2> A1 =2 Ay > -
An = 0. The parameters uy = (u1,un,...,uy) are arbitrary complex numbers, and “%v
(u%,u%, e, u%v). The state |{}) in (2) is the fully polarized one with all spins “up”: |{)

v

®,11V1=0 [1)n. The amplitudes in (2) are expressed in terms of the Schur functions Sy [14]:

AN —k
det(x}* N<j k<N

V(XN)
in which V(xy) is the Vandermonde determinant

; 3)

Si(xy) =S (x1,x2,...,x8) =
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V(XN)_det( N- k)lgj,ngZ l—[ (X1 — Xm)- 4
1<m<ILKN

The conjugated state-vectors are given by

woml= ¥ <m(lﬂlo:k)s1<vf>. ®

AS{MN)} k=1
If parameters u2 = ¢'% (1 < j < N) satisfy the Bethe equations [27],
G BV A (©6)

then the state-vectors (2) become the eigen vectors of the Hamiltonian (1):

H|Ww (/%)) = Ex@n)| W (V7)) 7
Here (and throughout the paper) the notation 0y for N-tuple (61,63, ...,0y) is reserved for the
solutions to the Bethe equations (6), and ey = (891 e . e ). The solutions 6; to the Bethe
equations (6) can be parametrized such that

o= (1 -N=1) cicn (8)

= M1 j ) , N,

where [; are integers or half-integers depending on whether N is odd or even. It is sufficient to
consider a set of N different numbers /; satisfying the condition: M > Iy > I > --- > Iy > 0.
Then the eigen energies in (7) are equal to

al N 2 N-1
EN(oN):—;COSQJ':—;COS<M+1<I/'— 5 )) 9)

The ground state of the model is the eigen-state that corresponds to the lowest eigen energy
Ey (0%,). It is determined by the solution to the Bethe equations (8) at I; = N — j:

g 2 (NFL N cicw (10)
and is equal to
sin Z&
En(6%) = MAL
SlnMJrl

In the present paper, the two types of the thermal correlation functions in a system of finite
size will be considered. We call them the persistence of ferromagnetic string and the persistence
of domain wall. The persistence of ferromagnetic string is related to the projection operator IT,,
that forbids spin “down” states on the first n sites of the chain:

(1)

(651, ) = (W (V) T e PP, 0 (7)) :1:[0 +o;
&, =

(W (0N /2)|e=BH | (c1?V/2))

where ‘H and 0‘]gv are given by (1) and (10), respectively, and g € C. Some results on this corre-
lation function have been reported in [31].
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The persistence of domain wall is related to the operator F, that creates a sequence of spin
“down” states on the first n sites of the chain:

.58 - - 58 -1
B W (e!ONn-n/2)|E+ —ﬂHF W (eiON-n/2 ~ n
f(og,,n,ﬁ); (e ON ) e nl¥ (e >>7 ETTo 12
N—n ~g ~g J
(W (eN-n/2)|e=FH | (¢1ON-n/2)) =0

where F7 is the Hermitian conjugated operator acting on the conjugated state-vectors (5),

and é%\/—n is the set of ground state solutions to the Bethe equations (6) for the system of N —n
particles:

~g 2w (N—n+1

. —j). 1<j<N-n 13
I M+1 2 ’) / " (3)

We assume that I7y and F are the identity operators so that 7'(0g ,0,)=1and F (éf\,_n, 0, 8)
=1.

The calculation of introduced correlation functions will be based on the Binet—Cauchy for-
mula [32] adapted for the Schur functions:

N
det(Txj) 1<k, j<N

P = ¥ somson = ([T SESELEag
AS((L/m)N) I=1 V(yn)VxN)

where the summation is over all partitions A satisfying: L > A1 > Ay > --- > Ay > n. The Van-
dermonde determinant (4) is used in (14), and the entries Tj; are given by:

1 — AN+L—n
T = (k) . (15)
1 —xiy;

3. The correlation functions

In this section we shall calculate the persistence correlation functions of ferromagnetic string
and of domain wall. The calculation is natural to start with the derivation of the form-factors of
appropriate operators.

3.1. The Bethe states and form-factors

Applying the orthogonality relation

N N N
Mok TTow it =TT 8mm (16)
=1 n=l1

k=1
we reduce the calculation of the scalar products of the state-vectors (2) and (5) to the Binet—
Cauchy formula (14):
det(Ti) 1<k, j<N

v v _ s —2S 2 — 5
(W (vy) | ¥ (uy)) Z 1 (Vi) S (uy) Vi) V(vyd)

AS{MN}

a7)

where summation is over all partitions A with at most N parts, each of which is less or equal
to M. The entries Tk"j in (17) are given by (15) taken at n = 0:
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1= (ug /opMH!

TS =
kj 2,2
1—uk/vj

(13)
For vy = uy, this scalar product is equal to the squared “length” of the states (2): N Z(uy) =
(V(uy) | ¥(uy)).

2 2 iy

On the solutions uy, = vy, = ¢'"V (8) to the Bethe equations (6), the entries (18) are equal to

o sinzr (I — 1)

N sin g (I — 1))

ST = (M 4 1)8 4, (19)

and for the square of the norm N2 (0 y) = ﬁz(eioN/z) we have:

M+DN (M + 1)V

VEMI2 T Ticmacn 201 = c08 325 (I = In))

Notice, that if € y and 0}\, are different sets of the solutions to the Bethe equations, the related

N2 Oy) = (20)

eigen vectors are orthogonal [11]: (¥ (e’ N2y | p (eio/N/ 2))y =0. Being a complete and orthogonal
set of states, these eigen vectors provide the resolution of the identity operator [3.4]

I=) NN () w (), @1
{On}

where summation is over all differenE solutions to the Bethe equations (8).
The form-factor of the projector IT,, (11) is defined by the ratio:

(W (v3) T, |¥ (uy)) .

