Available online at www.sciencedirect.com
SciencédDIRECT。
TOPOLOGY
AND ITS
APPLICATIONS

On the cellular decomposition and the Lusternik-Schnirelmann category of Spin(7)

Norio Iwase ${ }^{\text {a,1 }}$, Mamoru Mimura ${ }^{\text {b }}$, Tetsu Nishimoto ${ }^{\text {c,* }}$
${ }^{\text {a }}$ Faculty of Mathematics, Kyushu University, Ropponmatsu Fukuoka 810-8560, Japan
${ }^{\text {b }}$ Department of Mathematics, Faculty of Science, Okayama University,
3-1 Tsushima-naka, Okayama 700-8530, Japan
c Department of Welfare Business, Kinki Welfare University, Fukusaki-cho, Hyogo 679-2217, Japan

Received 4 December 2002; received in revised form 2 February 2003

Abstract

We give a cellular decomposition of the compact connected Lie group Spin(7). We also determine the $\mathrm{L}-\mathrm{S}$ categories of $\operatorname{Spin}(7)$ and $\operatorname{Spin}(8)$. © 2003 Elsevier B.V. All rights reserved.

MSC: primary 55M30; secondary 57N60, 22E20
Keywords: Lusternik-Schnirelmann category; Cellular decomposition; Lie group

1. Introduction

In this paper, we assume that a space has the homotopy type of a CW-complex.
Whitehead [15] constructed a cellular decomposition of $\mathrm{SO}(n)$ using the natural inclusion map $\mathbb{R} P^{n-1} \rightarrow \mathrm{SO}(n)$ (see also [7]). Yokota [16-18] constructed cellular decompositions of $\mathrm{SU}(n), \mathrm{U}(n)$ and $\mathrm{Sp}(n)$ according to his principle that the number of the cells in the decomposition should be minimal, where the decomposition of $\operatorname{SU}(n)$ is constructed by making use of the natural inclusion map $\Sigma \mathbb{C} P^{n-1} \rightarrow \mathrm{SU}(n)$; see Remark 2.4(2). Araki [1] gave a cellular decomposition of $\operatorname{Spin}(n)$ using the decomposition

[^0]of $\mathrm{SO}(n)$ and the double covering $\operatorname{Spin}(n) \rightarrow \mathrm{SO}(n)$, where the number of the cells of the decomposition is not minimal, that is, it does not satisfy the Yokota principle. One of our objects is to construct the cellular decomposition of $\operatorname{Spin}(7)$ so that it satisfy the Yokota principle.

Among the exceptional Lie groups, the second and third authors [8] constructed a cellular decomposition of G_{2} which has the minimum number of the cells in the decomposition, that is, it satisfies the Yokota principle.

Recall that we have the following isomorphisms:

$$
\begin{array}{ll}
\operatorname{Spin}(3) \cong S^{3}, & \operatorname{Spin}(4) \cong S^{3} \times S^{3}, \\
\operatorname{Spin}(5) \cong \operatorname{Sp}(2), & \operatorname{Spin}(6) \cong \operatorname{SU}(4)
\end{array}
$$

Thus $\operatorname{Spin}(7)$ is the first non-trivial case in determining the cellular decomposition satisfying the Yokota principle, which is one of our purposes.

The other purpose is to determine the Lusternik-Schnirelmann category of Spin(7) by using the cellular decomposition.

The Lusternik-Schnirelmann category, cat X, of a space X is the least integer n such that X is the union of $n+1$ open subsets, each of which is contractible in X. Whitehead [13] showed that cat $X \leqslant n$ if and only if the diagonal map $\Delta_{n+1}: X \rightarrow \prod^{n+1} X$ is homotopic to a composition map

$$
X \rightarrow \mathrm{~T}^{n+1}(X) \hookrightarrow \prod^{n+1} X,
$$

where $\mathrm{T}^{n+1}(X)$ is the fat wedge

$$
\mathrm{T}^{n+1}(X)=\left\{\left(x_{1}, \ldots, x_{n+1}\right) \in X^{n+1} \mid \text { some } x_{i} \text { is the base point }\right\}
$$

and $\mathrm{T}^{n+1}(X) \hookrightarrow \prod^{n+1} X$ is the inclusion map.
The weak Lusternik-Schnirelmann category, w cat X, is the least integer n such that the reduced diagonal map

$$
\bar{\Delta}_{n+1}: X \rightarrow \bigwedge^{n+1} X=\prod^{n+1} X / \mathrm{T}^{n+1}(X)
$$

is trivial. Then it is easy to see that $w \mathrm{cat} X \leqslant \operatorname{cat} X$ using Whitehead's characterization [13] of the Lusternik-Schnirelmann category.

The strong Lusternik-Schnirelmann category, Cat X, is the least integer n such that there exists a space X^{\prime} which is homotopy equivalent to X and is covered by $n+1$ open subsets contractible in themselves. Cat X is closely related with cat X, and Ganea and Takens [12] showed that

$$
\text { cat } X \leqslant \text { Cat } X \leqslant \operatorname{cat} X+1 \text {. }
$$

Ganea [3] showed that Cat X is equal to the invariant which is the least integer n such that there are n cofibre sequences $A_{i} \rightarrow X_{i-1} \rightarrow X_{i}, 1 \leqslant i \leqslant n$, with $X_{0}=*$ and X_{n} homotopy equivalent to X.

The Lusternik-Schnirelmann category of some Lie groups has been determined, such as $\operatorname{cat}(\mathrm{U}(n))=n$ and $\operatorname{cat}(\mathrm{SU}(n))=n-1$ by Singhof [10], $\operatorname{cat}(\operatorname{Sp}(2))=3$ by Schweitzer [9],
$\operatorname{cat}(\operatorname{Sp}(3))=5$ by the first and second named authors [4], and Fernández-Suárez et al. $[2]$, $\operatorname{cat}(S O(2))=1, \operatorname{cat}(S O(3))=3, \operatorname{cat}(S O(4))=4$, $\operatorname{cat}(S O(5))=8$ by James and Singhof [5]. A simple argument gives that $\operatorname{cat}\left(\mathrm{G}_{2}\right)=4$ (see, for example, [4]). Among these cases it is shown that w cat $G=$ cat $G=\mathrm{Cat} G$ for $G=\operatorname{Sp}(n), \mathrm{G}_{2}$. As for $G=\mathrm{SO}(n)$ for $n=2,3,4,5$, one can also show the equality. We can observe that $\operatorname{Cat}(\mathrm{SU}(n)) \leqslant n-1$ by modifying the categorical open subsets given by Singhof [10] so as to be contractible, e.g., by adding paths among contractible connected components of each categorical open subset and hence cat $G=\operatorname{Cat} G$. Thus we have w cat $G=$ cat $G=\operatorname{Cat} G$ for any G when cat G is determined.

