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Abstract

Binary Decision Diagrams (BDDs) are used to represent boolean functions in a

variety of applications. The size of a reduced ordered BDD depends on the order-

ing of variables. Several researchers have suggested grouping symmetric variables

as a promising heuristic for �nding good orderings. In this paper we study the

conjecture which states that symmetric variables gather in at least one of the opti-

mum variable orders. First, we prove some useful properties of partially symmetric

functions. Next, we develop a faster procedure for �nding counterexamples to this

conjecture that exploits the partitioning of boolean functions into nn-equivalence

classes. Third, we study the structure of counterexamples and devise a new and sim-

ple method to generate new counterexamples from given counterexamples. Finally,

we present di�erent kinds of counterexamples, which show that boolean functions

are very diverse with respect to where symmetric orders can fall in the range from

optimal orders to worst-case orders.

1 Introduction

Binary Decision Diagrams (BDDs) are used to represent boolean functions

in a variety of applications. The size of a BDD is known to be sensitive

to a chosen variable order. In search of good variable orders, a variant of

sifting-based reordering algorithms heuristically applies the aggregate criterion

of symmetry and keeps symmetric variables together in groups. Groups of

symmetric variables are then moved at a time during the sifting procedure. An

instance of this variant is symmetric sifting which is described in [PS94][PS95].

Heuristic strategies of this sort normally produce good results as reported

in [PS95]. Nevertheless, failures to result in optimums occur in some cases. In

[PS95] the function f(x; y; z) = xy + yz0 + y0z was given as a counterexample
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for which \no symmetric order is optimal" and it was later referred to as such

by [S98] and [LM00]. Unfortunately we must point out that it is wrong to

regard function f as a counterexample. The function f is partially symmetric

in variables y and z. Yet two of the symmetric orders of f are in fact optimum

orders. Namely, symmetric orders < x y z > and < x z y > are both optimum

orders. Thus the function f is actually a positive example and should not be

mistaken as a counterexample. The function f is repeated in Example 2.1

and all the six variable orders are listed in Table 1. The reader may look up

the table and verify that two of the symmetric orders are actually optimum

orders.

Albeit a mistake, it gives rise to the question: how well do symmetric vari-

ables contribute to optimum variable orders? Thus we have formed the conjec-

ture: \symmetric variables gather in at least one optimum variable order." In

this paper we study this conjecture in detail. First, we prove some useful prop-

erties of partially symmetric functions. Next, we develop a faster procedure for

�nding counterexamples to this conjecture by partitioning boolean functions

into nn-equivalence classes. Third, we study the structure of counterexam-

ples and devise a new and simple method to generate new counterexamples

from given counterexamples. Finally, we present di�erent kinds of counterex-

amples, which show that boolean functions are very diverse with respect to

where symmetric orders can fall in the range from optimal orders to worst-case

orders. Recently, we discovered that a counterexample has been reported in

[MMD94]. However, they do not present any details on the structures and

properties of counterexamples.

This paper is organized as follows: We review some basic ideas on BDDs

in section 2. Section 3 explores the aggregation criterion symmetric variables.

Sub-section 3.1 reviews related concepts on symmetry and sub-section 3.2

elaborates on how to form symmetric groups. Section 4 presents theorems

about the properties of partially symmetric functions. In section 5, we de-

scribe the search method for counterexamples. Functions are partitioned into

equivalence classes to improve upon the search method. Section 6 describes

the structure of counterexamples and a simple method to generate new coun-

terexamples from existing counterexamples. Counterexamples are reported

in section 7, followed by positive examples in section 8. Section 9 briefs our

conclusions. In Appendix 1 more counterexamples are listed, and Appendix 2

describes additional results on symmetric orders.

2 Basics on BDDs

Let B denote the boolean set f0; 1g. Boolean variables can assume values from

B = f0; 1g. A literal is either a variable x or its negation �x. A product is a set

of literals that does not contain a literal and its negation. A minterm over a

set of variables A = fx1; : : : ; xng is a product that contains either positively or
negatively all variables of A. A boolean function of n variables is a mapping f :
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Bn ! B. We express boolean functions in sum of minterm list form and omit

sum of product form whenever space saving is an important consideration.

The minterms can be denoted in the following way. If (i1; : : : ; in) is an n-tuple

of zeroes and ones, then xi11 : : : xin
n

is a typical minterm, where x
ij

j
= x0

j
if

ij = 0 and xj otherwise. When n is clear from the context, we write such an

n-tuple as a decimal number.

A BDD representing a boolean function f is a single rooted directed acyclic

graph where the Shannon decomposition

f = �xifxi=0 + xifxi=1 (1 � i � n)

is carried out in each node [A78][L59].

The graph has one root and has two terminal nodes labeled by a boolean

constant 0 or 1. Each internal node is labeled by a boolean variable xi and

has two outgoing edges labeled 0 and 1 corresponding to the cases where the

variable evaluates to 0 or 1. The two successors of an internal node each

represents the function with the variable set to one of its two values 0 or 1.

For any value assignment to the variables, the function value is determined

by tracing a path from the root to a terminal node, following the 1 branch if

the variable of the internal node takes on the value 1, or else following the 0

branch if the variable of the internal node takes on the value 0, terminating

at a terminal node, whose value (0 or 1) is the value of the function.

