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a b s t r a c t

This paper investigates the inverse problem of determining a heat source using a parabolic
equation where data are given at some fixed location. The problem is ill-posed, i.e., the
solution (if it exists) does not depend continuously on the data. A simplified Tikhonov
regularization method is given and an order optimal stability estimate is obtained. A
numerical example shows that the regularization method is effective and stable.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Consider the following inverse problem: to find a pair of functions (u(x, t), f (t)) which satisfy the heat equation in a
quarter infinite domain as follows:

ut − uxx = f (t), x > 0, t > 0,
u(x, 0) = 0, x ≥ 0,
u(0, t) = 0, t ≥ 0,
u(x, t)|x→∞bounded, t ≥ 0,
u(1, t) = g(t), t ≥ 0,

(1.1)

where f (t) denotes the source (sink) term. Our purpose is to identify f (t) from the additional data u(1, t) = g(t). Since
the data g(t) are based on (physical) observation, there must be measurement errors, and we assume the measured data
function gδ(t) ∈ L2(R), satisfying

‖g − gδ‖ ≤ δ, (1.2)

where ‖ · ‖ denotes the L2-norm, and the constant δ > 0 represents a noise level.
This problem can be seen as a problem of source identification from measured data for a parabolic equation which

is important in many branches of engineering sciences. A typical example is groundwater pollutant source estimation in
cities with large populations. In this application, it is crucial to accurately identify which companies are responsible for the
contamination [1]. For a heat source of the form f = f (u), the inverse source problemwas studied by [2]. In [3], the authors
considered the heat source as a function of both space and time, but additive or separable. But many researchers viewed
the source as a function of space or time only. In [4,5], the authors determined the heat source depending on one variable in
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a bounded domain by using a boundary-element method and an iterative algorithm. In [6], the authors identified the heat
source as space dependent only, by a fundamental solution method. In [7], the authors identified the heat source as time
dependent only, by a fundamental solution method. In [8], the author identified the heat source as time dependent only, by
the Lie-group shooting method (LGSM).
As we know, there has been lots of research on identification of heat source adopting numerical algorithms [9–16].

But to the author’s knowledge there are few papers, using the regularization method, with strict theoretical analysis, on
identifying the heat source. Recently, in [17,18], the authors identified the heat source depending only on a spatial variable
by the wavelet dual least squares method and the Fourier regularization method, respectively.
The problemof identifying the heat source is ill-posed inHadamard’s sense. That is, any small change in the input data can

result in a dramatic change to the solution. The ill-posedness can be seen by solving the problem in the frequency domain.
In order to analyze the problem (1.1) in L2(R), we define all functions to be zero for t < 0. The notation ‖ · ‖ denotes the
L2-norm, and

f̂ (ξ) :=
1
√
2π

∫
∞

−∞

e−iξ t f (t)dt (1.3)

is the Fourier transform of the function f (t).
The problem (1.1) can now be formulated in frequency space as follows:

iξ û(x, ξ)− ûxx(x, ξ) = f̂ (ξ), x > 0, ξ ∈ R,
û(0, ξ) = 0, ξ ∈ R,
û(x, ξ)|x→∞bounded, ξ ∈ R,
û(1, ξ) = ĝ(ξ), ξ ∈ R.

(1.4)

By elementary calculations, we get

û(x, ξ) =
1− e−

√
iξx

iξ
f̂ (ξ). (1.5)

Substituting û(1, ξ) = ĝ(ξ) into (1.5) leads to

f̂ (ξ) =
iξ

1− e−
√
iξ
ĝ(ξ). (1.6)

So

f (t) =
1
√
2π

∫
∞

−∞

eiξ t
iξ

1− e−
√
iξ
ĝ(ξ)dξ . (1.7)

From the right hand side of (1.6) or (1.7), we know that∣∣∣∣ iξ
1− e−

√
iξ

∣∣∣∣ = |ξ |√
1− 2e−

√
|ξ |
2 cos

√
|ξ |

2 + e
−2
√
|ξ |
2

→∞, as ξ →∞. (1.8)

Therefore when we consider our problem in L2(R), the exact data function ĝ(ξ) must decay. However, the measured data
function gδ(t), which is merely in L2(R), does not possess such a decay property in general. Thus if we try to obtain the heat
source f (t), the high frequency components in the error are magnified and can destroy the solution. So the problem (1.1)
is mildly ill-posed and the degree of the ill-posedness is equivalent to that of the first-order numerical differentiation. It is
impossible to solve the problem (1.1) by using classical methods. In the following section, we will use a simplified Tikhonov
regularization method to deal with the ill-posed problem. Before doing that, we impose an a priori bound on the input data,
i.e.,