Theorem 1.1. We have $w \operatorname{cat}(\operatorname{Spin}(7))=\operatorname{cat}(\operatorname{Spin}(7))=\operatorname{Cat}(\operatorname{Spin}(7))=5$.

Since $\operatorname{Spin}(8)$ is homeomorphic to $\operatorname{Spin}(7) \times S^{7}$, we obtain the following corollary.

Corollary 1.2. We have wcat $(\operatorname{Spin}(8))=\operatorname{cat}(\operatorname{Spin}(8))=\operatorname{Cat}(\operatorname{Spin}(8))=6$.

The paper is organized as follows. In Section 2 we give a cellular decomposition of Spin(7) such that $\operatorname{Spin}(7)$ contains a subgroup $\operatorname{SU}(4)$, which turns out to be useful for determining the Lusternik-Schnirelmann category of Spin(7). In Section 3 we give a cone-decomposition of $\mathrm{SU}(4)$, which gives rise to the Lusternik-Schnirelmann category of $\operatorname{Spin}(7)$ in Section 4.

2. The cellular decomposition of Spin(7)

In this section, we use the notation in [8]. Let \mathfrak{C} be the Cayley algebra. (We adopt the definition of the Cayley algebra from [19].) $\mathrm{SO}(8)$ acts on \mathfrak{C} naturally since $\mathfrak{C} \cong \mathbb{R}^{8}$ as an \mathbb{R}-module. We regard $\mathrm{SO}(7)$ as the subgroup of $\mathrm{SO}(8)$ fixing e_{0}, the unit of \mathfrak{C}. As is well known, the exceptional Lie group G_{2} is defined by

$$
\mathrm{G}_{2}=\{g \in \mathrm{SO}(7) \mid g(x) g(y)=g(x y), x, y \in \mathfrak{C}\}=\operatorname{Aut}(\mathfrak{C})
$$

According to [19], for each $g \in \operatorname{SO}(7)$, there is a unique element \tilde{g} up to sign such that $g(x) \tilde{g}(y)=\tilde{g}(x y)$, and $\operatorname{Spin}(7)=\{\tilde{g} \mid g \in \operatorname{SO}(7)\}$. If $g \in \mathrm{G}_{2}$, then $g=\tilde{g}$, so G_{2} is a subgroup of $\operatorname{Spin}(7)$. Observe that the algebra generated by e_{1} in \mathfrak{C} is isomorphic to \mathbb{C}. $\mathrm{SU}(4)$ acts on \mathfrak{C} naturally, since $\mathfrak{C} \cong \mathbb{C}^{4}$ as a \mathbb{C}-module whose basis is $\left\{e_{0}, e_{2}, e_{4}, e_{6}\right\}$. We regard $\mathrm{SU}(3)$ as the subgroup of $\mathrm{SU}(4)$ fixing e_{0} and also as the subgroup of G_{2} fixing e_{1}.

Let $D^{i}=\left\{\left(x_{1}, \ldots, x_{i}\right) \in \mathbb{R}^{i} \mid \sum x_{i}^{2} \leqslant 1\right\}$. We define four maps:

$$
\begin{array}{ll}
A: D^{3} \rightarrow \mathrm{SO}(8), & B: D^{2} \rightarrow \mathrm{SO}(8), \\
C: D^{1} \rightarrow \mathrm{SO}(8), & D: D^{2} \rightarrow \mathrm{SO}(8)
\end{array}
$$

as follows:

$$
\begin{aligned}
& A\left(x_{1}, x_{2}, x_{3}\right)=\left(\begin{array}{cccccccc}
1 & & & & & & & \\
& 1 & & & & & & \\
& & 1 & & & & & \\
& & & 1 & & & & \\
& & & & 1-2 X^{2} & -2 x_{1} X & -2 x_{2} X & -2 x_{3} X \\
& & & & 2 x_{1} X & 1-2 X^{2} & 2 x_{3} X & -2 x_{2} X \\
& & & & 2 x_{2} X & -2 x_{3} X & 1-2 X^{2} & 2 x_{1} X \\
& & & & 2 x_{3} X & 2 x_{2} X & -2 x_{1} X & 1-2 X^{2}
\end{array}\right) \text {, } \\
& B\left(y_{1}, y_{2}\right)=\left(\begin{array}{cccccccc}
1 & & & & & & & \\
& 1 & & & & & & \\
& & y_{1} & -y_{2} & -Y & 0 & & \\
& & y_{2} & y_{1} & 0 & -Y & & \\
& & Y & 0 & y_{1} & y_{2} & & \\
& & 0 & Y & -y_{2} & y_{1} & & \\
& & & & & & 1 & \\
& & & & & & & 1
\end{array}\right) \text {, } \\
& C\left(z_{1}\right)=\left(\begin{array}{cccccccc}
1 & & & & & & & \\
& z_{1} & 0 & -Z & & & & \\
& 0 & 1 & 0 & & & & \\
& Z & 0 & z_{1} & & & & \\
& & & & 1 & & & \\
& & & & & z_{1} & 0 & -Z \\
& & & & & 0 & 1 & 0 \\
& & & & & Z & 0 & z_{1}
\end{array}\right) \text {, } \\
& D\left(w_{1}, w_{2}\right)=\left(\begin{array}{cccccccc}
w_{1} & -w_{2} & -W & 0 & & & \\
w_{2} & w_{1} & 0 & -W & & & & \\
W & 0 & w_{1} & w_{2} & & & & \\
0 & W & -w_{2} & w_{1} & & & & \\
& & & & 1 & & & \\
& & & & & 1 & & \\
& & & & & & 1 & \\
& & & & & & & 1
\end{array}\right) \text {, }
\end{aligned}
$$

where we put for simplicity

$$
\begin{array}{ll}
X=\sqrt{1-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}}, & Y=\sqrt{1-y_{1}^{2}-y_{2}^{2}} \\
Z=\sqrt{1-z_{1}^{2}}, & W=\sqrt{1-w_{1}^{2}-w_{2}^{2}}
\end{array}
$$

