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Abstract

Current methodologies used for the inference of thin film stress through curvature measurements are strictly restricted
to stress and curvature states which are assumed to remain uniform over the entire film/substrate system. Recently Huang,
Rosakis and co-workers [Huang, Y., Ngo, D., Rosakis, A.J., 2005. Non-uniform, axisymmetric misfit strain: in thin films
bonded on plate substrates/substrate systems: the relation between non-uniform film stresses and system curvatures. Acta
Mech. Sin. 21, 362–370; Huang, Y., Rosakis A.J., 2005. Extension of Stoney’s Formula to non-uniform temperature dis-
tributions in thin film/substrate systems. The case of radial symmetry. J. Mech. Phys. Solids 53, 2483–2500; Ngo, D.,
Huang, Y., Rosakis, A. J., Feng, X. 2006. Spatially non-uniform, isotropic misfit strain in thin films bonded on plate sub-
strates: the relation between non-uniform film stresses and system curvatures. Thin Solid Films (in press)] established
methods for film/substrate system subject to non-uniform misfit strain and temperature changes. The film stresses were
found to depend non-locally on system curvatures (i.e., depend on the full-field curvatures). The existing methods, how-
ever, all assume uniform film thickness which is often violated in the thin film/substrate system. We extend these methods
to arbitrarily non-uniform film thickness for the thin film/substrate system subject to non-uniform misfit strain. Remark-
ably the stress-curvature relation for uniform film thickness still holds if the film thickness is replaced by its local value at
the point where the stress is evaluated. This result has been experimentally validated in Part II of this paper.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Stoney (1909) used a plate system composed of a stress bearing thin film, of uniform thickness hf, deposited
on a relatively thick substrate, of uniform thickness hs, and derived a simple relation between the curvature, j,
of the system and the stress, r(f), of the film as follows:
0020-7683/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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rðfÞ ¼ Esh
2
s j

6hfð1� msÞ
: ð1:1Þ
In the above the subscripts ‘‘f’’ and ‘‘s’’ denote the thin film and substrate, respectively, and E and m are the
Young’s modulus and Poisson’s ratio. Eq. (1.1) is called the Stoney formula, and it has been extensively used
in the literature to infer film stress changes from experimental measurement of system curvature changes (e.g.,
Freund and Suresh, 2004).

Stoney formula involve the following assumptions:

(i) Both the film thickness hf and substrate thickness hs are uniform, the film and substrate have the same
radius R, and hf� hs� R;

(ii) The strains and rotations of the plate system are infinitesimal;
(iii) Both the film and substrate are homogeneous, isotropic, and linearly elastic;
(iv) The film stress states are in-plane isotropic or equi-biaxial (two equal stress components in any two,

mutually orthogonal in-plane directions) while the out-of-plane direct stress and all shear stresses vanish;
(v) The system’s curvature components are equi-biaxial (two equal direct curvatures) while the twist curva-

ture vanishes in all directions; and
(vi) All surviving stress and curvature components are spatially constant over the plate system’s surface, a

situation which is often violated in practice.

Despite the explicitly stated assumptions, the Stoney formula is often arbitrarily applied to cases of prac-
tical interest where these assumptions are violated. This is typically done by applying Stoney’s formula point-
wise and thus extracting a local value of stress from a local measurement of the system curvature. This
approach of inferring film stress clearly violates the uniformity assumptions of the analysis and, as such, its
accuracy as an approximation is expected to deteriorate as the levels of curvature non-uniformity become
more severe.

