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Crystal Structure of SANOS, a Bacterial
Nitric Oxide Synthase Oxygenase Protein
from Staphylococcus aureus

by a family of nitric oxide synthase enzymes (NOS) [1, 2].
In mammals, NO regulates blood pressure, is a messen-
ger in the peripheral and central nervous system, and
also has a role as an antimicrobial and anticancer agent
in host defense [1]. Three NOS isoforms have been iden-

Louise E. Bird,1 Jingshan Ren,1

Jiancheng Zhang,2,6 Neale Foxwell,2

Alastair R. Hawkins,3 Ian G. Charles,2

and David K. Stammers1,4,5

1Division of Structural Biology
The Wellcome Trust Centre for Human Genetics tified, namely, neuronal (nNOS or type I), inducible (iNOS
Henry Wellcome Building of Genomic Medicine or type II), and endothelial (eNOS or type III). There is
University of Oxford significant sequence identity between these NOS iso-
Roosevelt Drive forms, they are homodimeric, and have two distinct cat-
Oxford OX3 7BN alytically active domains that may be separated by lim-
United Kingdom ited proteolyis [3, 4]. The N-terminal oxygenase domain
2 The Wolfson Institute for Biomedical Research contains binding sites for haem, the structural and redox
University College London cofactor tetrahydrobiopterin (H4B), the substrate argi-
The Cruciform Building nine linked via a calmodulin interaction site to a C-ter-
Gower Street minal reductase domain with binding sites for the pros-
London WC1E 6AU thetic groups FMN and FAD, and the cosubstrate
United Kingdom NADPH. In the case of nNOS there is an N-terminal
3 School of Biochemistry and Genetics extension containing a PDZ domain that interacts with
Medical School proteins such as PSD-95 and syntrophin in neurons and
Catherine Cookson Building muscle, respectively [5–7].
Framlington Place In recent years, structural studies of recombinant
University of Newcastle-upon-Tyne eNOS and iNOS oxygenase domains have shown that
Newcastle-upon-Tyne NE2 4HH it has a novel �/� fold with an elongated shape likened to
United Kingdom a baseball catcher’s mitt [8–12]. In addition to extensive
4 Oxford Centre for Molecular Sciences contacts across the oxygenase dimer interface there
New Chemistry Building are also interactions via two regions from the N terminus
South Parks Road (N-terminal extension). The N-terminal “hook” (two anti-
Oxford OX1 3QT parallel � strands) makes both inter- and intrachain inter-
United Kingdom actions, while two cysteines from a C-X4-C motif in each
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Summary trast, there is currently only structural information for
the FAD/NADPH-containing fragment of the reductase

Prokaryotic genes related to the oxygenase domain domain of NOS, although the complete reductase do-
of mammalian nitric oxide synthases (NOSs) have re- main has been modeled on the basis of its sequence
cently been identified. Although they catalyze the homology with rat liver microsomal NADPH-P450 reduc-
same reaction as the eukaryotic NOS oxygenase do- tase [13, 14].
main, their biological function(s) are unknown. In order In contrast to eukaryotes, bacterial-derived NO has
to explore rationally the biochemistry and evolution of chiefly been regarded as an intermediate in the nitrogen
the prokaryotic NOS family, we have determined the cycle. In particular during dissimilatory denitrification,
crystal structure of SANOS, from methicillin-resistant

nitrite is reduced to NO by nitrite reductase and then
Staphylococcus aureus (MRSA), to 2.4 Å. Haem and