Ty, uy,n)=—= = (22)
N (NN (uy)
Taking into account (2), (14) and (15), we find that the numerator of (22) is equal to:
2n
- _ ur™ \ det(Txj) 1<k, j<N
W (V) [T, | % (up)) = Pagsn (vt ud) = e (23)
( | "| ) /n( N N) Evlzn V(U?V)V(Vx,z)
where the entries are equal to
1 — (ui/v5)M+i=n
T = J . (24)
& 11— u%/v?
Taken at n = 0, Eq. (23) reproduces the answer for the scalar product (17).
On the solutions to the Bethe equations (8), the form-factor (23) takes the form
0n/2\ | 7 onj2y,_ (M +DY
(,Ij(el N/ )|Hn |l[/(el N/ )) = W det(ékj — K, (6, ej))lgk,jgN’ 25)
with the entries of matrix K, (6k, 6;) equal to
ol (1= (6:—0)/2 gin "(9k2—9./)
Ky (0k, 0)) = (26)

M+1 sin & ;ef

To obtain this answer we have subtracted and added the unity to the numerator of 7j; (24) and
used the equality (19). Finally, for the form-factor (22) we obtain
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T (V2,2 ) = det(8m — Kn (01, 0m)) 1 <) ey

In this form it is known as the emptiness formation probability, being the probability of formation
of a string of n consecutive spin “up” states [6,8,10,11,27].
Let us consider then the form-factor of the domain wall creation operator F, (12):
(T (VN)IFy ¥ (un—p))
F(VN,UN_,,n) = —= ~ . 27

(VN,uN_p, 1) NN @ (27)
To calculate this transition element, we first introduce an auxiliary operator D" (u) acting on an
expectation (-), considered as function of u:

" _ V)

D (W {)u =Duy_pi1.un—nia.in (V(TN_n) X (-)u>- (28)
Here, Duy_,.1.uy—ysa....uy denotes subsequent n-fold application of the differentiation opera-
tors DMN s

Dyt aiy-miziewsty =D L, 0 D2 00Dy, (29)
where

I R ,
Duy_; = lim ————— 0<j<n—1L (30)

u?\,_j—>0 J! d(uN_j)J

The definition (28) implies that the expectation (-)y is first multiplied by the ratio of the Vander-
monde determinants and then differentiated n times.
Now we are ready to formulate the following

Proposition 1. The action of operator D" (u) expressed by (28), (29), (30) on the scalar product
(T (vN) | ¥ (uy)) gives the form-factor of the domain wall creation operator F,, (27):

(W (V) |Fa W (uy—)) = D" (W)(¥ (vi) | ¥ (uy)). €19

Proof. From the definition of the state-vectors (2) and of the operator F, (12) we obtain the
representation of the form-factor:

(v [Fa @ (ay ) = (H uj ) > Si)Sa(uy). (32)
=1 AS{MN-)

where summation runs over the partltlons A of the length N — n: /\/l Az - >

AN—n = 0. The parts of the partition X are kp =XApatl < p<<N—n,and AN n+l = An— 2 =

=iy =0. The corresponding strict partitions are given by jt = A+8y and L=A+8N_p.

To derive (32), let us act by F, on the state |¥ (uy_,)) given by (2) with the summation taken
over A C {(M +n)N~"}. The operator F, acts non-trivially only on those vectors in |¥ (uy_,)),
that do not contain spin “down” states on the first n sites:

Fu| ¥ (uy_n)) = > A (uy_,) (Ii_[lol )(ﬁo@)lm

lg{((M+n)/n)N’"}

(1), 5 o)) o

1=1 AC Man}
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We have used the definition of the Schur function (3) to obtain the last equality. Applying the
orthogonality relation (16) to right-hand side of (33), we find that right-hand side of (32) indeed
holds true.

Eventually, direct evaluation of right-hand side of (31) leads to right-hand side of (32) pro-
vided that the scalar product is represented through the Schur functions according to (17). O

Proposition 1 enables us to obtain two summation rules for the products of the Schur functions,
which are crucial in establishing of the combinatorial results for the correlation functions in

question. So, we formulate the following

Proposition 2. The following sums of products of the Schur functions take place:

N—n =
det(Ty; ;
Y S )S(uy,) = (]_[ uy 2”) detTiy)ishisy (34)

V(lli,_n)V(VN )

AS{MN =1} =1
= det(Tij) 1<k, j<N
2 2 2 <k, i<
Z Su(vys n)Si(“N) = (H Uz">#7 (35)
AS{MN—) I=1 (Vy_ )V (uy)

where the entries of the matrices (Tkj)lgk,jgN and (fkj)lgk,jgzv are:

Tij=T3, 1<k<N-—n 1<j<N,

Tk/_vjz(Nk) N-n+1<k<N,1<j<N, (36)
and

TkaTkj., 1<k<N,1<j<N-—n,

Tkj:ui(’v"", 1<k<N,N—n+1<j<N.