Following the initial formulation by Stoney, a number of extensions have been derived to relax some
assumptions. Such extensions of the initial formulation include relaxation of the assumption of equi-biaxiality
as well as the assumption of small deformations/deflections. A biaxial form of Stoney formula (with different
direct stress values and non-zero in-plane shear stress) was derived by relaxing the assumption (v) of curvature
equi-biaxiality (e.g., Freund and Suresh, 2004). Related analyses treating discontinuous films in the form of
bare periodic lines (Wikstrom et al., 1999a) or composite films with periodic line structures (e.g., bare or
encapsulated periodic lines) have also been derived (Shen et al., 1996; Wikstrom et al., 1999b; Park and Sur-
esh, 2000). These latter analyses have removed the assumptions (iv) and (v) of equi-biaxiality and have allowed
the existence of three independent curvature and stress components in the form of two, non-equal, direct com-
ponents and one shear or twist component. However, the uniformity assumption (vi) of all of these quantities
over the entire plate system was retained. In addition to the above, single, multiple and graded films and sub-
strates have been treated in various ‘‘large’’ deformation analyses (Masters and Salamon, 1993; Salamon and
Masters, 1995; Finot et al., 1997; Freund, 2000). These analyses have removed both the restrictions of an equi-
biaxial curvature state as well as the assumption (ii) of infinitesimal deformations. They have allowed for the
prediction of kinematically nonlinear behavior and bifurcations in curvature states that have also been
observed experimentally (Lee et al., 2001; Park and Suresh, 2000). These bifurcations are transformations
from an initially equi-biaxial to a subsequently biaxial curvature state that may be induced by an increase
in film stress beyond a critical level. This critical level is intimately related to the systems aspect ratio, i.e.,
the ratio of in-plane to thickness dimension and the elastic stiffness. These analyses also retain the assumption
(vi) of spatial curvature and stress uniformity across the system. However, they allow for deformations to
evolve from an initially spherical shape to an energetically favored shape (e.g., ellipsoidal, cylindrical or saddle
shapes) that features three different, still spatially constant, curvature components (Lee et al., 2001; Park and
Suresh, 2000).

The above-discussed extensions of Stoney’s methodology have not relaxed the most restrictive of Stoney’s
original assumption (vi) of spatial uniformity which does not allow either film stress and curvature compo-
nents to vary across the plate surface. This crucial assumption is often violated in practice since film stresses
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and the associated system curvatures are non-uniformly distributed over the plate area. Recently, Huang et al.
(2005) and Huang and Rosakis (2005) relaxed the assumption (vi) [and also (iv) and (v)] to study the thin film/
substrate system subject to non-uniform, axisymmetric misfit strain (in thin film) and temperature change (in
both thin film and substrate), respectively, while Ngo et al. (2006) studied the thin film/substrate system sub-
ject to arbitrarily non-uniform (e.g., non-axisymmetric) misfit strain and temperature. The most important
result is that the film stresses depend non-locally on the substrate curvatures, i.e., they depend on curvatures
of the entire substrate. The relations between film stresses and substrate curvatures are established for arbi-
trarily non-uniform misfit strain and temperature change, and such relations degenerate to Stoney formula
for uniform, equi-biaxial stresses and curvatures.

Feng et al. (2006) relaxed part of the assumption (i) to study the thin film and substrate of different radii.
The main purpose of the present paper is to further relax the assumption (i) to study arbitrarily non-uniform
thickness of the thin film. To do so we consider the case of non-uniform film thickness and the thin film/sub-
strate system subject to arbitrary misfit strain field in the thin film. Our goal is to relate film stresses and system
curvatures to the misfit strain distribution for arbitrarily non-uniform film thickness, and to ultimately derive
a relation between the film stresses and the system curvatures that would allow for the accurate experimental
inference of film stress from full-field and real-time curvature measurements.

2. Governing equations

Consider a thin film of non-uniform thickness hf(r, h) which is deposited on a circular substrate of constant
thickness hs and radius R, where r and h are the polar coordinates (Fig. 1). The film is very thin, hf� hs, such
that it is modeled as a membrane, and is subject to arbitrary misfit strain distribution em(r, h). The substrate is
modeled as a plate since hs� R. The Young’s modulus and Poisson’s ratio of the film and substrate are denot-
ed by Ef, mf, Es and ms, respectively.

Let uðfÞr , uðfÞh , uðsÞr and uðsÞh denote the in-plane displacements in the thin film and substrate along the radial (r)
and circumferential (h) directions, respectively. The in-plane membrane strains are obtained from
sh
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Fig. 1. A schematic diagram of a thin film/substrate system with the cylindrical coordinates (r, h, z).
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e = [$u + ($u)T]/2 for infinitesimal deformation and rotation, where a, b = r, h. The linear elastic constitutive
model, together with the vanishing out-of-plane stress rzz = 0, give the in-plane stresses as
rab ¼ E

1�m2 ½ð1� mÞeab þ mejjdab � ð1þ mÞemdab�, where E, m = Ef, mf in the thin film and Es, ms in the substrate,
and the misfit strain em is only in the thin film. The axial forces in the thin film and substrate are
N r ¼
Eh