further reduced to N2O. There are two classes of nitriteS-ethylisothiourea (SEITU) are bound at the SANOS
reductase, namely those that contain either copper oractive site, while the intersubunit site, occupied by the
haem as the cofactor. Neither of these enzymes is struc-redox cofactor tetrahydrobiopterin (H4B) in mamma-
turally or mechanistically similar to the mammalianlian NOSs, has NAD� bound in SANOS. In common
NOSs [15]. Since the reactive nitrogen species formedwith all bacterial NOSs, SANOS lacks the N-terminal
from NO (e.g., peroxynitrite) are apparently toxic to bac-extension responsible for stable dimerization in mam-
terial cells, its level is maintained at nanomolar concen-malian isoforms, but has alternative interactions to
trations by tight regulation of both nitrite and NO reduc-promote dimer formation.
tases [16]. However, there is increasing evidence that
bacteria can be responsive to NO levels [17, 18]. Indeed,Introduction
evidence is accumulating for bacterial NOSs that are
functionally homologous to eukaryotic NOSs. Biochemi-NO is an important signaling molecule in multicellular
cal studies have been carried out on enzymes from aorganisms and is generated from oxygen and arginine
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L-citrulline with concomitant evolution of NO, detected as residues 133–499 of murine iNOS and residues 125–491
of bovine eNOS. There are some significant differencesnitrite and NO, respectively [19–22]. As NO is a pleiotro-

pic regulator of cellular function, it has been proposed between bacterial and mammalian NOSs, as SANOS
lacks the N-terminal extension of the eukaryotic NOSsthat NO generated by pathogenic organisms may have

a critical pathophysiological role during infection [21]. that is required in the latter for stable dimerization [27–
31]. There are also residues that are only conservedMoreover, hypothetical proteins have been annotated

in some of the sequenced bacterial genomes as being between the bacterial enzymes (Figure 1). Despite the
lack of an N-terminal extension, SANOS is a dimer, andhomologs of the oxygenase domain of mammalian

NOSs. However, these proteins do not have an N-ter- in the interface ligand binding site we see NAD� present
(Figure 2A). The overall topology and quaternary struc-minal hook, cysteines to form a zinc-tetrathiolate, or a

C-terminal reductase domain [23–25]. While it is gener- ture of SANOS and its relationship to the corresponding
region of the previously determined N-terminal oxy-ally accepted that H4B is not present in bacteria [23, 24],

it has been suggested that genes encoding for a H4B genase domains of eukaryotic NOSs dimers are shown
in Figures 2B–2D. The two monomers are related bybiosynthetic pathway are present in Bacillus subtilis [25].

While many of the residues that bind H4B in mammalian approximately 2-fold symmetry (178.5�). However, the
orientation of the symmetry axis is slightly different toNOSs are identical in bacterial NOSs, perhaps indicating

a conserved function, there are, however, some differ- bovine eNOS such that if the A chains are overlapped,
there is a 5.3� offset between the B chains. 309 and 308ences. It is therefore possible that an alternative cofactor

may be utilized for redox or structural roles in prokary- out of 350 C�s from SANOS were superimposed with
an overall rms deviation of 0.78 Å and 0.93 Å for theotic NOSs. BLAST searches of bacterial genome data-

bases reveal proteins with significant identity to the bovine eNOS and murine iNOS monomers, respectively.
The small deletions seen in the sequence alignmentC-terminal reductase domain of eukaryotic NOSs, al-

though none of these are annotated as such [26]. Homo- (Figure 1) all occur in solvent-exposed loops resulting
in minor structural differences for these regions.logs of the reductase domain required for full activity in

eukaryotic NOS isoforms are, for example, present in B.
subtilis and S. aureus genomes. Two of the bacterial Haem Binding and Active Sites
proteins homologous of the oxygenase domain of NOSs, The haem is buried in the interior of each monomer
namely deiNOS and bsNOS from Deinococcus radiodur- (Figures 2B, 2C, and 3C). The residues in the haem
ans and B. subtilis, respectively, have recently been binding motif that contact the haem in the eukaryotic
expressed and the recombinant protein biochemically NOSs are conserved in SANOS, making extensive con-
characterized [24, 25]. The enzymes were both reported tacts with the side chains of Trp56, Arg51, Cys62,
to be functional NOSs. Despite the lack of an N-terminal Pro104, Phe222, Asn223, Gly224, Trp225, Met227,
extension, both recombinant proteins were predomi- Glu230, Trp316, Phe342, and Tyr344. As previously seen
nantly dimeric. in the structures of mammalian NOS isoforms, there is