We prepare the following two lemmas.
Lemma 2.1. The elements $A\left(x_{1}, x_{2}, x_{3}\right), B\left(y_{1}, y_{2}\right), C\left(z_{1}\right)$ and $D\left(w_{1}, w_{2}\right)$ belong to $\operatorname{Spin}(7)$.

Proof. Note that the elements $A\left(x_{1}, x_{2}, x_{3}\right), B\left(y_{1}, y_{2}\right)$ and $C\left(z_{1}\right)$ are exactly the same as in [8] so they belong to G_{2} (see [8] for their properties). In the proof, we denote $D\left(w_{1}, w_{2}\right)$ simply by D. Obviously elements in the image of A and D commute with each other. Let D^{\prime} be the matrix

$$
\left(\begin{array}{cccccccc}
1 & & & & & & & \\
& 1 & & & & & & \\
& & 1 & & & & & \\
& & & 1 & & & & \\
& & & & w_{1} & -w_{2} & W & 0 \\
& & & & w_{2} & w_{1} & 0 & -W \\
& & & & -W & 0 & w_{1} & -w_{2} \\
& & & & 0 & W & w_{2} & w_{1}
\end{array}\right) .
$$

Then we can show by a tedious calculation that $D^{\prime} x D y=D(x y)$ for any $x, y \in \mathfrak{C}$, which gives us the result.

Let $\varphi_{3}, \varphi_{5}, \varphi_{6}$ and φ_{7} be maps

$$
\begin{aligned}
& \varphi_{3}: D^{3} \rightarrow \operatorname{Spin}(7), \\
& \varphi_{5}: D^{3} \times D^{2} \rightarrow \operatorname{Spin}(7), \\
& \varphi_{6}: D^{3} \times D^{2} \times D^{1} \rightarrow \operatorname{Spin}(7), \\
& \varphi_{7}: D^{3} \times D^{2} \times D^{2} \rightarrow \operatorname{Spin}(7)
\end{aligned}
$$

respectively defined by the equalities

$$
\begin{aligned}
& \varphi_{3}(\mathbf{x})=A(\mathbf{x}) \\
& \varphi_{5}(\mathbf{x}, \mathbf{y})=B(\mathbf{y}) A(\mathbf{x}) B(\mathbf{y})^{-1} \\
& \varphi_{6}(\mathbf{x}, \mathbf{y}, \mathbf{z})=C(\mathbf{z}) B(\mathbf{y}) A(\mathbf{x}) B(\mathbf{y})^{-1} C(\mathbf{z})^{-1}, \\
& \varphi_{7}(\mathbf{x}, \mathbf{y}, \mathbf{w})=D(\mathbf{w}) B(\mathbf{y}) A(\mathbf{x}) B(\mathbf{y})^{-1} D(\mathbf{w})^{-1},
\end{aligned}
$$

where $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right), \mathbf{y}=\left(y_{1}, y_{2}\right), \mathbf{z}=\left(z_{1}\right)$ and $\mathbf{w}=\left(w_{1}, w_{2}\right)$. As noted above φ_{i} for $i=3,5,6$ maps into G_{2} and hence into $\operatorname{Spin}(7)$. So does φ_{7}, since D belongs $\operatorname{Spin}(7)$. We define sixteen cells e^{j} for $j=0,3,5,6,7,8,9,10,11,12,13,14,15,16,18,21$ respectively as follows:

$$
\begin{aligned}
& e^{0}=\{1\}, \quad e^{3}=\operatorname{Im} \varphi_{3}, \quad e^{5}=\operatorname{Im} \varphi_{5}, \quad e^{6}=\operatorname{Im} \varphi_{6}, \quad e^{7}=\operatorname{Im} \varphi_{7}, \\
& e^{8}=e^{5} e^{3}, \quad e^{9}=e^{6} e^{3}, \quad e^{10}=e^{7} e^{3}, \quad e^{11}=e^{6} e^{5}, \quad e^{12}=e^{7} e^{5}, \\
& e^{13}=e^{6} e^{7}, \quad e^{14}=e^{6} e^{5} e^{3}, \quad e^{15}=e^{7} e^{5} e^{3}, \quad e^{16}=e^{6} e^{7} e^{3}, \\
& e^{18}=e^{6} e^{7} e^{5}, \quad e^{21}=e^{6} e^{7} e^{5} e^{3},
\end{aligned}
$$

where the product of two (or more) cells is defined by using the multiplication of $\operatorname{Spin}(7)$. For later use we observe that φ_{i} for $i=3,5,7$ maps into $\operatorname{SU}(4)$. In fact, the matrices A, B, D belong to $\mathrm{SU}(4)$ by their definition.

Let S^{7} be the unit sphere of \mathfrak{C}. Then we have a principal bundle over it:

$$
\mathrm{SU}(3) \rightarrow \mathrm{SU}(4) \xrightarrow{p_{0}} S^{7},
$$

where $p_{0}(g)=g e_{0}$.
Lemma 2.2. Let $V^{7}=D^{3} \times D^{2} \times D^{2}$. Then the composite map $p_{0} \varphi_{7}:\left(V^{7}, \partial V^{7}\right) \rightarrow$ $\left(S^{7}, e_{0}\right)$ is a relative homeomorphism.