Proof. Let us calculate right-hand side of (31) using the determinantal form of the scalar prod-
uct (17):
_ L det(T) 1<k, j<N
(W vw)[Fa ¥ (ay—p)) = D" (W) ——"——F—. (37)
V(uy)V(vy©)

Taking into account the explicit form of the entries Tk‘} (18) we obtain:

det(Tx;) 1<k, j<nN
Vg V)
where the matrix 7 is given by (36). Since right-hand sides of (32) and (38) mutually coincide,
the relation on the Schur functions (34) (which is of the type of (14)) holds true.

Repeating the arguments of Proposition 1, we find that the form-factor of the conjugated
operator F;f" is equal to

(U (V) |F | (uy)) = (l_[vl ) Z SX(VNzn)SX(u?V)’ (39)
{

AS{MN-}

(W ovm)|Fa | (an-n)) = (38)

and to
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(n-n) [FF @ @p) =D" (v )& (vy) | ¥ ). (40)

Respectively, we have for the Schur functions the equality Eq. (35) as well. However, Eq. (35)
can directly be obtained from Eq. (34) by changing notations. O

3.2. Persistence of ferromagnetic string

Let us recall the main relations concerning the persistence of ferromagnetic string and its re-
lationship with the problem of vicious walkers in the random turns model [33]. The problem of
enumeration of the vicious walkers is actively investigated [34—41]. The random walks across
one-dimensional periodic lattice are closely related to the correlation functions of the XX0 mag-
net [25,26,30].

Taking into account the explicit form of the state vectors (2) and (5), we obtain the following
answer [31] for the matrix element

(W (v | T P 1T, | W (uy)) = > S (V) Syr (W) Fur iz (B), (41)
AL ARC{M/mN)

parametrized by arbitrary uy and vy. The range of two independent summations over A~ and
AR is defined in (14), and u©® = ALK 4§ denote the corresponding strict partitions. The tran-
sition amplitude:

N N
Fyiun(B) = <m<1‘[o;f>eﬂ”<1_[ow>|m, (42)
=1 p=1

P

is related to enumeration of paths of N vicious walkers moving across the sites of a one-
dimensional chain [25,26,30,31]. The expression (41) at 8 = 0 is in agreement with (23).
The transition amplitude (42) satisfies the difference-differential equation derived in [26].
The corresponding solution has the determinantal form:
Fub b etk ik s B) = et(Fy 0 (B) gy v “3)

where the entries

M

1 o 2 M
Fet(B) = 3y 2 0P = gy ( B 7)’ @
s=0

are the transition amplitudes Fy,;(8) = (ﬂ|c7k+e_/3Hal_ |1), which are (42) for N = 1. They may
be considered as generating functions of single pedestrian traveling between /th and kth sites of
periodic chain.

The substitution of (44) into (43) allows us to express the transition amplitude (42) through
the Schur functions (3) and the Vandermonde determinants (4) [25]:

1 _BE . 2 . .
Futout B) = G v D e PENOVY( ) 75, 1 (') Syr (e714V), (45)
(PN}
where the summation is over N-tuples ¢y = (¢k,, Pr, - - ., k) labeled by the integers k;,

1 <i <N, respecting M >k > kp > --- > ky = 0. The energy Ey(¢p) is defined by (9).
Substituting (45) into (41) and applying the Binet—Cauchy formula (14), we obtain [31]:
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(& (v [Ty PHIT, |0 (uy))

1 . P .
= 7(M TV Z efBEN(¢N)}V(ez¢N)|2PM/n (VNZ’ el(i)N)’})M/n(e ”bN’“%v) (46)
{pn}
1 f‘ u?l
=5 5 det Fiu(B)—5¢ , (47)
V(u?V)V(VNz) k,l=n v?k 1<i,j<N

where P/, (yn,Xny) and Fi.;(B) are defined by (14) and (44), respectively. At 8 = 0, the ex-
pression (47) transfers into (23). Notice, that for n = 0 the operator I, =1and Eq. (47) gives
the answer for the matrix element (¥ (vy) | e‘ﬁH|¥/(uN)).

Taking into account that

vy)|e 0N = vy él e~ ,
(@ vw) e PP (V%)) = (& (vn) | W (/V/7))e~PENEN) (48)

where the eigen energy Ey (0 y) is given by (9), we obtain from (47) the answer for the persis-
tence of ferromagnetic string (11),

ePENOY) u i(165—k6%)
T(0%.n.8) = MDY det Z Fra(B)e ™1 7 , (49)
k,l=n 1<i <N

with the ground-state energy Ey (0%,) given by (10).
From the relation (46) follows the representation of the correlation function that we will use
in the analysis of its asymptotical behavior:
1

T (6% . 1. B) = —B(En(ON)—En(03))
O A= @ty + {oZN}e

X |V(ei0N)73M/n (e_ioN , emi/)

2

; (50)

where J\/(B‘}g\,) is the norm (20) of the ground state defined by (10), and PM/n(e_”)N, eio%) is
(14) on the solutions to Bethe equations (6).

The approach of the calculation of the persistence of ferromagnetic string used in this sec-
tion allowed us to demonstrate the combinatorial nature of this correlation function. Naturally,
the same answers could be obtained by insertion of the identity operator into the left-hand side
of (41). In this way we shall calculate the persistence of domain wall in the next section.