In this paper, we report the crystal structure of SANOS, a significant deviation from planarity of the haem [9–11].
a protein from methicillin-resistant S. aureus (MRSA), SEITU is an inhibitor of NOSs, and is competitive with
which is related to the oxygenase domains of murine respect to arginine binding in the active site [32, 33].
iNOS and bovine eNOS. We show that the overall struc- SEITU binding to SANOS is similar to that observed
ture of the SANOS dimer is similar to the eukaryotic previously in bovine and human eNOS and human iNOS
NOS oxygenase domain; however, due to the lack of (Figure 3C) [9, 11]. The nitrogens of the ureido group
an N-terminal extension in bacterial NOSs, alternative hydrogen bond to the conserved Glu230 side chain and
interactions promote dimer formation. The SANOS li- one of the nitrogens also forms a hydrogen bond to the
gand binding site, equivalent to the eukaryotic H4B bind- main chain carbonyl of Trp225, while the ethyl group
ing site, contains an NAD� moiety. makes van der Waals contacts with Pro203, Ile205, and

Phe222. In the mammalian NOSs, Ile205 is always a
valine, while in the bacteria it is generally an isoleucine,Results and Discussion
suggesting that SANOS and other bacterial NOSs may
have a different selectivity and affinity for the isothi-Overall Structure
oureas.The structure of SANOS was determined by molecular

replacement with the human eNOS dimer [11] as the
search model using 3.5 Å resolution X-ray data (Table Catalytic Activity of SANOS

The conservation of residues observed in the SANOS1, data set 1). The structure was refined with X-ray data
to 2.4 Å (Table 1, data set 2). The current SANOS refined active site suggests that the protein is an active NOS

oxygenase domain. Since a prokaryotic reductase pro-model contains 345 residues in each protein chain (to-
gether with one histidine from the N-terminal hexahistid- tein that interacts with SANOS remains to be character-

ized, NADPH and oxygen-dependent production of NOine tag in the A chain and two histidine residues from
the B chain), two haem groups together with two SEITU, cannot be directly determined for a complete bacterial

system. NOS activity has previously been measured intwo NAD�, two sucrose, and 382 water molecules, and
has an overall R factor of 0.177 (Rfree 0.241) against all an assay with bacterial NOSs reconstituted with a mam-

malian reductase domain; however, the relevance ofdata to 2.4 Å resolution. The geometry of the model is
good, with rms deviations from ideality of 0.007 Å for this to prokaryotic NOS activity is unknown [24, 25].

Nevertheless, the activity of the oxygenase domains isbond lengths and 1.21� for bond angles. The three-
dimensional structure of SANOS overlaps with that of normally assayed directly by measuring nitrite produc-



Crystal Structure of SANOS
1689

Table 1. X-Ray Data Collection and Refinement

Data collection details Data set 1 Data set 2

X-ray source In house ESRF ID14-EH2
Wavelength (Å) 1.54 0.933
Space group P212121 P212121

Unit cell dimensions (a, b, c in Å) 65.45, 115.65, 124.07 65.78, 115.14, 126.02
Resolution range (Å) 30–3.5 30.0–2.40
Observations 26,608 169,640
Unique reflections 11,133 36,617
Completeness (%) 89.2 95.8
�I/�(I)� 3.3 6.8
Rmerge

a 0.168 0.126
Outer resolution shell
Resolution range (Å) 3.62–3.50 2.49–2.40
Unique reflections 959 3,634
Completeness (%) 77.7 96.5
�I/�(I)� 1.8 1.3
Rmerge

a 0.302 0.439
Refinement statistics
Resolution range (Å) 30.0–2.40
No. of reflections (working/test) 34,763/1,818
R factor (Rwork/Rfree)b 0.177 (0.182/0.241)
No. of atoms (protein/water/others) 5,724/382/196
Rms bond length deviation (Å) 0.007
Rms bond angle deviation (�) 1.2
Mean B factor (Å2)c 34/39/41/47
Rms backbone B factor deviation (Å2) 4.1

a Rmerge � 	|I 
 �I�| / 	�I�
b R factor � 	|Fo 
 Fc| / 	Fo
c Mean B factor for protein main chain, side chain, water, and ligand atoms, respectively.