‖f (·)‖Hp ≤ E, p > 0, (1.9)
where E > 0 is a constant, and ‖ · ‖Hp denotes the norm in the Sobolev space Hp(R) defined by

‖f (·)‖Hp :=
(∫

∞

−∞

|f̂ (ξ)|2(1+ ξ 2)pdξ
) 1
2

. (1.10)

The major object of this paper is to provide a simplified Tikhonov regularization method. Meanwhile, the Hölder type
estimate of the stability between the regularization solution and the exact solution is obtained. In particular, the error
estimate which we obtained is order optimal, according to the general theory of regularization [19].
The simplified Tikhonov regularizationmethod is based on the Tikhonov regularizationmethod. Skillfully simplifying the

filter obtained by the Tikhonov regularization, a better regularization approximation solution of the inverse problem was
obtained. This idea initially came from Carasso, the author who modified the filter obtained by the Tikhonov regularization
method and obtained the order optimal error estimate in [20]. By this method, Fu [21] considered the inverse heat
conduction problem with a general sideways parabolic equation, and Cheng et al. [22,23] considered the spherically
symmetric inverse problem.
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2. Some auxiliary results

In this section, we will give three important lemmas.

Lemma 2.1. For ξ ∈ R, the inequality∣∣∣∣ iξ
1− e−

√
iξ

∣∣∣∣ ≤ |ξ |

1− e−
√
|ξ |
2

(2.1)

holds.

Lemma 2.2. If x > 1, the following inequality:

1

1− e−
√
x
2

< 2 (2.2)

holds.

Lemma 2.3. For 0 < α < 1, the following inequalities:

sup
ξ∈R

∣∣∣∣(1− 1
1+ α2ξ 2

)
(1+ ξ 2)−

p
2

∣∣∣∣ ≤ max{αp, α2} (2.3)

sup
ξ∈R

∣∣∣∣∣∣ |ξ |

(1− e−
√
|ξ |
2 )(1+ α2ξ 2)

∣∣∣∣∣∣ ≤ 2α (2.4)

hold.

Proof. Let

A(ξ) :=
(
1−

1
1+ α2ξ 2

)
(1+ ξ 2)−

p
2 . (2.5)

The proof of (2.3) will be separated into three cases:
Case 1. |ξ | ≥ ξ0 := 1

α
; we get

A(ξ) ≤ (1+ ξ 2)−
p
2 ≤ |ξ |−p ≤ ξ

−p
0 = α

p. (2.6)

Case 2. 1 < |ξ | < ξ0; we obtain

A(ξ) =
α2ξ 2

1+ α2ξ 2
(1+ ξ 2)−

p
2 ≤ α2ξ 2(1+ ξ 2)−

p
2 ≤ α2|ξ |2−p. (2.7)

If 0 < p ≤ 2, the above inequality becomes

A(ξ) ≤ α2ξ 2−p0 = αp. (2.8)

If p > 2, we get

A(ξ) ≤ α2|ξ |2−p ≤ α2. (2.9)

Case 3. |ξ | ≤ 1; we get

A(ξ) ≤ α2ξ 2(1+ ξ 2)−
p
2 ≤ α2. (2.10)

Combining (2.6) with (2.8)–(2.10), the first inequality holds.
Let

B(ξ) :=
|ξ |

(1− e−
√
|ξ |
2 )(1+ α2ξ 2)

, D(ξ) :=
|ξ |

1− e−
√
|ξ |
2

. (2.11)

Like in the above proof, we divide the second inequality’s proof into two cases:
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Case 1. 0 ≤ |ξ | ≤ ξ0 := 1
α
; we have

D(ξ) ≤ D
(
1
α

)
≤
2
α
, if 0 < α < 1. (2.12)

So

B(ξ) ≤
2
α
. (2.13)

Case 2. |ξ | > ξ0; we get

D(ξ) ≤ 2|ξ | (2.14)

and

B(ξ) ≤
2|ξ |

1+ α2ξ 2
. (2.15)

Let

L(ξ) :=
2ξ

1+ α2ξ 2
. (2.16)

Then

L′(ξ) =
2(1− α2ξ 2)
(1+ α2ξ 2)2

. (2.17)

Setting L′(ξ) = 0, we have ξ1 = 1
α
. It is easy to see that ξ1 = 1

α
is a maximal value point of L(ξ).