3.3. Persistence of domain wall

To calculate the persistence of domain wall we insert the resolution of unity operator (21) into
the numerator of (12) taken at arbitrary parametrization:

U(Vn_pn)|F, e Fu|¥ (uy—pn) (51)
( |Fre PR, | )
—BEN@ON)
_ =+ i0y/2 0N /2\|E €
_{zoN}(lII(vN_n)|Fn | @ (e"N/2) N (e )|Fn|l1/(uN_,,))—N2(0N) (52)
=D"(wD" (v )W (vyn)|e P uy)). (53)

The decomposition (52) transfers into (53) provided that (31) and (40) are used for each of
form-factors in (52).
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The substitution of the equality (47), taken at n = 0, into (53) gives

(W (vw_n)[Ffe PHE, @ (uy_n))

1
- V(uzzv )V(V;2 ) ) DU&LnJrl’U;/LnJrZ ’’’’’ vy O Dun ity
—n —n
M 21

det 3 ()L (54)

X de k;l vzk ’

k,1=0 J J1<ij<N
where Dyy_,. 1 uy_pis....uy 1S given by (29); D,-1 ! ! is defined analogously. After

N—n+1""N—n+2°"" N

the differentiations the representation (54) takes the form:

] ) 1 A B
W (Vy_)|Fl e PR, W uay_)) = d ( )’
(@ vv-m)[Ff e 7R | ay—n) Vg, Vot \C D

where A, B, C, D are the matrices with the entries:

M 21
u' . .
Aij = Z Fy(B)—, 1<i,j<N-—n,
k,1=0 v;
M
Bij=Y Fuju(Bu, 1<i<N-n1<j<n,
=0
M
Cij=) FraiBv;”, 1<i<n 1<j<N-—n,
=0

DijEFn—i;n—j(ﬂ), 1<i,j<n.
Finally, we obtain the answer for the persistence of domain wall (12):
ﬂEN—n(éi/, )
~g _ermmn N Alge Blge
PO P) = Gy O <C|5g Dj;e )

where A|ze = limuZ,vzeexp(iéf\,,n) A (the same for B, C, and D).

The explicit expression for the form-factor (32) allows us to express the persistence of the
domain wall in terms of Schur functions starting with the relation (52):

1

F@5_ n B)= —— e~ BEN-—ON_)—~En—n(B)y_,)
R T SRR 2
{0N7n}
- - _ 2
< V() ST sp(emifnn) sy () (55)

AS{MN—}

where the summation is over all solutions to the Bethe equation (6), and é‘]gv_n is the ground state
solution of the system of N — n particles (13).
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4. g-Binomial determinants and boxed plane partitions

Boxed plane partitions and g-binomial determinants are the important notions that will allow
us to give the combinatorial interpretation of the asymptotical behavior of the correlation func-
tions. Proposition 3 formulated in this section provides the determinantal formulas which enable
the connection between the form-factors and enumeration of boxed plane partitions as well as of
certain non-intersecting lattice paths.

4.1. q-Binomial determinants

The scalar product of the state-vectors (17), as well as the form-factors (23) and (38), are con-
nected with the generating functions of boxed plane partitions (A.1) and (A.3) (see Appendix A).
This connection takes place under special g-parametrization of the free variables uy and vy,
and appropriate formulas are given by the statements of Proposition 3. Before turning to Propo-
sition 3, we shall remind essential notions concerning the g-binomial determinants, [42].

To study the asymptotical behavior of the introduced correlation functions, we need to cal-
culate the determinant of the matrix (T)lg j.k<n defined by Egs. (36) though taken under the
special g-parametrization,

V;,2=qNE(q,q2,...,qN), wy=qv/qg=(1,q,....q" ). (56)
For the arbitrary P and L < N, these entries will take the form:

_ 1 — gPHDU+k=D _
Ty=— g 1Sk<LI<j<N,
Ty=¢’V®, L+1<k<N, 1<j<N. 57)

This square matrix (T)lg j.k<n consists of two blocks of the sizes L x N and (N — L) x N.
When L = N, it consists of one block and is the matrix (18) under the g-parametrization. It seems
appropriate to call the determinant, det T, as the Kuperberg-type determinant (see [43], where the
problem of enumeration of alternating sign matrices has been investigated).

The g-binomial determinant (z)q is defined by

a\ _(a, a, .., as) sdet([ajD (58)
(b>q (bl, by, ..., bs q bi 1<i,j<S

where a and b are ordered tuples: 0 < aj <ap <---<asand 0 < by < by < --- < bg. The en-

tries [Zl’ ] are the g-binomial coefficients (see Appendix B). In the limit ¢ — 1, the ¢g-binomial

coefficients are replaced by the binomial coefficients (Zf ) Then, the g-binomial determinant
(58) 1s transformed to the binomial determinant:

a a, a, ..., das a;
= =det J . 59
<b> (blv by, ..., bS) © ((bi)>1gi,j<s o

The binomial determinant (59) is non-negative and is positive provided b; < a;, Vi, [44].
Now we are ready to formulate the following

Proposition 3. Let the square matrix (T)lg/’,kg N, consisting of two blocks of the sizes L x N
and (N — L) X N, be defined by the entries (57) with % < N < P. Then, the determinant of
('T')lgj,ng is given by either of the following relations:



280 N.M. Bogoliubov, C. Malyshev / Nuclear Physics B 879 [FS] (2014) 268-291

q—%(L—l)(N—L) det(M 1</ k<N

V@an)Var/q)
_ Yp-yp[(L+N, L+N+1, ..., L+N+P-1 )
- L, L+1, ... L+P-1 ]
P L q/+k+N 1
HH gtk =Z4(L,N,P), (61)

where P=P — N + 1, and Z,(L, N,P) is the generating function of plane partitions (A.1)
contained in a box B(L, N, P).