tion from N-hydroxy-L-arginine in an H2O2-supported NOSs and the resulting overall reduction in buried ac-
cessible surface area (2132 Å2 for SANOS compared withreaction [34, 35]. This reaction does not require the pres-
nearly 3000 Å2 in bovine eNOS) [23], does not preventence of H4B in mammalian NOSs [34]. We observed
the formation of dimers for these bacterial NOSs. Thisnitrite production in SANOS with a rate of 0.15 � 0.01
implies that there could be compensatory changes innmol nitrite produced nmol SANOS
1 min
1, which is
SANOS, and the other bacterial NOSs, to maintain dimerwithin a factor of five for deiNOS activity and in common
stability. We have analyzed differences in the subunitwith deiNOS, much less than reported for nNOS [24].
contacts between SANOS and the eukaryotic NOSs in
terms of hydrogen bonding and potential hydrophobic
interactions. While the contacts are largely similar, thereComparison of the Dimerization of SANOS
are two differences. First, in common with the mamma-with Mammalian NOSs
lian proteins, SANOS has extensive contacts betweenThe dimerization interface of SANOS is defined by four
the two antiparallel �12 helices (Figure 3A; residues 259–regions (Figures 1 and 3A). Regions II and IV form the
280, region II) [9–11]; in SANOS, Phe262A forms a closemajority of the interactions in the interface. In addition
interaction through favorable edge-on (T-geometry) �-�to homologous subunit contacts at regions I–IV, mam-
interactions with Tyr273B and Tyr276B (these residuesmalian NOSs also interact via two regions of the N termi-
are all leucines in bovine eNOS), and it therefore seemsnus, namely the N-terminal hook and by two cysteines
likely that the interactions between these helices arethat form a tetrahedrally coordinated zinc-tetrathiolate
stronger in SANOS (Figure 3A). However, since these

at the dimer interface (Figure 1) [9, 11]. This region is
residues are largely leucines in all other bacterial NOSs,

required for dimer stability and full catalytic activity in
generally the interactions between region II in the bacte-

mammalian NOS isoforms [27–31]. The importance of rial NOSs are likely to be similar to mammalian NOSs.
this region is shown by the behavior of truncated mam- Second, Pro323 in region IV is conserved in all bacterial
malian proteins. Murine iNOS 114 (residues 115–498) NOSs while it is a glycine in all mammalian NOSs (Figure
displays significant perturbation of the interface sec- 3A). Region IV interacts with regions I, II, and IV on the
ondary structure: region IV is fully disordered, region II opposite subunit, as well as with the interface ligand
is partially disordered, and the �9 helix (SANOS �13; site. Pro323 might reduce the conformational flexibility
contains region III) is rotated through 35� [8]. Moreover, and increase the hydrophobic packing, and thus
truncated bovine eNOS is predominantly monomeric, strengthen the interactions of this region at the dimer
has only 12% of the activity of the full-length oxygenase interface. However, it seems unlikely that dimer stabili-
domain, and aggregates rapidly in the absence of li- zation of bacterial NOSs is due solely to a single residue
gands, suggesting that it is similarly structurally unstable at the subunit interface.
[29]. The absence of an N-terminal extension in SANOS Turning to changes that might have a more indirect

effect on the bacterial NOS dimer formation, residues(and other bacterial NOSs) compared to mammalian
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largely common to the bacterial NOSs were mapped conserved, suggesting that this region has a functional
role in SANOS [9–11]. However, the binding site is moreonto the structure of SANOS to see whether they were

located in a position to influence dimerization (Figures 1 open to the solvent, due to the absence of the N-terminal
extension. In the mammalian NOSs, 2 residues from thisand 3B). Three of the conserved residues, Leu66, Phe67,

and Gln295, line the pocket where the haem edge is region, for example, bovine eNOS Ser104 and Val106,
interact with the C6 and N5 atoms of H4B, respectively,exposed. This region of the protein has been suggested

as an interaction site for the reductase domain; the con- giving rise to the stereospecificity of the NOS-H4B inter-
action [9, 23]. Since these residues are not present inservation of these residues between bacterial species