A BDD is called ordered if each variable is encountered at most once on

each path from the root to a terminal node and if the variables are encoun-

tered in the same order on all such paths. An ordered BDD is called reduced

(ROBDD) if it contains vertices neither with isomorphic sub-graphs nor with

both edges pointing to the same node. Hence every node of a ROBDD rep-

resents a distinct boolean function. For each boolean function the ROBDD

corresponding to a given variable order is unique up to isomorphism [B86].

The size of a ROBDD is de�ned as the number of internal nodes. A level

of a ROBDD is the set of nodes labeled with the same variable. The top

level refers to the root. The bottom level refers to the set of nodes sitting

immediately one level above the terminal nodes. An order of the variables

formed from bottom level to the top level is called a variable order, denoted

by � and written as < xi1 : : : xin >, where xi1 : : : xin is a permutation of the

variables of f(x1; : : : ; xn). In the following, only ROBDDs are considered. For

brevity these graphs are called BDDs.

3 Symmetric Variables

Symmetry is one of the properties which boolean functions possess. Symmetric

variables are the aggregation criterion that we explore. Hence, we review

some related concepts on symmetry before describing the methods applied for

testing symmetric variables.
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3.1 Related Concepts on Symmetry

De�nition 1. A boolean function f(x1; : : : ; xn) is called totally symmetric i�

its value is unchanged by any permutation of its variables. For example, the

function f(x; y) = x� y is totally symmetric.

Obviously, a function f is symmetric if and only if its function value only

depends on the the number of 1's in the input vector and not on their positions.

Hence, the BDD size of a totally symmetric function is independent of the

variable orders.

De�nition 2. A boolean function f(x1; : : : ; xn) is said to be partially sym-

metric i� there exists at least one subset of at least two variables in which f

is totally symmetric. In particular, let � = fxi1 ; : : : ; xikg be a subset of input
variables, where k � 2. f is partially symmetric in the variables xi1 ; : : : ; xik ,

i� the value of f remains invariant for all the permutations of the variables

xi1 ; : : : ; xik . The variables xi1 ; : : : ; xik are said to be symmetric variables. The

set of variables xi1 ; : : : ; xik thus formed is called a symmetric group, writ-

ten as (xi1 : : : ; xik). The symmetric partition � on the set of input variables

X = fx1; : : : ; xng, written as � = f(�1); : : : ; (�k)g, consists of disjoint groups
of variables where each (�i) is a maximal symmetric group.

[Example 2.1] f(x; y; z) = xy + yz0 + y0z. f is partially symmetric in the

variables y and z even though the given expression is not \syntactically"

symmetric in y and z, and the symmetric variables y and z form one symmetric

group (y z). The symmetric partition of variables is � = f(x)(y z)g.

[De�nition 3.] Let f be a function of n variables X = fx1; : : : ; xng and let

� = f(�1); : : : ; (�k)g be the symmetric partition of X. A variable order � is

said to be a symmetric order i� � consists of symmetric groups and symmetric

variables are located side by side in any order. Formally, � =< �i1 ; : : : ; �ik >

; where �ij 2 � for j = 1; : : : ; k.

[Example 3.1] In Example 2.1, f is partially symmetric in (y; z). Thus, the

variable order < x y z > is a symmetric order, since y and z are located side

by side; whereas the variable order < y x z > is not, since the symmetric

variables y and z are separated by x.

In a similar vein, besides the non-symmetric variables , the value of a par-

tially symmetric function f depends on the number of 1's in the input vectors

of symmetric variables and not on their individual positions. Correspond-

ingly, the size of BDD of a partially symmetric function f is independent of

the permutations of symmetric variables, other variables being �xed at their

respective positions. To make this point clear, consider the function f in Ex-

ample 2.1. The sizes of BDDs associated with each variable order are listed
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as follows:

� # < variable order > jBDD�j

1 < x y z > 4

2 < x z y > 4

3 < y x z > 4

4 < y z x > 5

5 < z x y > 4

6 < z y x > 5

Table 1. All the variable orders for f = xy + y
0
z + yz

0

The �rst column labeled �# indicates the order number. The second

column labeled < variable order > contains variable orders read from bottom

level to top level. The third column labeled jBDD�j contains the sizes of

BDDs built for each associated variable order.

As it was revealed in the above table, permutation of the symmetric vari-

ables y and z in variable orders �1 and �2 does not have an impact on the size

of resulting BDDs, when x is �xed at the bottom level. Neither does the size

of BDD when x is �xed at the top level and only y, z are swapped in variable

orders �4 and �6. Likewise, the size of BDD remains invariant for the variable

orders �3 and �5 where x is �xed at the middle level and y, z are swapped.

3.2 Forming Symmetric Groups

To group symmetric variables into symmetric groups, an eÆcient method for

testing symmetric variables is apparently desirable. To this end, we transpose

the corresponding columns of the associated function f , instead of comput-

ing the function value for each permutation of variables. The form of the

transposed function f 0 is compared with the form of the original function f

to determine whether the function f remains invariant or not.