Proof. Appendix B contains the proof of (60) and (61). The proof is based on the theory of
the symmetric functions. The statements of Proposition 3 are valid for 1 < L < N. However,
a formal relation can be written for L = 0 also:

= _Np_pp N, N+1, ..., N+P-1
=g 20 V@0 L e )
In this case, the g-binomial determinant is equal to q%(P_l)P (its evaluation is in (B.17)),
and detT is nothing but the Vandermonde determinant. O

Comment. In the limit when ¢ — 1, the g-binomial determinant (60) transfers into binomial
determinant while the generating function (61) into the number of plane partitions A(L, N, P)
(A.2)inabox B(L, N,P). Thus, we have:

<L+N, L+N+1, ..., L+N+P—-1

The number of ways to travel from (0, 0) to (n, m) on a square lattice making elementary steps

n+m

only to the north and to the east is equal to the binomial coefficient ( ) These ways are called

the lattice paths. It was found in [44] that the binomial determinant (59) is equal to the number of
self-avoiding lattice paths wy, w, ..., ws on a square lattice such that w; goes from A; = (0, a;)
to B; = (b;i, bi), 1 <i < S. In the considered case, Eq. (62), the binomial determinant is equal
to the number of self-avoiding lattice paths starting at A; = (0, N + L + i — 1) and terminating
at Bj=(L+i—1,L+i—1),1<i<P.Because of the boundary conditions, this number of
self-avoiding paths is equal to the number of self-avoiding paths starting at C; = (i, N + L +
i — 1) and terminating at B;. The latter configurations are known as watermelons [33]. There
exists bijection between watermelons and plane partitions confined in a box of finite size [36],
and it provides the combinatorial proof of (62) (see Fig. 2).

Described lattice paths from (0, 0) to (n, m) contain in the rectangle n x m. If we place unit
squares above and to the left of these lattice paths then the number of lattice paths is equal
to the number of different ways to fit the Young diagrams with the largest part at most n and

with at most m parts into an n x m rectangle. The g-binomial coefficient | "™ | (B.3) is the

generating function of these Young diagrams (lattice paths), and each diagram comes with the
weight ¢ [45]. The weight of the lattice paths that terminate at B; = (L +i — 1, L +i — 1) and
startat A; = (0, N+ L+i—1)or C; = (i, N+ L+i — 1), respectively, differs on common factor
q%(P’l)p. Hence, the g-binomial determinant (60) is equal to the generating function of the
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Fig. 2. Self-avoiding lattice paths, watermelon configuration and plane partition with gradient lines.

plane partitions (A.1) contained in B(L, N, P) multiplied on the common factor. The algebraic
proof of this statement is given in Appendix B. O

4.2. The form-factors and enumeration of boxed plane partitions

Consider now the scalar product (¥ (vy) | ¥ (uy)) (17) under the g-parametrization (56).
The entries of the matrix 7° (18) are (57) taken for L= N, P =M:

_1
(@(ay?) [ ¥(@v/@?))= Y Sian)Sian/a)
AS{MN)
_ (MAD(j+k—1)

— v @)V (aw /) det =2
- N qN q 1_qj+k_1

> . (63)
1</, k<N

Due to Proposition 3, right-hand side of (63) is given by generating function of column strict
plane partitions (61) with L and P replaced by N and M, respectively:

-1 1 N2 cs
(w(ay?) | ¥(@an/9)2))=q =N DZFP(N, N, M), (64)

and it coincides at ¢ = 1 with the number of column strict partitions in B(N, N, M).

Let us proceed with the form-factor of ferromagnetic string (23). Under the g-parametrization,
the entries (24) are (57) with L = N and P = M — n. Therefore, due to Proposition 3, we may
express the form-factor as the generating function of column strict plane partitions though in a
smaller box B(N, N, M — n):

(W (ay?) [ (v /)))

2 N Ny qM—n+l+j—k
=Pmm@n.an/q) =q" H l_[ Ttk
k=1 j=1
2
=g TN 2SR (N N M ), (65)

The corresponding number of column strict plane partitions (A.4) arises in the limit g — 1:

C}Lng<W(q;7)|ﬁn|w((qN/q>%)> =Ppmn(L, D = AN, N, M —n). (66)
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Due to Propositions 1 and 2, the form-factor of the domain wall creation operator, Eq. (27),
has the form in the g-parametrization:

( (a2 [Ful¥ (v /)?))

n detT
=q2NTNED S (@n)Si@n-—n/q) = , (67)
? LA BSOS g T

where the matrix T is given by (57) with L = N — n and P = M. The partitions A and A are
defined in (32). Applying (61), we obtain:

1 n
(@ (ay?) |Fn|# ((Qy-n/9)?)) = g 2NN =D 7 (N —n, N, M). (68)

Therefore, the form-factor is the generating function of plane partitions confined in the box
B(N —n, N, M). In the limit

L _
tim (¥ (qy? ) |Fu | ((@v—n/9)?)) = AN —n, N, M), (69)

qg—1

we obtain the correspondent MacMahon formula (A.2).
5. Low temperature asymptotics

Now let us turn to the main issue of the present paper — to the low temperature asymptotics of
the correlation functions (11) and (12). We assume that our XXO chain is long enough, M > 1,
while N is moderate: 1 < N <« M. Besides, 8 in (11) and (12) is now inverse of the absolute
temperature, § = % (the Boltzmann constant is unity).