Proof. We express the map $\left.\left(p_{0} \varphi_{7}\right)\right|_{V^{7} \backslash \partial V^{7}}$ as follows:

$$
\left(\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5} \\
a_{6} \\
a_{7}
\end{array}\right)=D(\mathbf{w}) B(\mathbf{y}) A(\mathbf{x}) B(\mathbf{y})^{-1} D(\mathbf{w})^{-1} e_{0}=\left(\begin{array}{c}
1-2 X^{2} Y^{2} W^{2} \\
2 x_{1} X Y^{2} W^{2} \\
2\left(w_{1} X-x_{1} w_{2}\right) X Y^{2} W \\
-2\left(w_{2} X+x_{1} w_{1}\right) X Y^{2} W \\
2\left(-y_{1} X+x_{1} y_{2}\right) X Y W \\
2\left(y_{2} X+x_{1} y_{1}\right) X Y W \\
2 x_{2} X Y W \\
2 x_{3} X Y W
\end{array}\right)
$$

and hence we have

$$
\left(\begin{array}{c}
1-a_{0} \\
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5} \\
a_{6} \\
a_{7}
\end{array}\right)=2 X Y W\left(\begin{array}{c}
X Y W \\
x_{1} Y W \\
\left(w_{1} X-x_{1} w_{2}\right) Y \\
-\left(w_{2} X+x_{1} w_{1}\right) Y \\
-y_{1} X+x_{1} y_{2} \\
y_{2} X+x_{1} y_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
$$

By a tedious calculation we can obtain that

$$
\begin{aligned}
& x_{1}=\frac{a_{1} \sqrt{\left(1-a_{0}\right)^{2}+a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}+a_{5}^{2}}}{\sqrt{2\left(1-a_{0}\right)\left(\left(1-a_{0}\right)^{2}+a_{1}^{2}\right)}}, \\
& x_{2}=\frac{a_{6}}{\sqrt{2\left(1-a_{0}\right)}}, \\
& x_{3}=\frac{a_{7}}{\sqrt{2\left(1-a_{0}\right)},} \\
& y_{1}=\frac{a_{1} a_{5}-\left(1-a_{0}\right) a_{4}}{\sqrt{\left(\left(1-a_{0}\right)^{2}+a_{1}^{2}\right)\left(\left(1-a_{0}\right)^{2}+a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}+a_{5}^{2}\right)}},
\end{aligned}
$$

$$
\begin{aligned}
& y_{2}=\frac{a_{1} a_{4}+\left(1-a_{0}\right) a_{5}}{\sqrt{\left(\left(1-a_{0}\right)^{2}+a_{1}^{2}\right)\left(\left(1-a_{0}\right)^{2}+a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}+a_{5}^{2}\right)}}, \\
& w_{1}=\frac{\left(1-a_{0}\right) a_{2}-a_{1} a_{3}}{\sqrt{\left(\left(1-a_{0}\right)^{2}+a_{1}^{2}\right)\left(\left(1-a_{0}\right)^{2}+a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)}}, \\
& w_{2}=\frac{-a_{1} a_{2}-\left(1-a_{0}\right) a_{3}}{\sqrt{\left(\left(1-a_{0}\right)^{2}+a_{1}^{2}\right)\left(\left(1-a_{0}\right)^{2}+a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)}}
\end{aligned}
$$

The details of checking are left to the reader. Thus the inverse map has been constructed, which completes the proof.

In a similar way to that of Section 3 of [8], we can obtain the following theorem, which is essentially the same as Yokota's decomposition [16].

Proposition 2.3. $e^{0} \cup e^{3} \cup e^{5} \cup e^{7} \cup e^{8} \cup e^{10} \cup e^{12} \cup e^{15}$ thus obtained is a cellular decomposition of $\mathrm{SU}(4)$.

Proof. First we show that $\stackrel{i}{e}^{i} \cap \dot{e}^{j}=\emptyset$ if $i \neq j$. We consider the following three cases:
(1) For the case where $i, j \in\{0,3,5,8\}$; both cells e^{i} and e^{j} are in $\mathrm{SU}(3)$ and $e^{0} \cup e^{3} \cup$ $e^{5} \cup e^{8}$ is a cellular decomposition of $\mathrm{SU}(3)$; see [8, Proposition 3.2]. Then we have $\stackrel{\circ}{e}^{i} \cap \stackrel{\circ}{e}^{j}=\emptyset$ if $i \neq j$.
(2) For the case where $i \in\{0,3,5,8\}$ and $j \in\{7,10,12,15\}$; we have $p_{0}\left(e^{i}\right)=\left\{e_{0}\right\}$ and $p_{0}\left(\stackrel{\circ}{e}^{j}\right)=S^{7} \backslash\left\{e_{0}\right\}$. Then we have $\stackrel{\AA}{e}^{i} \cap \dot{e}^{j}=\emptyset$.
(3) For the case where $i, j \in\{7,10,12,15\}$; suppose that $A \in \stackrel{\circ}{e}^{i} \cap \stackrel{\circ}{e}^{j}$. Since $\stackrel{\circ}{e}^{i}=\stackrel{\circ}{e}^{7} \stackrel{e}{e}^{i-7}$ and $\dot{e}^{j}=\dot{e}^{7} \stackrel{\circ}{e}^{j-7}$, we can put $A=A_{1} A_{2}=A_{1}^{\prime} A_{2}^{\prime}$ where $A_{1}, A_{1}^{\prime} \in \dot{e}^{7}, A_{2} \in \dot{e}^{i-7}$ and $A_{2}^{\prime} \in \dot{e}^{j-7}$. We have $A_{1}=A_{1}^{\prime}$, since $p_{0}\left(A_{1}\right)=p_{0}\left(A_{1} A_{2}\right)=p_{0}\left(A_{1}^{\prime} A_{2}^{\prime}\right)=p_{0}\left(A_{1}^{\prime}\right)$ and $\left.p_{0}\right|_{e^{7}}$ is monic. Then we have $A_{2}=A_{2}^{\prime}$ and the first case shows that $i-7=j-7$, that is, $i=j$. Thus $\stackrel{\circ}{e}^{i} \cap \stackrel{\odot}{e}^{j}=\emptyset$ if $i \neq j$.