Example. Let f(x1; x2; x3) = x0

1x2x3 + x1x
0

2x3. Writing f as a matrix gives2
4 0 1 1

1 0 1

3
5

Testing for the symmetry of the variables x1 and x2 involves transposing the

x1 column and the x2 column to obtain f 0 as follows:2
4 1 0 1

0 1 1

3
5

Comparing f and f 0, we found that f 0 di�ers from f only in the order of

the rows. Hence we can decide that the value of f remains invariant for the

permutation of x1 and x2. Therefore we may group variables x1 and x2 to
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form one symmetric group (x1x2). Now, applying (x1x3) to the matrix for f

gives 2
4 1 1 0

1 0 1

3
5

which is not the same as f . Neither is the resulting matrix given by the per-

mutation of (x2 x3). Thus, f is partially symmetric in the only one symmetric

group (x1 x2).

The number of transpositions for a function of n variables is n(n � 1)=2.

Thus in general, it would require n(n�1)=2 tests. However, since the symmet-

ric relation on the set of n variables A = fx1 : : : xng is an equivalence relation,

the number of tests may be reduced to (n�1) transpositions when f is totally

symmetric. In particular, if one generates the pair-wise transposition in such

a manner that (1,2), (1,3), . . . , (1,n) are tested �rst, then all the symmetric

groups would be generated if f is totally symmetric [H65].

Based on these ideas, we design a procedure Form Symmetric Groups()

for grouping symmetric variables into symmetric groups whose pseudo-code

is omitted. It takes as an argument the input function f of n variables and

returns as value the symmetric partition G.

4 Properties of Partially Symmetric Functions

In this section, we develop fundamental theorems about the symmetric sets of

partially symmetric functions. LetX = fx1; : : : ; xng and let � = f�1; : : : ; �kg
be any partition of X. Assume that the number of variables in �i is ri for

i = 1; : : : ; k. The system (PX ;_;^; 0; 1) is a lattice, where PX is the family of

all partitions of X. � _ � and � ^ � denote respectively the partitions induced

by the join and intersection of the two equivalence relations � and � . Let 0 =

f(x1); : : : ; (xn)g and 1 = f(x1; : : : ; xn)g. For example, let X = fx1 x2 x3 x4g
and, � = f(x1); (x2); (x3x4)g, and � = f(x1x2); (x3x4)g. Then � and � are two

partitions on X. And � is smaller than � , i.e. � < � .

Theorem 1. Let f1 and f2 be two partially symmetric functions with the

same symmetric partition � on the same set of variables. Then,

1. f1 + f2 is also partially symmetric with a partition �0 � �.

Proof. Straightforward. 2

Example. Let f1(x0; x1; x2; x3) = �m(7 12) and f2(x0; x1; x2; x3) = �m(11 12).

Both f1 and f2 are partially symmetric in the variable pair (x2 x3); i.e., �f1 =

�f2 = f(x0); (x1); (x2 x3)g. Then, f(x0; x1; x2; x3) = f1 + f2 = � m(7 11 12).

And f is partially symmetric in the variable groups (x0 x1) and (x2 x3); i.e.,

�f = f(x0 x1); (x2 x3)g Thus, �f > �f1 and �f > �f2 :

2. f1 � f2 is partially symmetric with a partition �0 � �.

Proof. Let xi, xj be any variables in symmetric group c of �, and let t be

any term containing xi and xj. Then, let t0 be the term when xi and xj are
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switched in t. Since f1 is symmetric in (xi xj), hence t0 2 f1 and similarly

t0 2 f2. Therefore t
0 2 f1 � f2. 2

Example. Let f1(x0; x1; x2) = � m(1 2 5 6 7) and f2(x0; x1; x2) = � m(4 7).

Then both f1 and f2 are partially symmetric in the variable pair (x1 x2). How-

ever, taking the intersection of f1 and f2 results in the function: f (x0; x1; x2) =

f1 �f2 = � m(7), which is totally symmetric. All three variables form one sym-

metry group of f , i.e., (x0 x1 x2).

3. �f1, �f2 are also symmetric with the same partition.

4. Let xf denote the operation of multiplying f by a new variable x (this

may be generalized to multiplying by a literal). Then xf has a symmetric

partition �xf � �f .

Example. Let f (x0; x1; x2) = � m(4 7) = x0x
0

1x
0

2 + x0x1x2. f is partially

symmetric in (x1 x2). Then multiplying f by a new variable x3, we have

x3f(x0; x1; x2; x3) = � m(9 15) = x0x
0

1x
0

2x3 + x0x1x2x3 which is partially

symmetric in (x1 x2) and (x0 x3). Thus, the symmetric partition of x3f ,

�x3f = f(x1 x2); (x0 x3)g, is strictly larger than the symmetric partition of

f , �f = f(x0); (x1 x2)g.

5 The Search Method

Since the conjecture states that symmetric variables gather in at least one of

the optimum variable orders; in other words, it conjectures that at least one

optimum variable order is a symmetric order. Hence, a counterexample to the

conjecture being studied would require a function to have none of its optimum

orders a symmetric order.

De�nition 4. A boolean function f is said to be a counterexample i� none

of its optimum orders is a symmetric order.

The �rst method which we developed to �nd counterexamples to the con-

jecture being studied was based on exhaustive search. The search method

consisted of 3 steps as follows: First, generate all functions of n variables.

There are 22
n

functions of n variables in all. Second, for each generated func-

tion f , compute all the optimum variable orders from the total of n! variable

orders and the symmetric partition of f . Third, if none of the optimum orders

is a symmetric order, then f is a counterexample.