So

|L(ξ)| ≤
∣∣∣∣ 2ξ1
1+ α2ξ 21

∣∣∣∣ ≤ 2ξ1 = 2α . (2.18)

Combining (2.13) with (2.18), we have that (2.4) holds. �

3. A simplified Tikhonov regularization method

Let us formulate the problem of identifying f (t) from the (exact) data u(1, t) = g(t) as an operator equation:

Af = g, (3.1)

where A ∈ L(L2(R), L2(R)).
From (1.6), we know that

1− e−
√
iξ

iξ
f̂ (ξ) = ĝ(ξ). (3.2)

Obviously, (3.1) is equivalent to the following operator equation:

Âf = ĝ(ξ), Â = FSF−1, (3.3)

where F : L2(R) → L2(R) is the Fourier operator that maps any L2(R) function f (t) into its Fourier transform f̂ (ξ). From
(3.2), we obtain

Âf =
1− e−

√
iξ

iξ
f̂ (ξ). (3.4)

We shall use a Fourier transform to obtain a representation of the approximation solution of equation (3.1). From (3.2), we
know that function g(t) lies in the domain of operator A−1 provided

‖f ‖2 =
∫
∞

−∞

∣∣∣∣ iξ
1− e−

√
iξ

∣∣∣∣2 |ĝ(ξ)|2dξ <∞. (3.5)

Note that | iξ
1−e−

√
iξ | = O(ξ), as |ξ | → ∞; therefore (3.5) means that ĝ(ξ) has a decay at high frequencies. Such a decay

is not likely to occur in the Fourier transform of the measured noisy temperature history gδ(t) ∈ L2(R). Hence we give an
approximate solution of f (t) by means of a Tikhonov regularization method which minimizes the quantity

‖Af − gδ‖2 + α2‖f ‖2 (3.6)
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over all f ∈ L2(R). α will be considered as a regularization parameter. The following lemma will give a regularization
approximate of f (t).

Lemma 3.1. There exists a unique solution to the above minimization problem. It is given by

fδ(t) =
1
√
2π

∫
∞

−∞

eiξ t
iξ

1−e−
√
iξ ĝδ(ξ)

1+ α2
∣∣∣ iξ
1−e−

√
iξ

∣∣∣2 dξ, (3.7)

where α is a regularization parameter.

Proof. Let I denote the identity operator in L2(R) and A∗ be the adjoint of A. Then by Theorem 2.12 in [24], the unique
solution of the minimization problem (3.6) is equal to the solution of the following normal equation:

A∗Afδ(t)+ α2fδ(t) = A∗gδ(t). (3.8)

That is,

fδ(t) = [A∗A+ α2I]−1A∗gδ(t). (3.9)

In order to obtain the explicit formula (3.7) from (3.9), we need to apply some properties of L2(R). By the Parseval formula,
we have

(Âu, v̂) = (Au, v) = (u, A∗v) = (û, Â∗v). (3.10)

From (3.4), we obtain(
1− e−

√
iξ

iξ
û, v̂

)
=

(
û,
1− e−

√
iξ

iξ
v̂

)
, (3.11)

so

Â∗v =
1− e−

√
iξ

iξ
v̂, (3.12)

i.e.,

Â∗ =
1− e−

√
iξ

iξ
. (3.13)

Noting (3.4) and (3.13), we obtain

(A∗Au)∧ =
1− e−

√
iξ

iξ
Âu =

∣∣∣∣∣1− e−
√
iξ

iξ

∣∣∣∣∣
2

û. (3.14)

Due to (3.8), we know that

(A∗Afδ)∧ + α2 f̂δ = Â∗gδ. (3.15)

Noting (3.12) and (3.14), we obtain∣∣∣∣∣1− e−
√
iξ

iξ

∣∣∣∣∣
2

+ α2

 f̂δ = 1− e−√iξ
iξ

ĝδ. (3.16)

Therefore

f̂δ(ξ) =
1−e−

√
iξ

iξ
ĝδ(ξ)

|
1−e−

√
iξ

iξ |2 + α2
=

iξ
1−e−

√
iξ ĝδ(ξ)

1+ α2| iξ
1−e−

√
iξ |
2
. (3.17)