Next, we will check that the boundaries of the cells are included in the lowerdimensional cells. In the proof of Proposition 3.2 [8], it is proved that the boundaries \dot{e}^{3}, \dot{e}^{5} and \dot{e}^{8} are included in the lower-dimensional cells. Observe that the boundary \dot{e}^{7} is the union of the following three sets:

$$
\begin{aligned}
\dot{e}^{7}= & \left\{D B A B^{-1} D^{-1} \mid A \in A\left(\dot{D}^{3}\right), B \in B\left(D^{2}\right), D \in D\left(D^{2}\right)\right\}, \\
& \cup\left\{D B A B^{-1} D^{-1} \mid A \in A\left(D^{3}\right), B \in B\left(\dot{D}^{2}\right), D \in D\left(D^{2}\right)\right\}, \\
& \cup\left\{D B A B^{-1} D^{-1} \mid A \in A\left(D^{3}\right), B \in B\left(D^{2}\right), D \in D\left(\dot{D}^{2}\right)\right\} .
\end{aligned}
$$

The first set contains only the identity element, since A is the identity element. It is easy to see that the second set is contained in e^{3} and that the third set is contained in e^{5}. We have $\dot{e}^{10}=e^{7} \dot{e}^{3} \cup \dot{e}^{7} e^{3} \subset e^{7} e^{0} \cup e^{5} e^{3}=e^{7} \cup e^{8}$. We also have $\dot{e}^{12}=\dot{e}^{7} e^{5} \cup e^{7} \dot{e}^{5} \subset e^{5} e^{5} \cup e^{7} e^{3}=$ $e^{8} \cup e^{10}$, and $\dot{e}^{15}=\dot{e}^{7} e^{5} e^{3} \cup e^{7} \dot{e}^{5} e^{3} \cup e^{7} e^{5} \dot{e}^{3} \subset e^{5} e^{5} e^{3} \cup e^{7} e^{3} e^{3} \cup e^{7} e^{5}=e^{8} \cup e^{10} \cup e^{12}$.

Finally, we will show that the inclusion map $e^{0} \cup e^{3} \cup e^{5} \cup e^{7} \cup e^{8} \cup e^{10} \cup e^{12} \cup e^{15} \rightarrow$ $\mathrm{SU}(4)$ is epic. Let $g \in \mathrm{SU}(4)$. If $p_{0}(g)=e_{0}$, then g is contained in $\mathrm{SU}(3)=e^{0} \cup e^{3} \cup$ $e^{5} \cup e^{8}$. Suppose that $p_{0}(g) \neq e_{0}$. There is an element $h \in e^{7}$ such that $p_{0}(h)=p_{0}(g)$. Thus we have $h^{-1} g \in \mathrm{SU}(3)=e^{0} \cup e^{3} \cup e^{5} \cup e^{8}$, since $p_{0}\left(h^{-1} g\right)=e_{0}$. Therefore we have $g \in h\left(e^{0} \cup e^{3} \cup e^{5} \cup e^{8}\right) \subset e^{0} \cup e^{3} \cup e^{5} \cup e^{7} \cup e^{8} \cup e^{10} \cup e^{12} \cup e^{15}$.

Remark 2.4.

(1) We regard $\mathrm{SO}(6)$ as the subgroup of $\mathrm{SO}(7)$ fixing e_{1}. Let $\pi: \operatorname{Spin}(6) \rightarrow \mathrm{SO}(6)$ be the double covering. Then, according to the proof of Lemma $2.1, \pi(\mathrm{SU}(4)) \subset \mathrm{SO}(6)$ so that $\left.\pi\right|_{S U(4)}: \mathrm{SU}(4) \rightarrow \mathrm{SO}(6)$ is the double covering.
(2) According to [18], there is a subspace $\Sigma \mathbb{C} P^{n}$ of $\operatorname{SU}(n+1)$ which consists of the elements

$$
M\left(\begin{array}{cccc}
1 & & & \\
& \ddots & & \\
& & 1 & \\
& & & e^{2 i \theta}
\end{array}\right) M^{-1}\left(\begin{array}{llll}
1 & & & \\
& \ddots & & \\
& & 1 & \\
& & & e^{-2 i \theta}
\end{array}\right)
$$

for any elements M in $\mathrm{SU}(n+1)$. Obviously, the subcomplex $e^{0} \cup e^{3}$ is $\mathrm{SU}(2)=$ $\Sigma \mathbb{C} P^{1}$. It is easy to see that the subcomplex $e^{0} \cup e^{3} \cup e^{5}$ is homeomorphic to $\Sigma \mathbb{C} P^{2}$, since we have

$$
\begin{aligned}
B A B^{-1} & =B M\left(\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & 1 & \\
& & & e^{2 i \theta}
\end{array}\right) M^{-1}\left(\begin{array}{lllll}
1 & & & & \\
& 1 & & & \\
& & 1 & \\
& & & e^{-2 i \theta}
\end{array}\right) B^{-1} \\
& =B M\left(\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & 1 & \\
& & & e^{2 i \theta}
\end{array}\right) M^{-1} B^{-1}\left(\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & 1 & \\
& & & e^{-2 i \theta}
\end{array}\right)
\end{aligned}
$$

for some $M \in \mathrm{SU}(2)$. In a similar way, the subcomplex $e^{0} \cup e^{3} \cup e^{5} \cup e^{7}$ is homeomorphic to $\Sigma \mathbb{C} P^{3}$. Thus the cellular decomposition of $\mathrm{SU}(4)$ is essentially the same as Yokota's decomposition. Moreover, according to Proposition 2.6 of Chapter IV of [11], we have $e^{2 i+1} e^{2 j+1} \subset e^{2 j+1} e^{2 i+1}$ for $i<j$; in fact we have $e^{2 i+1} e^{2 j+1}=$ $e^{2 j+1} e^{2 i+1}$ (see [20]).