NN-Equivalence Class

Since 22
n

is an enormously large number to search through, we make fur-

ther improvements upon the exhaustive search method. This is accomplished

by partitioning the boolean functions into equivalence classes. ROBDDs for

equivalent functions are isomorphic. Thus we build the ROBDDs of represen-

tative function from each class only. If the representative of an equivalence

class c is a counterexample, then we generate all the equivalent functions in c

and check for more counterexamples. The size of search space is hence reduced

considerably. Consequently the run time is decreased drastically. Detailed ex-

planations follow in subsequent paragraphs. The following de�nition provides
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the criterion for partitioning boolean functions.

De�nition 5. Let f and g be two boolean functions of n variables. We say

that f and g are nn�equivalent i� either one may be obtained from the other

by complementing some or all the input variables or one is the complement of

the other.

Example 5.1 Let f (x1; x2) = x1 x2 and g (x1; x2) = f(x0

1; x2) = x0

1x2. Then

f and g are nn � equivalent, since g is obtained from f (or vice-versa) by

complementing one of the variables, which is x1 in this example.

Example 5.2 Let f (x1; x2) = x1 x2 and g (x1; x2) = f 0(x1; x2) = x0

1 + x0

2.

Then f and g are nn� equivalent, since g is the complement of f .

The correctness of the improved search method is established by the fol-

lowing theorem.

Theorem 2. Boolean functions in the same nn � equivalent class possess

essentially the same ROBDD structures for all the variable orders, and di�er

only in the complemented edges and/or the values which label the terminal

nodes.

Proof. Let f and g be two boolean functions of n variables.

Case 1. Let g be obtained from f by complementing some or all variables.

In this case, the ROBDDs of f and g have exactly the same size on each

individual level and so agree on the total size. Their ROBDDs di�er only in

the labels of edges of the complemented variables.

Case 2. Let g be the complement of f . Then ROBDD of f and g di�er only

in the values which label the terminal nodes. 2

The total number of equivalence classes under nn� equivalence is

1

2n+1
(22

n

+ (2n � 1) 22
n�1+1)

for boolean function of n variables [Ha65]. For instance, the �ve nn�equivalence
classes for n = 2 are as follows:

[0; 1] [x0

1 x
0

2; x
0

1 x2; x1 x
0

2; x1 x2; x
0

1+x0

2; x
0

1+x2; x1+x0

2; x1+x2]

[x1; x
0

1] [x2; x
0

2] [x1 x2 + x0

1 x
0

2; x
0

1 x2 + x1 x
0

2]

Table 2 lists the total number of functions 22
n

and the total number of

nn � equivalence classes for the number of variables from 1 to 5. It can be

seen that the ratio of Tn to 22
n

decreases dramatically to 0.0156 for n = 5.

n 22
n

Tn Tn=2
2n

1 4 2 0.50

2 16 5 0.3125

3 256 30 0.1172

4 65536 2,288 0.0349

5 4,294,967,296 67,172,352 0.0156

Table 2. Total Number of nn� equivalence classes
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Functions are ordered by their associated minterm lists in lexical order.

The function ordered �rst in each class is chosen as the representative. For

instance, the last class for n = 2 consists of following two functions in terms

of minterm lists: [�m(0; 3); �m(1; 2)], and (0; 3) < (1; 2) in order. Since

�m(0; 3) is the �rst in order, it is thus chosen as the representative for the

class.

Since ROBDDs of nn-equivalent functions are isomorphic by Theorem 2,

to search for counterexamples we begin with the representative f from each

class. If f is a counterexample, we may pursue the functions that are nn-

equivalent to f for more counterexamples by Theorem 3. Theorem 4 tells us

how many counterexamples we may expect to get for each class.

Theorem 3. Suppose f is a counterexample and has the symmetric partition

f(�1); : : : ; (�k)g. Then g is also a counterexample i� g = �f or g is obtained

from f by complementing some or all the �i.

Proof: By Theorem 2, f and g are nn�equivalent, hence they have essentially
the same BDD structure. Thus f and g have the same collection of optimum

orders. Furthermore, it is obvious that g has the same symmetric partition as

f does. Therefore, g is also a counterexample if f is. 2

Example. Let f(x0; x1; x2; x3) = �m(0 1 2 4 9 10 12 15). Then f has

the symmetric partition f(x0) (x1 x2 x3)g. And has a total of six opti-

mum orders giving optimum BDD size 7, namely, < x1 x0 x2 x3 >, <

x1 x0 x3 x2 >, < x2 x0 x1 x3 >, < x2 x0 x3 x1 >, < x3 x0 x1 x2 >,

< x3 x0 x2 x1 >. As it can be seen that no optimum order is symmet-

ric, hence f is a counterexample. By complementing (x0), we get g1 =

f(x0

0; x1; x2; x3) = �m(1 2 4 7 8 9 10 12). By complementing (x1 x2 x3), we get

g2 = f(x0; x
0

1; x
0

2; x
0

3) = �m(3 5 6 7 8 11 13 14). By complementing both (x0)

and (x1 x2 x3), we get g3 = f(x0

0; x
0

1; x
0

2; x
0

3) = �m(0 3 5 6 7 8 11 13 14 15).