1� m2

our

or
þ m

ur

r
þ 1

r
ouh

oh

� �
� ð1þ mÞem

� �
;
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1� m2
m
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þ ur

r
þ 1

r
ouh

oh
� ð1þ mÞem

� �
; ð2:1Þ
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2ð1þ mÞ
1

r
our

oh
þ ouh

or
� uh

r

� �
;

where h = hf in the thin film and hs in the substrate, and once again the misfit strain em is only in the thin film.
Let w denote the lateral displacement in the normal (z) direction. The curvatures are given by j = $$w. The

bending moments in the substrates are
Mr ¼
Esh

3
s

12ð1� m2
s Þ

o2w
or2
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1

r
ow
or
þ 1

r2

o2w

oh2

� �� �
;

Mh ¼
Esh

3
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s Þ
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Mrh ¼
Esh

3
s

12ð1þ msÞ
o
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1

r
ow
oh

� �
:

For non-uniform misfit strain distribution em = em(r, h), the shear stresses at the film/substrate interface do not
vanish, and are denoted by sr and sh. The in-plane force equilibrium equations for the thin film and substrate,
accounting for the effect of interface shear stresses sr and sh, become
oN r

or
þ Nr � N h

r
þ 1

r
oNrh

oh
� sr ¼ 0;

oN rh

or
þ 2

r
N rh þ

1

r
oN h

oh
� sh ¼ 0; ð2:3Þ
where the minus sign in front of the interface shear stresses is for the thin film, and the plus sign is for the
substrate. The moment and out-of-plane force equilibrium equations for the substrate are
oMr

or
þMr �Mh

r
þ 1

r
oMrh
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2
sr ¼ 0;
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1
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2
sh ¼ 0; ð2:4Þ

oQr
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þ Qr

r
þ 1

r
oQh

oh
¼ 0; ð2:5Þ
where Qr and Qh are the shear forces normal to the neutral axis.
The substitution of Eqs. (2.1)–(2.3) yields the governing equations for ur, uh, sr and sh
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Elimination of Qr and Qh from Eqs. (2.4) and (2.5), together with Eq. (2.2), give the governing equation for w,
sr and sh
r2ðr2wÞ ¼ 6ð1� m2
s Þ

Esh
2
s

osr
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þ sr

r
þ 1

r
osh

oh

� �
; ð2:8Þ
where r2 ¼ o2
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.

The continuity of displacements across the film/substrate interface requires
uðfÞr ¼ uðsÞr �
hs

2

ow
or
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: ð2:9Þ
Eqs. (2.6)–(2.9) constitute seven ordinary differential equations for seven variables, namely uðfÞr , uðfÞh , uðsÞr , uðsÞh , w,
sr and sh. For the limit hf/hs� 1, these equations are decoupled such that we can solve uðsÞr , uðsÞh first, then w,
followed by uðfÞr and uðfÞh , and finally sr and sh.

(i) Elimination of sr and sh from Eqs. (2.6) and (2.7) for the substrate yields two equations for uðfÞr , uðfÞh , uðsÞr ,
and uðsÞh . For hf/hs� 1, uðfÞr and uðfÞh disappear in these two equations, which give the governing equations
for uðsÞr and uðsÞh
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(ii) Elimination of uðfÞr and uðfÞh from Eqs. (2.6) and (2.9) gives sr and sh in terms of uðsÞr , uðsÞh and w (and em).
Substitution of sr and sh into Eq. 2.8 yields the following governing equation for w
r2ðr2wÞ ¼ �6
Ef

1� mf

1� m2
s

Esh
2
s

r2ðhfe
mÞ: ð2:11Þ
(iii) The continuity condition Eq. 2.9 gives uðfÞr and uðfÞh . The leading terms of the interface shear stresses sr

and sh are then obtained from Eqs. 2.6 as
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Eqs. (2.10)–(2.12) show that the film thickness hf always appears together with the misfit strain em. The inter-
face shear stresses are proportional to the gradients of hfe

m, and they vanish only for uniform misfit strain and
uniform film thickness. The boundary conditions at the free edge r = R require that the net forces and net mo-
ments vanish,
N ðfÞr þ N ðsÞr ¼ 0 and N ðfÞrh þ N ðsÞrh ¼ 0; ð2:13Þ
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2
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2
N ðfÞrh