Let S^{6} be the unit sphere of \mathbb{R}^{7} whose basis is $\left\{e_{i} \mid 1 \leqslant i \leqslant 7\right\}$. We consider the following diagram

where the horizontal lines are principal fibre bundles and $p(g)=\pi(g) e_{1}$.
Lemma 4.1 of [8] implies the following lemma immediately.
Lemma 2.5. Put $V^{6}=D^{3} \times D^{2} \times D^{1}$. Then the composite map $p \varphi_{6}:\left(V^{6}, \partial V^{6}\right) \rightarrow$ $\left(S^{6},\left\{e_{1}\right\}\right)$ is a relative homeomorphism.

Now we can state one of our main results.
Theorem 2.6. The cell complex $e^{0} \cup e^{3} \cup e^{5} \cup e^{6} \cup e^{7} \cup e^{8} \cup e^{9} \cup e^{10} \cup e^{11} \cup e^{12} \cup e^{13} \cup$ $e^{14} \cup e^{15} \cup e^{16} \cup e^{18} \cup e^{21}$ gives a cellular decomposition of $\operatorname{Spin}(7)$.

Proof. First we show that $\stackrel{i}{e}^{i} \cap \dot{e}^{j}=\emptyset$ if $i \neq j$. We consider the following three cases:
(1) For the case where $i, j \in\{0,3,5,7,8,10,12,15\}$; both cells e^{i} and e^{j} are in $\mathrm{SU}(4)$ and $e^{0} \cup e^{3} \cup e^{5} \cup e^{7} \cup e^{8} \cup e^{10} \cup e^{12} \cup e^{15}$ is a cellular decomposition of $\mathrm{SU}(4)$, whence we have $\stackrel{\circ}{e}^{i} \cap{ }_{e}{ }^{j}=\emptyset$ if $i \neq j$.
(2) For the case where $i \in\{0,3,5,7,8,10,12,15\}$ and $j \in\{6,9,11,13,14,16,18,21\}$; we have $p\left(\dot{e}^{i}\right)=\left\{e_{1}\right\}$ and $p\left({ }^{\dot{e}}{ }^{j}\right)=S^{6} \backslash\left\{e_{1}\right\}$, whence we have $\dot{e}^{i} \cap \dot{e}^{j}=\emptyset$.
(3) For the case where $i, j \in\{6,9,11,13,14,16,18,21\}$, suppose that $A \in \dot{e}^{i} \cap \dot{e}^{j}$. Since $\check{e}^{i}=\stackrel{\circ}{e}^{6} \stackrel{i}{e}^{i-6}$ and $\stackrel{\circ}{e}^{j}=\dot{e}^{6} \stackrel{\circ}{e}^{j-6}$, we can put $A=A_{1} A_{2}=A_{1}^{\prime} A_{2}^{\prime}$, where $A_{1}, A_{1}^{\prime} \in \grave{e}^{6}$, $A_{2} \in \grave{e}^{i-6}$ and $A_{2}^{\prime} \in \grave{e}^{j-6}$. We have $A_{1}=A_{1}^{\prime}$, since $p\left(A_{1}\right)=p\left(A_{1} A_{2}\right)=p\left(A_{1}^{\prime} A_{2}^{\prime}\right)=$ $p\left(A_{1}^{\prime}\right)$ and $\left.p\right|_{e^{6}}$ is monic. Then we have $A_{2}=A_{2}^{\prime}$ and the first case shows that $i-6=j-6$, that is, $i=j$. Thus $\stackrel{\circ}{e}^{i} \cap \dot{\circ}^{j}=\emptyset$ if $i \neq j$.

Next, we will check that the boundaries of the cells are included in the lower-dimensional cells. In Proposition 2.3, it is proved that the boundaries of the cells of $\mathrm{SU}(4)$ are included in the lower-dimensional cells. In the proof of Theorem 4.2 in [8], it was shown that $\dot{e}^{6} \subset e^{3} \cup e^{5}, \dot{e}^{9} \subset e^{6} \cup e^{8}, \dot{e}^{11} \subset e^{5} \cup e^{9}$ and $\dot{e}^{14} \subset e^{8} \cup e^{9} \cup e^{11}$. By using (2) of Remark 2.4, we also obtain

$$
\begin{aligned}
& \dot{e}^{13}=e^{6} \dot{e}^{7} \cup \dot{e}^{6} e^{7} \subset e^{11} \cup e^{12}, \\
& \dot{e}^{16}=e^{6} e^{7} \dot{e}^{3} \cup e^{6} \dot{e}^{7} e^{3} \cup \dot{e}^{6} e^{7} e^{3} \subset e^{13} \cup e^{14} \cup e^{15}, \\
& \dot{e}^{18}=e^{6} e^{7} \dot{e}^{5} \cup e^{6} \dot{e}^{7} e^{5} \cup \dot{e}^{6} e^{7} e^{5} \subset e^{16} \cup e^{14} \cup e^{15} \\
& \dot{e}^{21}=e^{6} e^{7} e^{5} \dot{e}^{3} \cup e^{6} e^{7} \dot{e}^{5} e^{3} \cup e^{6} \dot{e}^{7} e^{5} e^{3} \cup \dot{e}^{6} e^{7} e^{5} e^{3} \subset e^{18} \cup e^{16} \cup e^{14} \cup e^{15} .
\end{aligned}
$$

Let $S=e^{0} \cup e^{3} \cup e^{5} \cup e^{7} \cup e^{8} \cup e^{10} \cup e^{12} \cup e^{15}$ and $T=e^{0} \cup e^{3} \cup e^{5} \cup e^{6} \cup e^{7} \cup e^{8} \cup e^{9} \cup$ $e^{10} \cup e^{11} \cup e^{12} \cup e^{13} \cup e^{14} \cup e^{15} \cup e^{16} \cup e^{18} \cup e^{21}$. Finally, we will show that the inclusion map $T \rightarrow \operatorname{Spin}(7)$ is epic. Let $g \in \operatorname{Spin}(7)$. If $p(g)=e_{1}$, then g is contained in $\mathrm{SU}(4)=S$. Suppose that $p(g) \neq e_{1}$. There is an element $h \in e^{6}$ such that $p(h)=p(g)$. Thus we have $h^{-1} g \in \mathrm{SU}(4)$ since $p\left(h^{-1} g\right)=e_{1}$. Therefore we have $g \in h S \subset T$.