Finally, (3.7) holds by the inverse Fourier transform. �
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Comparing formula (3.17) with formula (1.6), we find that the Tikhonov regularization procedure consists in replacing
the unknown ĝ(ξ)with an appropriately filtered Fourier transform of the noisy data ĝδ(ξ). The filter in (3.17) attenuates the
high frequencies in ĝδ(ξ) in a manner consistent with the goal of minimizing the quantity (3.6). By means of this, we can
use a much better filter, 1/(1 + α2ξ 2), to replace the filter 1/(1 + α2|iξ/(1 − e−

√
iξ )|2) and give another approximation,

fδ,α(t), of solution f (t).
We define a regularized approximate solution of problem (1.1) or (3.1) for noisy data gδ(t), which is called the simplified

Tikhonov regularized solution, as follows:

fδ,α(t) :=
1
√
2π

∫
∞

−∞

eiξ t
iξ

(1− e−
√
iξ )(1+ α2ξ 2)

ĝδ(ξ)dξ . (3.18)

The main conclusion of this section is:

Theorem 3.2. Let f (t) given by (1.7) be the exact solution of (1.1) and fδ,α(t) given by (3.18) be the simplified Tikhonov
regularized approximation to f (t). Let gδ(t) be the measured data at x = 1 satisfying (1.2) and assume that the a priori
condition (1.9) holds. If we select

α =

(
δ

E

) 1
p+1

, (3.19)

then we obtain the following error estimate:

‖f (·)− fδ,α(·)‖ ≤ 2δ
p
p+1 E

1
p+1

(
1+

1
2
max

{
1,
(
δ

E

) 2−p
p+1
})

. (3.20)

Proof. By the Parseval formula and (1.6), (3.18), (2.1), (2.2), (2.3), (2.4), (3.19), we have

‖f (·)− fδ,α(·)‖ = ‖f̂ (·)− f̂δ,α(·)‖

=

∥∥∥∥ iξ
1− e−

√
iξ
ĝ(ξ)−

iξ
(1− e−

√
iξ )(1+ α2ξ 2)

ĝδ(ξ)
∥∥∥∥

≤

∥∥∥∥ iξ
1− e−

√
iξ
ĝ(ξ)−

iξ
(1− e−

√
iξ )(1+ α2ξ 2)

ĝ(ξ)
∥∥∥∥

+

∥∥∥∥ iξ
(1− e−

√
iξ )(1+ α2ξ 2)

ĝ(ξ)−
iξ

(1− e−
√
iξ )(1+ α2ξ 2)

ĝδ(ξ)
∥∥∥∥

=

∥∥∥∥ iξ
1− e−

√
iξ
ĝ(ξ)

(
1−

1
1+ α2ξ 2

)∥∥∥∥+ ∥∥∥∥ iξ
(1− e−

√
iξ )(1+ α2ξ 2)

(ĝ(ξ)− ĝδ(ξ))
∥∥∥∥

≤

∥∥∥∥f̂ (ξ)(1+ ξ 2) p2 (1+ ξ 2)− p2 (1− 1
1+ α2ξ 2

)∥∥∥∥+ sup
ξ∈R

∣∣∣∣ iξ
(1− e−

√
iξ )(1+ α2ξ 2)

∣∣∣∣ ‖ĝ(ξ)− ĝδ(ξ)‖
≤ sup

ξ∈R

∣∣∣∣(1+ ξ 2)− p2 (1− 1
1+ α2ξ 2

)∣∣∣∣ ∥∥∥f̂ (ξ)(1+ ξ 2) p2 ∥∥∥+ sup
ξ∈R

∣∣∣∣∣∣ |ξ |

(1− e−
√
|ξ |
2 )(1+ α2ξ 2)

∣∣∣∣∣∣ δ
≤ max{αp, α2}E +

2
α
δ

= max

{(
δ

E

) p
p+1

,

(
δ

E

) 2
p+1
}
E + 2

(
δ

E

) −1
p+1

δ

= 2δ
p
p+1 E

1
p+1

(
1+

1
2
max

{
1,
(
δ

E

) 2−p
p+1
})

. �

Remark 3.3. If 0 < p ≤ 2, ‖f (·)−fδ,α(·)‖ ≤ 3δ
p
p+1 E

1
p+1 → 0 as δ→ 0. If p > 2, ‖f (·)−fδ,α(·)‖ ≤ 2δ

p
p+1 E

1
p+1 +δ

2
p+1 E

p−1
p+1 →

0 as δ→ 0. Hence fδ,α(t) can be viewed as an approximation of the exact solution f (t).