� �
¼ 0: ð2:14Þ
3. Thin-film stresses and substrate curvatures

Eqs. (2.10)–(2.12) and boundary conditions Eqs. (2.13) and (2.14) can be solved in the same way as that for
the uniform film thickness but non-uniform misfit strain (Ngo et al., 2006) by replacing the misfit strain em

with hfe
m, where hf is the film thickness. We expand hfe

m to the Fourier series as
hfe
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where hfem ¼ 1
pR2

R R
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For uniform misfit strain distribution em = constant and uniform film thickness hf = constant, the interface
shear stresses in Eq. (2.12) vanish. The curvatures in Eqs. (3.2) become
j ¼ jrr ¼ jhh ¼ �6
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The stresses in the thin film in Eqs. (3.3) become
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For this special case only, both stress and curvature states become equi-biaxial. The elimination of misfit strain

em and film thickness hf from the above two equations yields a simple relation rðfÞ ¼ Esh2
s

6ð1�msÞhf
j, which is exactly

the Stoney formula in Eq. (1.1), and it has been used to estimate the thin-film stress r(f) from the substrate
curvature j, if the misfit strain, film thickness, stress and curvature are all constant and if the plate system
shape is spherical. In the following, we extend such a relation for arbitrary non-uniform misfit strain distribu-
tion and non-uniform film thickness.
4. Extension of Stoney formula for non-uniform misfit strain distribution and non-uniform film thickness

The stresses and curvatures are all given in terms of misfit strain in the previous section. We extend the
Stoney formula for arbitrary non-uniform misfit strain distribution and non-uniform film thickness in this sec-
tion by establishing the direct relation between the thin-film stresses and substrate curvatures.

Following Ngo et al. (2006), we first define the coefficients Cn and Sn related to the substrate curvatures by
Cn ¼
1

pR2

Z Z
A
ðjrr þ jhhÞ

g
R


 �n
cos nudA;

Sn ¼
1

pR2

Z Z
A
ðjrr þ jhhÞ

g
R


 �n
sin nudA; ð4:1Þ
where the integration is over the entire area A of the thin film, and dA = gdgdu. Since both the substrate cur-
vatures and film stresses depend on the misfit strain em and film thickness hf, elimination of hfe

m gives the film
stress in terms of substrate curvatures by
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rðfÞrr � rðfÞhh ¼ �
Efhs

6ð1þ mfÞ
4ðjrr � jhhÞ �

X1
n¼1

ðnþ 1Þ n
r
R


 �n
� ðn� 1Þ r

R


 �n�2
� �

ðCn cos nhþ Sn sin nhÞ
( )

;

ð4:2aÞ

rðfÞrh ¼ �
Efhs

6ð1þ mfÞ
4jrh þ

1

2
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n¼1

ðnþ 1Þ n
r
R


 �n
� ðn� 1Þ r

R


 �n�2
� �

ðCn sin nh� Sn cos nhÞ
( )

; ð4:2bÞ

rðfÞrr þ rðfÞhh ¼
Esh

2
s

6hfð1� msÞ

jrr þ jhh þ 1�ms

1þms
ðjrr þ jhh � jrr þ jhhÞ

� 1�ms

1þms

P1
n¼1

ðnþ 1Þ r
R

� 
nðCn cos nhþ Sn sin nhÞ

2
64

3
75; ð4:2cÞ
where jrr þ jhh ¼ C0 ¼ 1
pR2

R R
Aðjrr þ jhhÞdA is the average curvature over entire area A of the thin film. Eqs.

(4.2) provides direct relations between individual film stresses and substrate curvatures. It is important to note
that stresses at a point in the thin film depend not only on curvatures at the same point (local dependence), but
also on the curvatures in the entire substrate (non-local dependence) via the coefficients Cn and Sn. It is also
important to note that Eq. 4.2b for shear stress rðfÞrh and Eq. 4.2a for the difference in normal stresses rðfÞrr � rðfÞhh

are independent of the thin film thickness hf, but Eq. 4.2c for the sum of normal stresses rðfÞrr þ rðfÞhh is inversely
proportional to the local film thickness hf at the same point.