Remark 2.7. Araki [1] also gave a cellular decomposition of $\operatorname{Spin}(n)$, but the one we have given here is a cellular decomposition with the minimum number of cells, satisfying the Yokota principle $[16,18,20]$. As will be seen later, it is effectively used to determine the Lusternik-Schnirelmann category.

It is easy to give a cellular decomposition of $\operatorname{Spin}(8)$ using a homeomorphism

$$
\operatorname{Spin}(8) \rightarrow \operatorname{Spin}(7) \times S^{7}
$$

3. The cone-decomposition of $\mathbf{S U (4)}$

Obviously there is a filtration $F_{0}^{\prime}=* \subset F_{1}^{\prime}=\mathrm{SU}(4)^{(7)} \subset F_{2}^{\prime}=\mathrm{SU}(4)^{(12)} \subset F_{3}^{\prime}=$ $\mathrm{SU}(4)$. It is well-known that $F_{1}^{\prime}=\Sigma \mathbb{C} P^{3}=S^{3} \cup e^{5} \cup e^{7}$ and $F_{2}^{\prime}=F_{1}^{\prime} \cup e^{8} \cup e^{10} \cup e^{12}$. Thus the integral cohomology $H^{n}\left(F_{2}^{\prime} ; \mathbb{Z}\right)$ is given by

$$
H^{n}\left(F_{2}^{\prime} ; \mathbb{Z}\right) \cong \begin{cases}\mathbb{Z}\langle 1\rangle & (n=0) \\ \mathbb{Z}\left\langle y_{n}\right\rangle & (n=3,5,7,8,10,12) \\ 0 & (\text { otherwise })\end{cases}
$$

The action of the squaring operation $S q^{2}$ is given as follows:

$$
S q^{2} y_{n}= \begin{cases}y_{n+2} & \text { for } n=3,10 \\ 0 & \text { for } n=5,7,8,12\end{cases}
$$

where y_{n} is regarded as an element of the $\bmod 2$ cohomology. To give the cone decomposition of $\mathrm{SU}(4)$, we use the following homotopy fibration:

$$
\begin{equation*}
F \xrightarrow{\Psi} F_{1}^{\prime} \xrightarrow{\iota} F_{2}^{\prime} . \tag{3.1}
\end{equation*}
$$

Without loss of generality, we may regard this as a Hurewicz fibration over F_{2}^{\prime}.
Firstly we consider the Serre spectral sequence $\left(E_{r}^{*, *}, d_{r}\right)$ associated with the above fibration, where the generators of $E_{2}^{*, 0}$ for $* \leqslant 7$ are permanent cycles and survive to E_{∞}-terms. Hence F is 6-connected and the transgression $\tau: H^{7}(F ; \mathbb{Z}) \rightarrow H^{8}\left(F_{2}^{\prime} ; \mathbb{Z}\right)$ is an isomorphism to $H^{8}\left(F_{2}^{\prime} ; \mathbb{Z}\right) \cong \mathbb{Z}\left\langle y_{8}\right\rangle$. Thus $H^{7}(F ; \mathbb{Z}) \cong \mathbb{Z}\left\langle x_{7}\right\rangle$ for some $x_{7} \in H^{7}(F ; \mathbb{Z})$. Similarly, the generators in $E_{2}^{3,7} \cong \mathbb{Z}\left\langle y_{3} \otimes x_{7}\right\rangle$ and $E_{2}^{10,0} \cong H^{10}\left(F_{2}^{\prime} ; \mathbb{Z}\right) \cong \mathbb{Z}\left\langle y_{10}\right\rangle$ must lie in the image of differentials d_{3} and $d_{10}=\tau: H^{9}(F ; \mathbb{Z}) \rightarrow H^{10}\left(F_{2}^{\prime} ; \mathbb{Z}\right)$ respectively, and we have that $H^{8}(F ; \mathbb{Z})=0$ and $H^{9}(F ; \mathbb{Z}) \cong \mathbb{Z}\left\langle x_{9}\right\rangle \oplus \mathbb{Z}\left\langle x_{9}^{\prime}\right\rangle$, where the elements x_{9} and x_{9}^{\prime} in $H^{9}(F ; \mathbb{Z})$ correspond to x_{10} and $y_{3} \otimes x_{7}$ by the transgression τ and d_{3} respectively. We remark that the choice of the generator x_{9}^{\prime} is not unique. Continuing this process, we have that $H^{10}(F ; \mathbb{Z})=0$ and $H^{11}(F ; \mathbb{Z}) \cong \mathbb{Z}\left\langle x_{11}\right\rangle \oplus \mathbb{Z}\left\langle x_{11}^{\prime}\right\rangle \oplus \mathbb{Z}\left\langle x_{11}^{\prime \prime}\right\rangle \oplus \mathbb{Z}\left\langle x_{11}^{\prime \prime \prime}\right\rangle$ whose generators correspond to $x_{12}, y_{3} \otimes x_{9}, y_{3} \otimes x_{9}^{\prime}$ and $y_{5} \otimes x_{7}$ respectively by the transgression τ and differentials d_{3}, d_{3} and d_{5}.

Thus the integral cohomology $H^{n}(F ; \mathbb{Z})$ for $0 \leqslant n \leqslant 11$ is given by

$$
H^{n}(F ; \mathbb{Z}) \cong \begin{cases}\mathbb{Z}\langle 1\rangle & (n=0) \\ \mathbb{Z}\left\langle x_{7}\right\rangle & (n=7) \\ \mathbb{Z}\left\langle x_{9}\right\rangle \oplus \mathbb{Z}\left\langle x_{9}^{\prime}\right\rangle & (n=9) \\ \mathbb{Z}\left\langle x_{11}\right\rangle \oplus \mathbb{Z}\left\langle x_{11}^{\prime}\right\rangle \oplus \mathbb{Z}\left\langle x_{11}^{\prime \prime}\right\rangle \oplus \mathbb{Z}\left\langle x_{11}^{\prime \prime \prime}\right\rangle & (n=11) \\ 0 & \text { (otherwise) }\end{cases}
$$

where x_{7}, x_{9} and x_{11} are transgressive generators in $H^{*}(F ; \mathbb{Z})$. Hence F has, up to homotopy, a cellular decomposition $e^{0} \cup e^{7} \cup_{\varphi_{1}} e^{9} \cup_{\varphi_{1}^{\prime}} e_{1}^{9} \cup_{\varphi_{2}} e^{11} \cup$ (cells in dimensions
$\geqslant 11$), where the cells e^{7}, e^{9} and e^{11} correspond to x_{7}, x_{9} and x_{11} respectively. Then we obtain a subcomplex $A^{\prime}=e^{0} \cup e^{7} \cup_{\varphi_{1}} e^{9} \cup_{\varphi_{1}^{\prime}} e_{1}^{9} \cup_{\varphi_{2}} e^{11}$ of F.