Since g1, g2, and g3 all have the same collection of optimum orders and the

same symmetric partition, therefore all of them are all counterexamples.

However, when g is obtained from f by complementing a subset of variables

of some symmetric group, then g may or may not be a counterexample.

Example. Complementing x1 of f in the preceding example to obtain g =

f(x0; x
0

1; x2; x3) = �m(0 4 5 6 8 11 13 14). The function g still has the same

collection of optimum orders as f has, but the symmetric partition of g has

changed to f(x0)(x1)(x2 x3)g. So g is no longer a counterexample.

Example. Nevertheless, now let f(x0; x1; x2; x3; x4) = �m(1 2 3 4 5 6 7 24 25 30).

Function f has symmetric partition f(x0 x1)(x2 x3)(x4)g and is a counterex-

ample. Complementing x0 of f to obtain g = f(x0

0; x1; x2; x3; x4; x5) =

�m(8 9 14 17 18 19 20 21 22 23). The function g has a di�erent symmetric par-

tition f(x0)(x1)(x2 x3)(x4)g as expected. But is now also a counterexample.

The reason is that the collection of four optimum orders are the same for both

f and g, namely, < x2 x4 x3 x0 x1 > < x2 x4 x3 x1 x0 >, < x3 x4 x2 x0 x1 >,

and < x3 x4 x2 x1 x0 >. As it can be seen that the symmetric variables x2
and x3 in the only symmetric group of g which is (x2 x3) are still kept side by
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side. Therefore, g is still a counterexample.

Theorem 4. Suppose function f is a counterexample and functions in the

same nn-equivalent class c that are counterexamples have the maximum size

of symmetric partition k, f(�1); : : : ; (�k)g. Then we can obtain 2k counterex-

amples from the nn-equivalence class c.

Proof: Straightforward from Theorem 3. 2

Example. Repeating the function given in the preceding example, we have:

f(x0; x1; x2; x3; x4) = �m(1 2 3 4 5 6 7 24 25 30). f is a counterexample

with symmetric partition f(x0 x1)(x2 x3)(x4)g of size 3. Hence we can expect

to generate at least 23 = 8 counterexamples in all. After complementing x0
to obtain g = f(x0

0; x1; x2; x3; x4; x5) = �m(8 9 14 17 18 19 20 21 22 23),

with symmetric partition f(x0)(x1)(x2 x3)(x4)g of size 4. We found that g is

also a counterexample. Therefore, we may increase the number of expected

counterexamples from 23 = 8 to 24 = 16.

We now present an outline of the improved search algorithm. Procedure

Find Counterexamples() takes as input the number of variables n of the

boolean functions, and returns as a value a collection of counterexamples C.

Procedure Find Counterexamples (n)

C  empty;

for (all the representatives f from each class of functions of n variables) do

if (f is a counterexample) then

C  C [ ffg;
for (all the nn-equivalent functions g) do

if (g is a counterexample) then

C  C [ fgg;
return (C);

6 Structure and Generation of Counterexamples

In this section, we study the structure of counterexamples under the operations

of join (_), intersection (^) and negation (:). We also give a simple method

for generating more counterexamples from given counterexamples.

Theorem 5. The set of counterexamples of n variables is not closed under

join (_), intersection (^), but is closed under negation (:).

Proof: We prove that the set of counterexamples of n variables is neither

closed under _ nor closed under ^ by contradiction. Assume that the set

of counterexamples of n variables is closed under _ and ^. For the case

of join (_), let f1(x0; x1; x2; x3; x4) = � m(1 2 3 4 5 6 8 16 30 31) and

let f2(x0; x1; x2; x3; x4) = � m(1 2 3 4 5 6 15 23 24 25). Both f1 and f2
are counterexamples and partially symmetric in (x1 x2) and (x3 x4). Then,

(f1 _ f2)(x0; x1; x2; x3; x4) = � m(1 2 3 4 5 6 8 15 16 23 24 25 30 31) is

not a counterexample although it is also partially symmetric in the same

10
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symmetric groups. For the case of intersection (^), let f1(x0; x1; x2; x3) =

� m(0 1 7 11 13 14), and f2(x0; x1; x2; x3) = � m(1 2 4 8 14 15). Both f1 and

f2 are counterexamples and have the same symmetric partition �f1 = �f2 =

f(x0 x1x2); (x3)g. But (f1 ^ f2)(x0; x1; x2; x3) = � m(1 14) is no longer a

counterexample although it still has the same symmetric partition.

Furthermore, since f and �f are symmetric with the same sets of variables

by Theorem 1.3, and have the same BDD structures except for the labels of

terminal nodes, hence the set of counterexamples of n variables is closed under

:. 2

Theorem 6. Suppose f is a counterexample. Then,

1. xf is also a counterexample, where x is a new variable.

Proof: Note that any counterexample f cannot be a constant function 0 or 1.

There is an ROBDD for xf with the structure where the root is labeled with

the new variable x and the positive cofactor is represented by the ROBDD for

f and the negative cofactor is represented by 0.

Therefore, the optimum ROBDD size for xf , denoted as W , is � 1 +

optimum ROBDD size for f , denoted as V . Because f is a counterexample,

optimum symmetric orders for f , gives ROBDD size, denoted as X, � 1 +

optimum ROBDD size for f .