is consistent with this hypothesis [24]. Mapping of the SANOS and as it is thought that H4B is not present in
prokaryotes, it is possible that an alternative cofactorelectrostatic potential of the solvent-accessible sur-

faces of SANOS and a comparison with the mammalian will bind at this site. The increased volume of this ligand
site in the prokaryotic NOSs could imply that a largerNOSs (data not shown) indicates a weak but not striking

conservation of positive charge in this region. Further molecule can be accommodated than for mammalian
NOSs. Density for the nicotinamide, ribose, and the py-biochemical and structural data are needed to define

the putative SANOS interface with the reductase protein. rophosphate group of NAD� (which was used as an
additive to improve crystallization) can be seen in theSeventy-eight percent of the conserved residues cluster

between the protein core and the dimer interface. In interface ligand binding site of the SANOS structure
(Figure 2A); however, density is not observed for theaddition to van der Waals interactions, a number of

hydrogen bonds are found: Glu16, Gln295 (through a adenosine moiety of NAD�. The nicotinamide ring of
NAD� stacks between the side chains of Trp316A andwater molecule), and Arg308 hydrogen bond to the uni-

versally conserved Arg57, Trp225, and Glu303, respec- Tyr329B, while the amide nitrogen hydrogen bonds to
the haem propionate. In bovine eNOS, the pterin of H4Btively; in addition, bonds between Glu300 and Tyr333,

and Thr311 and Asn60 are also seen. In the case of is similarly sandwiched between the structurally homol-
ogous Trp449A and Phe462B while the haem propionatedeiNOS, there are some changes from otherwise con-

served residues in other bacterial species (Figure 1), but hydrogen bonds with the pyrimadone moiety of the
pterin (Figure 3C) [9]. The pyrophosphate group is in theit seems likely that the substituted residues (Gln295 to

His, Thr311 to Arg, and Asn60 to Thr) will also form space occupied by residues 103-104 of bovine eNOS
(in the N-terminal extension; Figure 3C) and are stabi-hydrogen bonds in a similar manner. Many of the interac-

tions formed in SANOS by the residues conserved in lized by hydrogen bonds with the side chains of Lys318
and Ser313 [9]. Since NAD� is involved in redox reac-bacteria in SANOS are in the vicinity of helix �13, sug-

gesting that the movement of this helix seen in the iNOS tions in the cell, its presence at the site may be function-
ally significant, although the involvement of nicotin-114 structure will not occur. One explanation for the

instability of truncated mammalian NOSs may be that amide adenine dinucleotide in bacterial NOS function
has not been reported. Experiments to investigatethe N-terminal extension also makes intrachain interac-

tions with residues in the region of helices �13 and whether NAD� or other redox cofactors present in pro-
karyotes are able to stimulate nitrite production were�16 that may stabilize the secondary structure of the

monomeric interface elements, thus allowing dimeriza- carried out using the hydrogen peroxide shunt assays
with H2O2-supported N-hydroxy-L-arginine oxidationtion to occur. In the absence of the N-terminal extension,

the monomeric interface structure is destabilized, push- (Table 2). In contrast to the mammalian NOSs, where
addition of the cognate interface ligand causes a 2- toing the monomer/dimer equilibrium toward monomer

and/or aggregation. It is possible for SANOS that the 3-fold increase in activity, in common with deiNOS, H4B
has no stimulatory effect on the activity of SANOS, whichconserved residues stabilize the monomeric tertiary

structure relative to the truncated mammalian proteins, may suggest a different cofactor is required for full en-
zyme activity [24, 34, 36]. Further experiments showedthereby allowing dimer formation and thus compensat-

ing for the absence of the N-terminal hook. there was no stimulation over basal levels of activity for
NAD�, NADH, and �-nicotinamidemononucleotide. It is
possible that the observed NAD� binding to SANOSSubunit Interface Ligand Site