The interface shear stresses sr and sh can also be directly related to substrate curvatures via
sr ¼
Esh

2
s

6ð1� m2
s Þ

o

or
ðjrr þ jhhÞ �

1� ms

2R

X1
n¼1

nðnþ 1ÞðCn cos nhþ Sn sin nhÞ r
R


 �n�1
" #

; ð4:3aÞ

sh ¼
Esh

2
s

6ð1� m2
s Þ

1

r
o

oh
ðjrr þ jhhÞ þ

1� ms

2R

X1
n¼1

nðnþ 1ÞðCn sin nh� Sn cos nhÞ r
R


 �n�1
" #

; ð4:3bÞ
which is also independent of the film thickness hf. Eq. (4.3) provides a way to determine the interface shear
stresses from the gradients of substrate curvatures, and it also displays a non-local dependence via the coef-
ficients Cn and Sn.

Since interfacial shear stresses are responsible for promoting system failures through delamination of the
thin film from the substrate, Eq. (4.3) has particular significance. It shows that such stresses are related to
the gradients of jrr + jhh and not to its magnitude as might have been expected of a local, Stoney-like formu-
lation. Eq. (4.3) provides an easy way of inferring these special interfacial shear stresses once the full-field cur-
vature information is available. As a result, the methodology also provides a way to evaluate the risk of and to
mitigate such important forms of failure.

It can be shown that the relations between the film stresses and substrate curvatures given in the form of
infinite series in Eqs. (4.2) and (4.3) can be equivalently expressed in the form of integration as (Ngo et al.,
2006)
rðfÞrr � rðfÞhh ¼ �
Efhs
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>;; ð4:4aÞ
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where functions Fminus, Fshear and Fplus are given by
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The interface shear stresses can also be related to substrate curvatures via integrals as
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where
F radialðr1; g1;u1Þ ¼ ð1þ 3r2
1g
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1Þ cos u1 � r1g1ð3þ r2
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5. Discussion and conclusions

The Stoney formula Eq. (1.1) has been extended for non-uniform but axisymmetric temperature (Huang
and Rosakis, 2005) and misfit strain (Huang et al., 2005) as well as for arbitrarily non-uniform (e.g., non-axi-
symmetric) temperature and misfit strain (Ngo et al., 2006). The dependence of film stresses on substrate cur-
vatures is non-local, i.e., the stress components at a point on the film depend on both the curvature
components at the same point and on the curvatures of all other points on the plate system. The presence
of non-local contributions in such relations also has implications regarding the nature of diagnostic methods
needed to perform wafer-level film stress measurements. Notably the existence of non-local terms necessitates
the use of full-field methods capable of measuring curvature components over the entire surface of the plate
system (or wafer). Furthermore, measurement of all independent components of the curvature field is neces-
sary because the stress state at a point depends on curvature contributions (from jrr, jhh and jrh) from the
entire plate surface.

The non-uniformities also result in the shear stresses along the thin film/substrate interface. Such interface
shear stresses vanish for the special case of uniform jrr + jhh in the Stoney formula and its various extensions.
Since film delamination is a commonly encountered form of failure during wafer manufacturing, the ability to
estimate the level and distribution of such stresses from wafer-level metrology might prove to be invaluable in
enhancing the reliability of such systems.

The present analysis provides a very simple way to account for the effect of non-uniform film thickness on
the Stoney formula. The most remarkable result is that, for arbitrarily non-uniform film thickness, the stress-
curvature relations are identical to their counterparts for uniform film thickness (Huang and Rosakis, 2005;
Huang et al., 2005; Ngo et al., 2006) except that thickness is replaced by its local value. For example, the sum
of normal stresses rðfÞrr þ rðfÞhh at a point on the film is inversely proportional to the local film thickness at the
same point. Part II of this paper provides the experimental validation of this result. Feng et al. (2006) extended
the Stoney formula for a thin film with uniform thickness and a radius that is smaller than the substrate radius.
This can be considered as a special case of the present analysis with the film thickness being a constant in the
thin film and zero (outside the film).

There may exist misfit or threading dislocations on the film/substrate interfaces at large misfit strains (e.g.,
Freund, 1990; Gillard et al., 1994). The results in this paper are based on linear elasticity for both the thin film
and substrate, and have not accounted for the effects of misfit or threading dislocations.
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