5.1. Persistence of ferromagnetic string

For large enough M, the summation over the solutions to the Bethe equations in the per-
sistence of ferromagnetic string correlation function 7 (8%,, n, 8), Eq. (50), is replaced by in-
tegrations over the continuous variables. Under the same assumption, the elements of N-tuple
0%, of the ground state solutions (10) are such that cos ng =~ 1. The approximate expression for
7'(0%,, n, B) is of the form:

b/
og’n // /eﬂzl 1 (cos—1)
TOy.n.p)= /\/'2(0g)N'
—TT —7T
i 2 o ig2d01d6y - doy
< [Pragne™® D)7 T % -] oo (70)
1<k<IKN

In the large B limit (low temperature limit), right-hand side of Eq. (70) can be re-expressed as:

AN, n) Ty
pra AN.n) =Py, (1, 1)N2(0g)

9]

1 sdxydxy - dxy
// /“Z”x’ [T -wP=—a 05— 7

o 1<k<ISN

T(0%.n,B) ~ (71)
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The power law decay in B of T(8%,n,8) (71) is governed by the critical exponent N2 /2.
The combinatorial factor sz\/t In (1,1) in A(N,n) (71) is, according to (66), the square of the
number of column strict plane partitions A“PP(N, N, M — n).

The integral Zy (72) is a special form of the Mehta integral related to the partition function
of so-called Gaussian Unitary Ensemble [46,47]. Its value in terms of the gamma function [48]
is known, and it is convenient for us to put it in the exponential form:

N
[ (k)
Ty = PN =
N =€, ON = l;log (27_[)1/2 . (73)

In the considered limit the inverse of the square of the norm is equal to

1 Sk Ir—s| ( = >N2 2N (74)
~ r—s|”= e s
N26%) (M 41N L<res<n M+1

where ¢y is defined in (73). Taking into account (73) and (74), we find out that the estimate (71)
may be expressed as

T (6%, 1, B) =~ (ASPP(N, N, M — n))>e®N-M-5) (75)
with
SV M. B =N 1og —2— — N 10g 430 (76)
M+1 2

To study the asymptotical properties of the correlation functions in question, it is appropriate
to represent ¢ (73) through the Barnes G-function [49]:

. > n 2
G(z+ 1) = Q)27 D=5 I1 (1 - 5) et (77)
n
n=1
where y is the Euler constant [48]. For every non-negative integer n

n

nn
Gn+1)= 112(;’) - HF(k) (78)

The theoretical aspects of the Barnes function are discussed in [50]. Eq. (78) allows to re-express
on (73):

N
ony =logG(N + 1) — > log2m, (79)
and thus the value of the integral (72) is given in terms of G-function:
G(N+1)
IN = ———. 80
N = o (30)
Asymptotically as z — oo:

2 1 372 1
logG(z+1)——logA+—log27r+ —— —|logz——+ 0| - (81)

2 12 4 Z

where the constant A can be found in [49,50]. The behavior of ¢ at N >> 1 results from (79)
and (81):
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2 3N2
(pNZTIOgN—T—}-O(logN), N> 1. (82)
Hence, for the exponent (76) we obtain:
5 N3/2

where A is a constant. In order to estimate A“PP(N, N, M —n), we put P =M —n in (A.4) and
use (78):

GEN+1)GM+2—n+N)GM+2—n—N)

ASPP(N, N, M —n) = (84)
GQ2N +1D)G?>(M +2—n)
Taking into account (81), we find in the leading order:
cs 2 M—n
log APP(N, N, M —n) >~ N-log| B , M—n>N>1, (85)

where B is a constant. Eq. (85) gives us the asymptotical behavior of the number of column strict
plane partitions in a high box with a square bottom B(N, N, M — n).

Finally, taking into account (83) and (85), we put the asymptotic estimate (75) of the persis-
tence of ferromagnetic string into the form:

2
e a2 (M —n)
log T(0%.n,B) =N IOg(CiM(N,B)l/Z)’ (86)
where C = AB?. If we assume that M and N are increasing, while the temperature T is de-
creasing, then from (86) it follows that 7 (0%, n, B) is decreasing provided that the restriction

1 _NM?
T<z M) holds.

5.2. Persistence of domain wall

Starting with the representation (55) for the persistence of domain wall correlation function,
we can repeat the arguments of the previous subsection and deduce the following asymptotical
expression:

F(O%.n, )= A2 (N —n,N,M — N + 1)e®? VM5, (87)

where @(N, M, B) is (76), and A(N —n, N,M — N + 1) is the number of the plane partitions
(A.2) in a box with rectangular bottom B(N —n, N, M — N + 1) that may be expressed as the
form-factor of the creation of the domain wall operator (69).

Using (A.2) and (78), we obtain:

GIN+1DG(N—n+1)
GQ2N —n+1)
GM+2—n+N)GM+2—N)
GM+2—nG(M+2)

AN —n,NM—N+1)=

Furthermore, we find using (81):

M_
logA(N—n,N,M—N+1):N(N—n)10g<D ")
2N —n

M—n>N-—n,N>1, (88)
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where D is some constant. Eq. (88) defines the asymptotical behavior of the number of plane
partitions in a high box with rectangular bottom B(N —n, N, M — N + 1). Taking into account
(83) and (88), we obtain for (87):

3/2

- N
g )
log]-'(ON, n, ﬂ) ~N 10g<AW

+AN(N —n)log(D 2" (89)

—n)lo .
S\av -

Eq. (89) enables us to state that F (éfv, n, B) is decreasing with increasing M and N provided

that the temperature 7 is estimated analogously to the previous subsection.