Remark 3.4. In practice, ‖f ‖p is usually not known; an exact a priori bound E cannot be obtained. But if we chooseα = δ
1
p+1 ,

we can also obtain

‖f (·)− fδ,α(·)‖ ≤ 3δ
p
p+1 → 0, as δ→ 0. (3.21)

This choice is helpful in our realistic computation.
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Remark 3.5. If we chose p = 0, i.e., the a priori assumption was replaced by ‖f ‖L2(R) ≤ E, then there would only be
boundedness of the terms in (3.20) rather than convergence to zero [19].

4. A numerical example

In this section, numerical results are presented, which verify the validity of the theoretical results of this method. It is
easy to see that the function

u(x, t) =


x+ 1

t
3
2
exp

{
−
(x+ 1)2

4t

}
−
1

t
3
2
exp

{
−
1
4t

}
, x > 0, t > 0,

0, t ≤ 0
(4.1)

and the function

f (t) =


(
3
2
t−

5
2 −

1
4
t−

7
2

)
exp

{
−
1
4t

}
, t > 0,

0, t ≤ 0
(4.2)

are satisfied for the problem (1.1) with exact data

g(t) =


2

t
3
2
exp

{
−
1
t

}
−
1

t
3
2
exp

{
−
1
4t

}
, t > 0,

0, t ≤ 0.
(4.3)

Now we will focus on our numerical experiment in order to verify the theoretical results. The range of variable t in the
numerical experiment is [0, 1].
Suppose that the sequence {gk}nk=0 represents samples from the function g(t) on an equidistant grid, and n is even; then

we add a random uniform perturbation to each data value forming the vector gδ , i.e.,

gδ = g + ε randn(size(g)), (4.4)

where

g = (g(t1), . . . , g(tn))T , ti = (i− 1)∆t, ∆t =
1
n− 1

, i = 1, 2, . . . , n. (4.5)

The function ‘‘randn(·)’’ generates arrays of random numbers whose elements are normally distributed with mean 0,
variance σ 2 = 1, and standard deviation σ = 1. ‘‘Randn(size(g))’’ returns an array of random entries that is of the same
size as g . The total noise level δ can be measured in the sense of the root mean square error (RMSE) according to

δ = ‖gδ − g‖l2 =

(
1
n

n∑
i=1

(gi − gi,δ)2
) 1
2

. (4.6)

We give a simple description of numerical implementation as follows:
Step 1: Take the fast Fourier transform (FFT) for the vector gδ .
Step 2: Compute the vector (see (3.18)){

iξk
(1− e−

√
iξk)(1+ α2ξ 2k )

ĝδ(ξk)
} n
2

k=− n2−1

, (4.7)

where i =
√
−1, ξk = 2πk. The regularization parameter α is selected according to Remark 3.4, i.e., α = δ

1
p+1 .

Step 3: Take the inverse FFT for the vector in (4.7) and obtain fδ,α(t).
When using the FFT algorithmwe implicitly assume that the vector gδ represents a periodic function. This is not realistic

in our application, and thus we need to modify the algorithm. A discussion about the algorithm can be found in [25].
Figs. 1–3 indicate the comparisons between the exact solution f (t) and the simplified Tikhonov regularization solution

fδ,α(t) for p = 1
2 , p =

3
5 and p = 1, respectively, with the perturbations ε = 0.001 and ε = 0.0001. From Figs. 1–3, we

conclude that the regularized solution approximates the exact solution as the amount of noise ε decreases. Also, it can be
seen from Figs. 1–3 that some inaccuracies appear in these regularization solutions as the parameter p increases, but these
results are acceptable.
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Fig. 1. p = 1
2 : (a) ε = 0.001, α = 0.0016; (b) ε = 0.0001, α = 0.0034.

Fig. 2. p = 3
5 : (a) ε = 0.001, α = 0.0206; (b) ε = 0.0001, α = 0.0049.

Fig. 3. p = 1: (a) ε = 0.001, α = 0.0455; (b) ε = 0.0001, α = 0.0144.

5. Conclusions

In this paper, we considered the identification of an unknown heat source term depending only on time variable in a
parabolic equation. This problem is ill-posed, i.e., the solution (if it exists) does not depend on the input data.Weobtained the
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regularization solution by the simplified Tikhonov regularization method and gave a Hölder type error estimate. Moreover
the error estimation is order optimal. Meanwhile, a numerical example verified the efficiency and accuracy of the method.
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