The subunit interface ligand site in the mammalian NOS might be an example of molecular mimicry such as has
been previously seen in mammalian NOSs where argi-binds H4B. H4B appears to have a dual role: it both

stabilizes the dimer and participates in catalysis [7, 23]. nine binding at the interface site has previously been
reported for bovine eNOS [9]. Given the disordering ofWhile SANOS shares the overall topology of the interface

ligand binding site with the mammalian NOSs, there the adenosine portion of NAD�, a further possibility to
consider is whether the presence of the cognate bacte-are, however, some key differences [9–11]. Many of the

residues that mediate NOS-H4B binding through hydro- rial reductase protein might be required to correctly
position NAD� and thereby allow a role in catalysis.gen bonding and van der Waals interactions are largely

Figure 1. Sequence Alignment of SANOS with Eukaryotic and Prokaryotic NOSs

The alignment was carried out using ClustalW and colored using Boxshade. Filled residues indicate amino acid identity and shaded residues
indicate similarity [40]. SANOS secondary structure and the regions involved in the dimerization interface (233–240 [I], 259–280 [II], 288–291
[III], and 314–330 [IV]) are indicated below the alignment. Key residues are indicated as follows: †, cysteines forming zinc tetrathiolate in
mammalian NOSs (above the alignment); *, residues that are largely conserved in bacteria (below the alignment). The complete N-terminal
sequence for the B. subtilis NOS is not shown, as it is not clearly assigned.
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Figure 2. The Topology and NAD� Binding of SANOS

(A) |Fo|
|Fc| 2.4 Å simulated annealing omit electron density map showing the nicotinamide, ribose, and pyrophosphate of NAD� bound at
the interface ligand binding site; electron density for the adenosine moiety is absent. The A chain is colored blue and the B chain is colored
cyan. The small red spheres represent water molecules.
(B) Stereo diagram of the SANOS monomer C� backbone. The N and C termini and every twentieth residue are indicated in red. The NAD�

and haem are shown as a ball-and-stick models with the iron of the latter indicated by a gray sphere.
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Other candidate redox active molecules that we have ships of such NOSs and provides a focus for further
investigations into the biochemistry and biological roleconsidered include the eubacterial pterin molybdopterin

dinucleotide, although attempts to model this into of prokaryotic NOSs.
SANOS resulted in steric clashes, suggesting that this

Experimental Proceduresis not the biological cofactor (data not shown). It has
been reported that both tetrahydrofolate (THF) and H4B Cloning, Expression, and Purification of Recombinant
supported the oxygenase activity of D. radiodurans and SANOS from S. aureus
B. subtilis NOSs, when reconstituted in an artificial sys- PCR using Pfu DNA polymerase (Stratagene) was used to amplify

the coding region from amino acid 2 using MRSA genomic DNA astem with a mammalian nNOS reductase domain [24, 25].
a template (the MRSA genomic DNA was a gift from Dr. MichaelThe fact that H4B (which is thought not to be present in
Lockyer; Arrow Therapeutics, London, UK). A pair of primers wasbacteria) can stimulate this hybrid species reconstitu-
synthesized (Genosys) for PCR experiments. The sequences of thetion assay also brings in to question the relevance of
primers were: 5� primer: 5�-CGCATATGGGAGGACACCACCACCAC

such results. However, THF can be modeled into the CACCACTTATTTAAAGAGGCTCAAGCTTTCATAGAAACATG-3� and
interface ligand site of SANOS, consistent with the hy- 3� primer: 5�-CGTCTAGATTAATGATGGAAAGGGCACTGG-3�. A

hexahistidine coding sequence motif is designed into the 5� primerpothesis that it, or a related pterin, may be the biological
to facilitate purification of the recombinant protein by metal affinityligand (data not shown). Importantly, THF fails to stimu-
chromatography. The oligonucleotides also incorporate NdeI andlate the rate of reaction in the SANOS shunt assay (Table
XbaI sites into the 5� and 3� primers, respectively, in order to facilitate2). Clearly further work is required to identify the nature
cloning. The sanos fragment was cloned into the vector pCWORI,

of the intersubunit ligand, if any. In particular it will be and DNA sequence analysis of the cloned product showed that the
necessary to set up assay systems with SANOS and sequence was identical to that deposited in the sequence database.

The resulting plasmid was transformed into E. coli BL21 (DE3) (Nova-the cognate bacterial reductase protein to be able to
gen) for protein expression.unequivocally define this cofactor.