Now xf depends on x since f is not a constant function. So the ROBDD

size for any symmetric order for xf must be at least 1 +X.

Thus W � 1 + V � X < 1 +X. Hence xf is a counterexample. 2

2. xf + x0 is also a counterexample, where x is a new variable.

The proof is similar to the preceding one. 2.

The advantage of x f +x0 is that the symmetry partition of f remain intact.

Repeated applications of the same operation only partition the subsequent new

variables into one symmetric group.

Corollary. For every n � 4, there is a counterexample. (See De�nition 4. for

the de�nition of counterexample.)

Counterexample Not Preserved: Following example shows that while

both f1 and f2 are counterexamples, the operation of u1f1 + u2f2 may not

yield a counterexample.

Example. Let f1(x0; x1; x2; x3) = �m(0 1 6 10 12 15) and f2(x0; x1; x2; x3) =

� m(0 1 7 11 13 14). Both f1 and f2 are counterexamples and have the same

symmetric partition f(x0 x1 x2)(x3)g. Applying the operation u1f1 + u2f2

yields f as follows: f(x0; x1; x2; x3; x4; x5) = �m(1 2 3 5 6 7 26 27 29 31 42 43 45

47 50 51 53 55 57 59 62 63). f has the same symmetric partition but is not a

counterexample.

7 Counterexamples

In this section we report counterexamples. For functions of 3 variables, there

does not exist any counterexample. Counterexamples are found beginning

11
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with functions of 4 variables. There are 80 counterexamples in all for func-

tions of 4 variables and 1262800 counterexamples in all for functions of 5

variables[MMD94].

In none of the counterexamples would a symmetric order make an optimum

order. Meanwhile symmetric orders may have 2 kinds of impact on the worst

orders described as follows: Type 1. None of the symmetric orders is a worst

order. Examples are demonstrated by Counterexample 1 for 5 variables and

Counterexample 2 for 6 variables. Type 2. Some of the symmetric orders

are worst orders. Examples are demonstrated by Counterexample 3 for 5

variables and Counterexample 4 for 6 variables. All the 80 counterexamples

for functions of 4 variables belong to the second type.

For each counterexample, the function is expressed in minterm list form.

The statistics of the optimum/worst orders obtained from each function are

described.

Counterexample 1. f(x0; x1; x2; x3; x4) = �m(1; 2; 3; 4; 5; 6; 7; 24; 25; 30)

(Optimum/Worst) size : 9 / 13 (#Optimum/#Worst) : 4 / 8

The function f is partially symmetric in the two symmetric groups (x0 x1) and

(x2 x3). All the 24 symmetric orders give sub-optimum BDD sizes between

10 and 12, neither the best nor the worst. For example, symmetric order <

x4 x3 x2 x1 x0 > gives ROBDD size 10, and symmetric order< x2 x3 x0 x1 x4 >

gives ROBDD size 12.

Counterexample 2. f(x0; x1; x2; x3; x4; x5) = �m(2; 3; 4; 5; 6; 7; 10; 12; 54; 62).

(Optimum/Worst) size : 10 / 17 (#Optimum/#Worst) : 4 / 8

The function f is symmetric in the variable groups (x0 x1) and (x3 x4). It has

4 optimum orders that yield the optimum ROBDD size 10. In addition, it has

8 worst orders that yield the worst ROBDD size 17.

All the 24 symmetric orders give sub-optimum sizes between 11 and 15, neither

the optimum nor the worst. For example, symmetric order< x5 x2 x0 x1 x4 x3 >

gives ROBDD size 11, and symmetric order < x5 x0 x1 x4 x3 x2 > gives

ROBDD size 15.

Counterexample 3. f(x0; x1; x2; x3; x4) = �m(0; 1; 6; 30; 31)

(Optimum/Worst) size : 8 / 11 (#Optimum/#Worst) : 8 / 24

The function f is partially symmetric in the two symmetric groups (x0 x1) and

(x2 x3). There are a total of 24 symmetric orders. While none of the symmetric

orders give optimum BDD size 8, eight symmetric orders are among the worst

orders which give worst BDD size 11. Remaining 16 symmetric orders give

sub-optimum BDD size 9, for example, symmetric orders < x0 x1 x4 x2 x3 >

and < x4 x3 x2 x1 x0 > are such sub-optimum orders.

As long as variable x4 makes the top level of ROBDD, any permutation

of symmetric variables at the lower levels would cause the worst sized BDD

to be built, for example, < x0 x1 x2 x3 x4 > and < x3 x1 x2 x0 x4 > are two

such symmetric orders among the worst.

12
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Counterexample 4. f(x0; x1; x2; x3; x4; x5) = � m(2; 3; 4; 5; 6; 7; 10; 14; 53; 61)

(Optimum/Worst) size : 9 / 17 (#Optimum/#Worst) : 2 / 8

The function f is partially symmetric in one symmetric group (x0 x1). There

are a total of 240 symmetric orders. While none of the symmetric orders

give optimum BDD size 9, all the worst orders are symmetric orders which

give worst BDD size 17. Remaining 232 symmetric orders give sub-optimum

BDD sizes between 10 and 16. For example, one best symmetric order is

< x4 x5 x3 x2 x1 x0 > which gives BDD size 10.

