participation. Having introduced the concept of emotional intelligence, students analyze the scenarios and, through discussion, try to separate effective strategies from ineffective ones in these different situations. In addition to these core components, the program uses commercial instruments for students to evaluate their personal values and styles and to better understand and manage themselves. Approximately one hour each is devoted to a discussion of career planning and work-life balance as topics required for the young professional to lead a fulfilling professional and private life.

Results: The first cohort of students comprised one RO fellow, two early career physicists, two physics residents and 3 graduate students. Evaluation immediately after the program was very positive in spite of the unfamiliar delivery model and content of the program. More importantly, many of the skills discussed during the program were being further developed and utilized when the students were surveyed five months later.

Conclusions: A time efficient program for the development of soft skills in radiation medicine professionals has been developed and run. Participant reviews immediately afterwards and five months later were both very positive.

EP-1323
Building capacity for medical physics at the International training centre for the CIS region
V. Kostylev1, M.V. Kistliakova2
1Ass. of Med. Physicists in Russia, Institute of Medical Physics and Engineering, Moscow, Russian Federation

Purpose/Objective: Radiation oncology in Russia and the CIS countries are 30 years behind the developed countries. To eradicate this gap unjustifiable measurements were taken on procurement of expensive cutting-edge equipment for radiation therapy. However, the most serious problem is the acute shortage of qualified medical physicists which hinders the radiation oncology modernization in this CIS region.

Materials and Methods: The IAEA Technical Cooperation project Building Capacity for Medical Physics in Radiation Oncology at the International Training Centre for the Commonwealth of Independent States’ is being realized under the support of the IAEA, Russian Government, Rosatom. The education of medical physicists is provided by the International center on medical physics, radiation oncology and nuclear medicine organized by the Association of medical physicists in Russia in Moscow on the clinical base of N.N.Blokhin Russian Cancer Research Center.

Results: The Continuous Professional Development for medical physicists includes the following courses on Dosimetry and Quality Assurance of External Beam Radiotherapy, Commissioning and Quality Assurance for Radiotherapy Treatment Planning Systems, Basic course for Medical Physicists and Medical physics for the university teachers and with health care managers. The teaching is done in the Russian language by qualified and highly skilled specialists in Russia. The course consists of lectures and hands-on laboratory sessions. The group is composed of 20 trainees from the CIS countries.

Conclusions: The repositioning accuracy of patients who underwent SBRT for tumours of the upper lobe was evaluated. Of these patients, half were immobilised using a Body fix and the remaining half using a thermoplastic head and neck mask. Pre-treatment Cone Beam CT (CBCT) data for each patient was gathered to calculate the mean displacement in target position from that of the original CT-sim data in the X, Y, Z direction and the degree of rotation. The mean shifts from planned to treated coordinates were analysed. Average set up and treatment delivery times of both immobilization systems were recorded compared to assess the impact of each on the departmental resources (e.g. scheduling and equipment).

Results:
Mean displacement
The results show a greater degree of rotation with the Body fix in comparison to that of the S-Frame. There was a difference noted in the displacement between both set ups in the Ant/Post direction, with a larger displacement Ant/Post when using the Body fix.

Comfort
Mild chest wall discomfort, shoulder and upper back pain were reported by three of those immobilised using the Body fix system. Analgesia was recommended to these prior to treatment. The majority of patients immobilised with the head and neck masks reported no problems. Two patients reported feeling distressed and claustrophobic. In both cases the mask was cut out around the eyes to ease some pressure and relieve stress.

Time
Results to date point towards a quicker treatment time using the S-Frame.

Conclusions: It was found that the S-Frame was a suitable alternative to the Bodyfix immobilisation system for upper lobe tumours in SBRT.

EP-1329
Our initially experience in prone setup for breast radiotherapy F. Mazio1, E. La Salvia1, L. Starace1, U. Bordino1, A. Argenone1, V. Borzillo1, S. Falivene1, P. Muto1
1Istituto Nazionale Tumori Fondazione Pascale, Radioterapia, Napoli, Italy

Purpose/Objective: Patients undergoing breast conserving surgery usually receive radiotherapy in the supine position. The prone setup is commonly used in position for both MRI and stereotactic biopsy, but it is not usually adopted in radiotherapy. Our aim was to value the feasibility of prone position vs. international-standard supine position in women undergoing whole breast radiotherapy (WBRT).

Materials and Methods: On October and November 2012, we enrolled 7 patients (pts), mean age 68 (range 56-73), underwent to breast positions and external irradiation plans with two tangential opposite fields were performed. The dose volume histograms (DVH) for each patient were evaluated in the two positions and the integral dose and volume was calculated. The target volume enclosed by 95, 85, 50 and 20% of prescribed dose was also analyzed. Furthermore, V20 and V50 were evaluated for heart and V20 for ipsilateral and contralateral lung in all cases.

Results: Analysed data showed: i) dose in target was greater in supine position, ii) the healthy irradiated volume was lower in ventral set up in 87-95% of patients, iii) the sparing effect was more significant in the tissue included into higher isodoses and iv) this difference was directly proportional to breast size and dose level.

Conclusions: From these observations and taking into account the radiation protection principles, the group of patients who would benefit from the prone position was determined.