BL21 (DE3) harboring the sanos expression plasmid were grown
in a 200 ml luria broth starter culture supplemented with 100 �gBiological Implications
ml
1 ampicillin at 30�C for 8 hr. Five milliliter aliquots of this culture
were used to inoculate 18 � 500 ml cultures of Terrific broth supple-

The discovery of bacterial enzymes that are homologous mented with 100 �g ml
1 ampicillin, which were grown at 23�C for
10 hr. IPTG and �-aminolevulinic acid were then added to 250 �gto the eukaryotic NOSs oxygenase domain means that
ml
1 and 100 �g ml
1, respectively, and induction was carried outthe biological role of NO in prokaryotes needs to be
at 23�C for 48 hr. The cell pellet was recovered by centrifugation atreexamined. NO may be a novel bacterial signaling mole-
6000 � g for 6 min at 4�C. Approximately 40 g of E. coli cells wascule and may be important to host-pathogen interac-
sonicated in a final volume of 1 L 50 mM K phosphate (pH 7.2), 150

tions, possibly by activation of either generalized or spe- mM NaCl, 1 mM DTT (buffer 1). The sonicated cell suspension was
cific responses in the host or bacteria. clarified by centrifugation at 2,500 � g for 42 min at 4�C and the

supernatant was loaded onto a 130 ml chelating Sepharose columnWe report here the X-ray crystal structure of a func-
(Amersham Biosciences) that had been charged to one-third capac-tional nonmammalian NOS oxygenase domain, SANOS,
ity with zinc sulfate and equilibrated in buffer 1. The column wasfrom MRSA, which shows an overall topology related
then washed with 500 ml of buffer 1 and then eluted with a 1 L 0–0.1to the eukaryotic NOS oxygenase domain. However,
M imidazole gradient in buffer 1, and 10 ml fractions were collected.

despite the lack of an N-terminal extension necessary The fractions were analyzed by SDS-PAGE and those containing
for stable dimerization of the eukaryotic NOSs, SANOS pure SANOS were pooled. This purification protocol produced on aver-

age 40 mg pure SANOS. Two milligram aliquots were stored at 
80�C.is a dimer. A comparison with eukaryotic NOSs suggests
that while there are some differences in subunit interface

Assays of H2O2-Supported N-Hydroxy-L-Arginineinteractions for SANOS, it is likely that dimerization of
(NOHA) Oxidationthe bacterial NOSs are a function of the conserved resi-
H2O2-dependent NOHA oxidation was assayed at 37�C. One milliliter

dues in the prokaryote enzymes that stabilize the tertiary assays were set up containing 150 nM SANOS and 10 u superoxide
structure of the monomer. The ligand binding sites, with dismutase in 50 mM HEPES (pH 7.5), 0.5 mM DTT. Reactions without

enzyme were used as a blank. All reactions were preincubated atthe exception of the interface site, are analogous to the
25�C for 30 min and were initiated at 37�C by addition of 50 �l ofmammalian NOSs. The interface ligand site of SANOS
10 mM NOHA and 3.4 �l of 30% H2O2. Two 250 �l aliquots wereis more open; this may reflect the fact that in contrast
taken at 3 min and stopped by addition of 250 �l of Griess reagent

to the bifunctional mammalian NOSs, SANOS has to to each tube; a further two aliquots were taken and stopped after
interact with a separate reductase protein. Alternatively, 60 min. The absorbance at 540 nm was used as a measure of nitrite
the larger volume of the pocket might reflect a require- production. All reactions were carried out in triplicate. The effect of

ligands was examined by addition of 0.1 mM ligand to the reactionment to accommodate a bulkier ligand such as the NAD�

mixture. The program Origin (Microcal) was used to calculate reac-seen bound in this structure or possibly THF [24, 25].
tion rates.However, the physiological ligand remains to be identi-

fied. The determination of the structure of SANOS, to- Crystallization
gether with a comparison with eukaryotic NOSs, gives SANOS was defrosted in the presence of 2 mM L-arginine (Sigma)

and concentrated to 10 mg/ml using a Centricon 10 (Millipore) atan important insight into the structure/function relation-