8 Positive Examples

During the search for counterexamples, we have also found examples such that

symmetric orders make contributions to optimum orders in various degrees.

We describe these various degrees of contributions made by symmetric orders

along with their relations with worst orders with appropriate examples.

� All the symmetric orders are optimum orders as well as worst orders. This

situation holds for totally symmetric functions, such as f(x0; x1; x2) =

x0x1x2,

� All the symmetric orders are optimum orders. And none of the symmetric

orders are worst orders.

Example 6.1 Let f(x0; x1; x2) = x0x1 + x2. f is symmetric in the variable

pair (x0; x1). There are 4 symmetric orders. All the symmetric orders give

optimum BDD size 3. None of the worst orders, which give worst BDD size

4, are symmetric orders.

� Some of the symmetric orders are optimum orders. We may further distin-

guish 3 types of impact that symmetric orders may have on worst orders.

[(1)] Symmetric orders are either optimum orders or sub-optimum orders.

None of the symmetric orders are worst orders.

Example 6.2 f(x0; x1; x2; x3; x4) = �m(1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12)

(Optimum/Worst) size: 7 / 12 (#Optimum/#Worst) : 8 / 8

f is symmetric in the two variable groups (x1; x2) and (x3; x4). There are

24 symmetric orders. Symmetric orders give BDD sizes between 7 and 10.

In this example, all of the eight optimum orders, are also symmetric

orders: 1:< x0 x1 x2 x3 x4 > 2:< x0 x1 x2 x4 x3 > 3:< x0 x2 x1 x3 x4 >

4:< x0 x2 x1 x4 x3 > 5:< x1 x2 x3 x4 x0 > 6:< x1 x2 x4 x3 x0 > 7:<

x2 x1 x3 x4 x0 > 8:< x2 x1 x4 x3 x0 >.

Listed as below, are the eight worst orders but none of them are symmetric

orders: 1:< x3 x1 x0 x2 x4 > 2:< x3 x1 x0 x4 x2 > 3:< x3 x2 x0 x1 x4 >

4:< x3 x2 x0 x4 x1 > 5:< x4 x1 x0 x2 x3 > 6:< x4 x1 x0 x3 x2 > 7:<

x4 x2 x0 x1 x3 > 8:< x4 x2 x0 x3 x1 >.

Some of the symmetric orders give sub-optimum BDDs. For instance, the

symmetric order < x1 x2 x0 x3 x4 > yields a BDD of size 8, and the
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symmetric order < x4 x3 x0 x1 x2 > yields a BDD of size 10.

[(2)] Some of the symmetric orders are worst orders. Some of the symmetric

orders are sub-optimum orders.

Example 6.3 f(x0; x1; x2; x3) = �m(0; 1; 6; 14)

(Optimum/Worst) size : 5 / 8 (#Optimum/#Worst) : 12 / 4

f is symmetric in the variable pair (x1 x2). It has 12 symmetric orders.

Among the 12 symmetric orders, 4 of them are optimum orders, 4 of them

are worst orders, and the remaining 4 of them are sub-optimum orders.

In the following list of twelve optimum orders, it can be seen that four

of optimum orders are symmetric orders, namely, �3, �4, �9, and �10: �1:<

x0 x1 x3 x2 > �2:< x0 x2 x3 x1 > �3:< x0 x3 x1 x2 > �4:< x0 x3 x2 x1 > �5:<

x1 x0 x3 x2 > �6:< x1 x3 x0 x2 > �7:< x2 x0 x3 x1 > �8:< x2 x3 x0 x1 > �9:<

x3 x0 x1 x2 > �10:< x3 x0 x2 x1 > �11:< x3 x1 x0 x2 > �12:< x3 x2 x0 x1 >.

And all the worst orders are symmetric orders: �1:< x1 x2 x0 x3 >

�2:< x1 x2 x3 x0 > �3:< x2 x1 x0 x3 > �4:< x2 x1 x3 x0 >.

The remaining four symmetric orders: < x0 x1 x2 x3 >, < x0 x2 x1 x3 >,

< x3 x1 x2 x0 >, and < x3 x2 x1 x0 >, all yield sub-optimum BDDs of the

same one size 6.

[(3)] Symmetric orders are either optimum orders or worst orders. No sym-

metric orders are sub-optimum orders. One such example is the function

given in Example 2.1.

9 Conclusions

We have shown that counterexamples exist for the conjecture being studied

for every n � 4. Hence the conjecture stating that symmetric variables gather

in at least one of the optimum orders does not hold in general.

Nevertheless, the impact of symmetric variables on the optimality of vari-

able orders is far from conclusive. Symmetric orders of a function f can give

corresponding BDDs optimum size, sub-optimum size, and/or the worst size.

Symmetric orders may be optimum orders just as well as they may be worst

orders or sub-optimum orders.

For more counterexamples, the interested reader may refer to the Appendix

1. We have computed the maximum distance between the the best BDD size

and the worst BDD size that symmetric orders may yield for functions of vari-

ables 3, 4, and 5. The results are reported in Appendix 2. We hope this study

would aid in future research on heuristics for optimum/good variable orders.