6. Discussion

In our paper we have discussed the N-particle thermal correlation functions of the XXO0
Heisenberg model on a cyclic chain of a finite length. We have considered the ferromagnetic
string operator I7, (11) and the domain wall creation operator F, (12). The calculations were
based on the theory of the symmetric functions that allows us to express the answers in the deter-
minantal form. Egs. (23) and (38) for the form-factors which are the basic quantities in the above
correlation functions are shown to be related to the generating functions of self-avoiding random
walks and boxed plane partitions. The introduced g-binomial determinant plays an important
role in the establishing of this relation.

The estimate of the asymptotical behavior of the persistence correlation functions of the op-
erators /T, and F, is done for low temperatures. The problem of calculating the asymptotical
expressions leads to the calculation of the matrix integrals of the type of (70). These inte-
grals were intensively studied in various fields of theoretical physics and mathematics, [51-55].
The low temperature approximation allows both to extract the combinatorial pre-factor and to re-
duce the matrix-type integrals to the partition function of the Gaussian Unitary Ensemble. Both
correlations functions have a power law decay and have the same critical exponents, but their
amplitudes are different: they depend on the squared number of plane partitions contained in a
box of different size. These amplitudes are observable quantities. Expression for the correspond-
ing exponent looks like the free energy appearing at small coupling for the large-N lattice gauge
theory considered in [52]. This answer should be related to the third order phase transition [52],
a possibility of which for the XXO spin chain is discussed in [29]. The results obtained in [56]
for the thermal correlation functions of the XXZ Heisenberg chain with the infinite coupling
constant allows to argue that the third order phase transition is possible in this model as well.
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Appendix A

Here we provide some notions concerning boxed plane partitions and their generating func-
tions while more details can be found in [14].

An array (7;;)1;,j of non-negative integers that are non-increasing as functions both of i
and j is called plane partition m. The integers 7;; are called the parts of the plane partition,
and || = Zi’ j 7ij is its volume. Each plane partition has a three-dimensional diagram which
can be interpreted as a stack of unit cubes (three-dimensional Young diagram). The height of
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stack with coordinates (7, j) is equal to m;;. It is said that the plane partition corresponds to a
box of the size L x N x P provided thati < L, j < N and m;; < P for all cubes of the Young
diagram. If 7;; > m; 41 ;, i.e., if the parts of plane partition m are decaying along each column,
then 7 is called the column strict plane partition.

We shall denote the box of the size L x N x P as the set of integer lattice points:

B(L,N,P)={(i,j,k)eN*|0<i<L,0<j<N, 0<k< P}

An arbitrary plane partition & contained in B(N, N, P) may be transferred into a column strict
plane partition 7 cp, corresponding to B(N, N, P + N — 1) by adding to r the N x N matrix

N-1 N—1 --- N-1
N-2 N-2 .- N=2
0 0 . 0
which corresponds to a minimal column strict plane partition. The volumes of the column strict
plane partition and correspondent plane partition are related:
NZ(N = 1)
5 .

The generating function of plane partitions contained in B(L, N, P) is equal to

|7 csppl = |7 | +

L N P qz+j+k 1 P+j+k—1

l—gq
ORI ) ) = y |y (=i @

j=1k=1i=1 j=1k=1
According to the classical MacMahon’s formula, there are
L N P
i+j+k— P +j +k—1
A(L,N, P = A2
wen =[S - T a2

plane partitions contained in B(L, N, P). It is clear that right-hand side of (A.l) tends to
A(L, N, P) in the limit ¢ — 1.
The generating function of the column strict plane partitions placed in B(N, N, P) is equal to

cspp (N D 1_ P+1+j—k
ZSP(N,N,P)=gq ]_[]—[ — T (A.3)
k=1 j=1

The limit ¢ — 1 gives the number A“PP(N, N, P) of the column strict partitions placed in
B(N,N, P):

(A4)

ﬁP+1+j— ﬁ T(HTG+P+1)
kel j=1 ,:1F(] +N)IT'(j+P+1-N)
where the expression in terms of the gamma-functions [48] is appropriate to study the asymp-
totics. Notice that
2
ZEP(N N, P)=q =N "DZ, (N.N.P—N+1),

and thus A“PP(N, N, P)=A(N,N,P — N +1).
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Appendix B

The proof of Proposition 3 based on the Binet—-Cauchy formula (14) is presented here. First
we remind some basic notions of the g-calculus [57] and the symmetric functions [14].
The g-number [n] is a g-analogue of the positive integer n € Z™,

1 _ n
)= 1 (B.1)
—q
and the g-factorial is equal to
[n]'=[1][2]-- - [n], [0]'=1. (B.2)
The definitions (B.1) and (B.2) allow to define the g-binomial coefficient [1;/ ]:
[N]E[N][N—l]-”[N—rH]: [N]! _ (B.3)
r [r]! [FI'[N —r]!

In the limit ¢ — 1, the g-binomial coefficient [ " | becomes the binomial coefficient (). Two
analogues of the Pascal formula exist for the g-binomial coefficients

) [ ])
[ j [r—”*[Nr_l] (B.4)

where 1
the form

r < N — 1. The g-Vandermonde convolution for the g-binomial coefficients has

min(r,N)

N+ N’ r— N N’
|: :| Z q(N ) j)|:ji||:r_ji|' (B.5)

The rth order elementary symmetric function e, = e,(Xy) of N variables, xy = (x1, x2,
., XN), is defined by

e = Z Xiy Xiy -+ Xiy s (B.6)
1<i|<ip<<iy <N

where 1 <r < N. The generating function identity can be used to define e, as the coefficients in
the product:

A+tx)(L+tx2) - (1 +txy) =1+ e1t +eat> +---+entV.