(C) Ribbon diagram of the SANOS dimer. The subunits are colored blue and green. The haems and the interface NAD�s are shown as ball-
and-stick models with the haem iron represented by a gray sphere. The secondary structure elements are labeled for both A and B chains.
(D) Ribbon diagram of the overlapped SANOS and bovine eNOS dimers. The subunits are colored blue and green for SANOS, and red and
orange for bovine eNOS. The haems and the interface NAD�s from SANOS are shown as ball-and-stick models, with the haem iron represented
by a gray sphere. The interface zinc in bovine eNOS is shown as a large magenta sphere.
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Table 2. Assays of H2O2-Supported N-Hydroxy-L-Arginine (NOHA) Oxidation

Reaction rate (nmol nitrite produced Fold stimulation of activity over
Liganda nmol SANOS
1 min
1) unliganded enzyme

None 0.15 � 0.01 —
H4B 0.16 � 0.01 1.09 � 0.09
NAD� 0.15 � 0.01 1.03 � 0.10
NADH2 0.17 � 0.05 1.12 � 0.33
�-Nicotinamidemononucleotide 0.19 � 0.03 1.24 � 0.19
Tetrahydrofolate 0.17 � 0.01 1.14 � 0.07

a 100 �M of ligand used.

18�C. Gel filtration was performed at 21�C in the absence of ligands Esnouf and Ms. J. Dong for computer support, Dr. K. Harlos for help
with the in-house data collection, Mr. C.E. Nichols for discussionsusing a Superose 12 HR10/30 column (Amersham Biosciences) to

remove aggregated protein. The column was equilibrated with crys- on cryoprotectants, and Dr. P. Lowe and Dr. W. Alderton for helpful
discussions. The financial support of the MRC (D.K.S.), the BBSRC,tallization buffer (25 mM Tris [pH 7.4], 50 mM NaCl, 1 mM DTT).

The peak fractions were pooled and concentrated to 10 mg/ml as and the Wellcome Trust (A.R.H.) is acknowledged.
described above and used immediately for crystallization.
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Revised: September 24, 2002at 21�C using freshly gel-filtered and concentrated protein. S-ethyli-

sothiourea (SEITU; Sigma) and nondetergent sulphobetaine 195 Accepted: September 30, 2002
(NDSB195; Hampton Research) were added to a final concentration
of 5 mM and 0.3 M, respectively, to SANOS, giving a protein concen- References
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Figure 3. Detailed Structural Analysis of SANOS

(A) Stereo diagram showing the dimer interface of SANOS. The main chains are shown as ribbons and coils, with the A chain colored green
and the B chain colored blue. The side chains of key residues involved in the interface interactions are shown as balls and sticks and colored
orange and cyan for the A and B chains, respectively. The yellow dashed lines represent the hydrogen bonds between the two chains. The
four segments from each chain are labeled I–IV (residues 233–240, 259–280, 288–291, and 314–330, respectively).
(B) Electrostatic surface (A chain) and ribbons (B chain) showing the charge distribution on the molecular surface and the dimer interface.
The positively and negatively charged areas are colored blue and red, respectively. All ligands for both monomers are shown as dark yellow-
colored space-filling representations. The side chains that are only conserved among bacterial NOSs are shown as balls and sticks, with the
nitrogen and oxygen atoms colored in blue and red, respectively.
(C) Stereo view of one set of ligand binding sites of SANOS. The main chain backbone of the A and B chains are colored dark and light gray,
respectively. Haem, SEITU, and the nicotinamide and ribose moieties of NAD� are colored by atoms, with carbon atoms in dark gray. The
haem iron is shown as a magenta sphere. The side chains of key residues are drawn as ball-and-stick representations and colored by atoms,
with their carbon atoms in cyan. Water molecules are represented as red spheres. The broken yellow lines indicate hydrogen bonds between
the substrates and the protein. SEITU, H4B, and a section of the hook from bovine eNOS that interacts with the pterin (colored orange) have
been overlaid onto the SANOS interface ligand binding site.
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