The alert reader may have noticed that in all the counterexamples listed here,

there is a symmetric order with ROBDD size equal to 1 + optimal ROBDD

size. It would be interesting to come up with counterexamples where the sizes

di�er by more than one, or to prove that there is always a symmetric order

with ROBDD size equal to c+ optimal ROBDD size, where c is independent

of n, or even that there is always one symmetric order with ROBDD size equal
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to c(optimal ROBDD size).

Appendix 1.

Each row in the following two tables lists a counterexample. Each counterex-

ample is speci�ed with the number of variables, in the �rst column labeled

n, and the list of minterms, in the second column labeled f(x0; : : : ; xn) =

� m(: : :). Each counterexample is a partially symmetric function and has its

symmetric groups speci�ed in the third column, labeled groups. The fourth

column, labeled sym:ord0s (b=w), states the best and worst BDD sizes given

by symmetric orders. The �fth, labeled (o=w), states the optimum and worst

BDD sizes. The last column, labeled #(o=w), states the number of optimum

and worst orders.

sym: ord
0
s o=w

n f(x0; : : : ; xn) = � m(: : :) groups b=w #(o=w)

5 (1 2 3 4 5 6 7 24 26 29) (x0 x1)(x2 x4) 10 / 12 9 / 13 4 / 8

5 (1 2 3 4 5 6 8 11 13 14) (x2 x3 x4) 9 / 11 8 / 13 12 / 12

5 (1 2 3 4 5 6 9 10 12 15) (x2 x3 x4) 9 / 11 8 / 13 12 / 12

5 (1 2 3 4 5 8 16 27 29 31) (x0 x1)(x2 x3) 12 / 13 11 / 14 20 / 26

6 (2 3 4 5 6 7 8 48 55 63) (x0 x1)(x3 x4) 13 / 18 12 / 20 4 / 24

6 (2 3 4 5 6 7 9 49 54 62) (x0 x1)(x3 x4) 13 / 18 12 / 20 4 / 24

6 (2 3 4 5 6 7 10 12 55 63) (x0 x1)(x3 x4) 11 / 16 10 / 18 4 / 16

6 (2 3 4 5 6 7 11 13 54 62) (x0 x1)(x3 x4) 11 / 16 10 / 18 4 / 16

6 (2 3 4 5 6 7 11 13 55 63) (x0 x1)(x3 x4) 11 / 15 10 / 17 4 / 8

Table 3. Counterexamples for which no symmetric orders are worst orders.
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sym: ord
0
s

n f(x0; : : : ; xn) = � m(: : :) groups b=w o=w #(o=w)

5 (1 2 3 4 5 6 8 16 30 31) (x0 x1)(x2 x3) 11 / 13 10 / 13 4 / 40

5 (1 2 3 4 5 6 15 23 24 25) (x0 x1)(x2 x3) 11 / 13 10 / 13 4 / 40

5 (1 2 3 4 5 7 14 22 24 29) (x0 x1) 12 / 15 11 / 15 4 / 12

5 (1 2 3 4 5 8 9 22 24 25) (x2 x3) 10 / 14 9 / 14 6 / 16

5 (1 2 3 4 5 8 16 26 29 30) (x0 x1) 12 / 15 11 / 15 4 / 8

6 (2 3 4 5 6 7 10 14 52 60) (x0 x1) 10 / 17 9 / 17 2 / 8

6 (2 3 4 5 6 7 10 14 60 62) (x0 x1) 10 / 17 9 / 17 2 / 8

6 (2 3 4 5 6 7 11 15 53 61) (x0 x1) 10 / 17 9 / 17 2 / 8

6 (2 3 4 5 6 7 12 14 56 60) (x0 x1) 10 / 17 9 / 17 2 / 8

6 (2 3 4 5 6 7 13 15 50 58) (x0 x1) 10 / 17 9 / 17 2 / 8

Table 4. Counterexamples for which some symmetric orders are worst orders.

Appendix 2.

We have measured the distances from the worst ROBDD sizes associated

with symmetric orders to the optimum ROBDD sizes for all the functions of

3, 4, and 5 variables respectively and have obtained following results.

In the case of functions of 3 variables, the maximum distance is 1. An

instance is found in the function f(x y z) = xy + y0z + yz0 of Example 2.1,

where one of the worst symmetric orders, such as < y z x >, yields BDD size 5

and the optimum BDD size of the function is 4. The sizes of BDDs associated

with each variable order are listed in Table 1 above.

As for functions of 4 variables, the maximum distance is 4. An example is

the following partially symmetric function:

f(x0; x1; x2; x3) = �m(0; 1; 2; 3; 4; 7; 12; 15)

f is symmetric in the variables x2 and x3, and is not a counterexample. Its

worst symmetric orders, such as < x1x2x3x0 >, yield BDD size 9 and its

optimum BDD size is 5. Thus, the maximum distance is 4.

As for functions of 5 variables, our computation has not �nished with all

the functions due to time limit. Yet the maximum distance found so far is 9.

An example is given by the the following partially symmetric function:

f(x0; x1; x2; x3; x4) = �m(0; 1; 2; 3; 4; 5; 10; 14; 18; 22; 24; 25; 26; 27).

f is symmetric in the x0 and x1. While not being a counterexample either,

one of its worst symmetric orders < x3 x0 x1 x2 x4 > gives ROBDD size 16

and its optimum ROBDD size is 7. Therefore, the distance is 9.
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