It is convenient to introduce special notations for e, at xy = qu and xy =qn/q [14]:

R-(N)=er(an/q) =4q"""" [ﬂ . LW =eqw)=¢"""2 [jrv] . B

Consider the weakly decreasing partitions A, P> A1 2 A2 2> --- 2 Any 20, where P= P —
N + 1. The conjugate pamtlon X is the partition with the Young dlagram consisting of columns
of height Aj: N > Ay =Xy >--- > Ap > 0. The correspondmg strict partition f is given by
it =X + &p. The parts of jt respect. P> > > ---> pp =2 0. The Schur functions (3)
related to the partition A are expressed through the elementary symmetric functions (B.6) related
to the conjugate partition A [14]:
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Su(x) = det(es, iy ;(XN)) 1< - (B.8)

In order to express the determinant of the matrix (57) as the g-binomial determinant, Eq. (60),
we will use the statement of Proposition 2 under the g-parametrization (56):

detT =g T EDV-DYqy)Var/q) Y. Spam)Siaw/a), (B.9)
AC(PE)
where the entries are:
| — g(PHDG+H=D

Tkj = gk T I<k<L, I<j<N,
Ti=q¢'/ V™, L+1<k<N, 1<j<N. (B.10)
Let us denote the sum over partitions in (B.9) by X's. Applying (B.8) we bring it into the form:
Ts= ) det(es, 1 (aN) 1 < rcp detles, 1 @L/D) 1) - (B.11)
AC{LP)

where summation runs over the conjugate partitions A L> ):1 > )_Lz > > )_Lp > 0. In the
explicit form,

L3, (N) Li, «(N) - Lj, py(N)
Tg= ) det Lm.] " LXZ.(N) LXP?H(N)
XE{LP} . . . .
Lijypi(N) Liypo(N) - Ly (N)
Rz, (L) Ry (L) - Ry yp (D)
R;, (L) R;_ (L) o Ry p (L)
wdet| 27! 2 I (B.12)
R, pri(L) Ry, piol) - Ry (L)

where the notations (B.7) are taken into account. By definition, Ry = Lo = 1, while both R,
and L, are equal zero for r > N. The Binet—Cauchy formula allows to express (B.12) as the
determinant of the P x P matrix:

L L L
> Li(N)Ri(L) > Li(N)Riy1(L) -+ Y Li(N)Riyp—1(L)
i=0 i=0 i=0
L L P
> Lit1(N)R; (L) > Li(N)Ri(L) o Y2 Li(N)Ri1p—2(L)
Yg =det i=0 i=0 i=0
L L L
> Lisp—1(N)Ri(L) 3 Liyp—2(N)Ri(L) - > Li(N)Ri(L)
i=0 i=0 i=0
(B.13)
Calculating the entries in (B.13) by the g-Vandermonde convolution (B.5),
L
s N+ L
D Lies(NRi(L) =20 [ N ] :
i=0
- : N+L
D LitN)Rips(L) =2 [NH } (B.14)

i=0
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where 0 < s <P — 1, we express X's as the determinant of the matrix with the entries given by
the g-binomials

i L+N
g = det (q 7 J*”[ . D . (B.15)
N—i+j 1<i,j <P

To bring this determinant to the g-binomial form, Eq. (58), we will use the Pascal formu-
las (B.4). As a first step, we combine the rows in (B.15) in the following way: the Pth is
multiplied by ¢V ! and the (P — 1)th is added to it, the (P — 1)th is multiplied by ¢V *! and the
(P —2)th is added to it; . . .; the 2nd is multiplied by qN +1 and the 1st is added to it. The second
step is concerned with the matrix obtained: the Pth row is multiplied by ¢V *2 and the (P — 1)th
one is added to it, the (P — 1)th row is multiplied by ¢V and the (P — 2)th one is added to it;

.; the 3rd is multiplied by ¢V*? and the 2nd is added to it. After P — 1 steps, compensating
the obtained factor by

qz,Z’;]I k(k—N—P) _ q%<1—7>)79+%(1—792)

we obtain the desired answer:

_ NP L+N, L+N+1, ..., L+N+P-—-1
s=q ? < L, L+l ... L+P-1 )° (B.16)
what justifies (60).

To calculate the g-binomial determinant in (B.16), we drop [N + L] out of the 1st row, [N +
L + 1] out of the 2nd row; ...; [N + L 4+ P — 1] out of the last one. We drop ﬁ out of the 1st
column, [LIT” out of the 2nd column; . . .; m out of the last one. This operation is repeated
until all the entries of the first column become unities, and we obtain the answer in the form:

I[N+j+k—=11 (N, N+1, ..., N+P-1
Ss=gq -Jp- 1)731—“—[ ) J ’ .
q

[ETEENTE TS R USSR A

(B.17)
After the standard transformations, the determinant in (B.17) acquires the form:

L RN

Nep_
R det(Qap)1<ab<Ps  Qab=
0, a>b.

Since det Q = 1, the g-binomial determinant in (B.17) is equal to q%(P_I)P, and XY becomes
the double product thus justifying the double product in (61).

The double product in (B.17) coincides with the generating function of boxed plane partitions
Z4(L,P,N) (see (A.1)):

. P N+ j+k—1
[N+j+k—1] 1—qg™™ B
5=y = 5= = 2P, (B9
Since the generating function of the boxed plane partitions is invariant under permutations of the
box sides L, P, N, then
Xs=Z,(L,N,P). (B.19)

Substituting X5 (B.19) into (B.9), we obtain the second statement expressed by (61). O
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