Secondly, we determine the attaching maps φ_{1} and φ_{1}^{\prime} : Let us recall that $\pi_{8}\left(S^{7}\right) \cong$ $\mathbb{Z} / 2\left\langle\eta_{7}\right\rangle$ whose generator η_{7} can be detected by $S q^{2}$, the $\bmod 2$ Steenrod operation. Since the action of mod 2 Steenrod operation commutes with the cohomology transgression (see [6, Proposition 6.5]), we see that $S q^{2} x_{7}$ is transgressive, and hence is $c x_{9}$ for some $c \in \mathbb{Z} / 2$. We know that $\tau x_{9}=y_{10} \neq 0$ and $\tau S q^{2} x_{7}=S q^{2} \tau x_{7}=S q^{2} y_{8}=0$, and hence $S q^{2} x_{7}$ must be trivial. Thus the attaching maps φ_{1} and φ_{1}^{\prime} are both null homotopic and A^{\prime} is homotopy equivalent to $\left(S^{7} \vee S^{9} \vee S_{1}^{9}\right) \cup_{\varphi_{2}} e^{11}$.

Thirdly we check the composition of projections with the attaching map $\varphi_{2}: S^{10} \rightarrow$ $S^{7} \vee S^{9} \vee S_{1}^{9}$ to S^{9} and S_{1}^{9}, which can also be detected by $S q^{2}$. Again by the commutativity of the action of mod 2 Steenrod operation with the transgression, we see that the composition map $\operatorname{pr}_{S^{9}} \circ \varphi_{2}: S^{10} \xrightarrow{\varphi_{2}} S^{7} \vee S^{9} \vee S_{1}^{9} \rightarrow S^{9}$ represents a generator of $\pi_{10}\left(S^{9}\right) \cong \mathbb{Z} / 2\left\langle\eta_{9}\right\rangle$, since $S q^{2}: H^{8}\left(F_{2}^{\prime} ; \mathbb{Z} / 2\right) \rightarrow H^{10}\left(F_{2}^{\prime} ; \mathbb{Z} / 2\right)$ is non-trivial. If the composition map $\phi_{1}=\operatorname{pr}_{S_{1}^{9}} \circ \varphi_{2}: S^{10} \xrightarrow{\varphi_{2}} S^{7} \vee S^{9} \vee S_{1}^{9} \rightarrow S_{1}^{9}$ is non-trivial, we replace φ_{2} by the composition of φ_{2} and the homotopy equivalence $\xi: S^{7} \vee S^{9} \vee S_{1}^{9} \rightarrow S^{7} \vee S^{9} \vee S_{1}^{9}$ where $\left.\xi\right|_{S^{7}}$ and $\left.\xi\right|_{S_{1}^{9}}$ are the identity maps and $\left.\xi\right|_{S^{9}}$ is the unique co-H-structure map $\phi: S^{9} \rightarrow S^{9} \vee S_{1}^{9}$; then we obtain that ϕ_{1} is trivial, since $2 \eta_{9}=0$. Then A^{\prime} is homotopy equivalent to $\left(\left(S^{7} \vee S^{9}\right) \cup_{\varphi_{2}} e^{11}\right) \vee S_{1}^{9}$. Let A denote the subcomplex $\left(S^{7} \vee S^{9}\right) \cup_{\varphi_{2}} e^{11}$ of A^{\prime} and $\psi=\left.\Psi\right|_{A}: A \rightarrow F_{1}^{\prime}$.

Lemma 3.1. F_{2}^{\prime} is homotopy equivalent to $F_{1}^{\prime} \cup_{\psi} C A$.
Proof. The elements in $H^{*}(F ; \mathbb{Z})$ corresponding to those in $H^{*}(A ; \mathbb{Z})$ under the induced map of the inclusion coincides with the module of transgressive elements with respect to the fibration (3.1) (see [6, Chapter 6]). Thus we may identify $H^{n-1}(A ; \mathbb{Z})=$ $\delta_{F}^{-1}\left(\iota_{F}^{*}\left(H^{n}\left(F_{2}^{\prime}, * ; \mathbb{Z}\right)\right)\right) \subset H^{n-1}(F ; \mathbb{Z}):$

where ι_{F} and ι_{A} are given by ι, and δ_{F} and δ_{A} denote the connecting homomorphisms of the long exact sequences for the pairs $\left(F_{1}^{\prime}, F\right)$ and $\left(F_{1}^{\prime}, A\right)$, respectively. Thus the image of δ_{A} is contained in the image of ι_{A}^{*} and we also have

$$
H^{n}\left(F_{1}^{\prime}, A ; \mathbb{Z}\right) \cong H^{n}\left(F_{1}^{\prime} \cup_{\psi} C A, C A ; \mathbb{Z}\right) \cong H^{n}\left(F_{1}^{\prime} \cup_{\psi} C A, * ; \mathbb{Z}\right)
$$

Since the composition map $A \xrightarrow{\nmid} F_{1}^{\prime} \xrightarrow{\iota} F_{2}^{\prime}$ is trivial, we can define a map

$$
f: F_{1}^{\prime} \cup_{\psi} C A \rightarrow F_{2}^{\prime},
$$

by $\left.f\right|_{F_{1}^{\prime}}=\iota: F_{1}^{\prime} \rightarrow F_{2}^{\prime}$ and $\left.f\right|_{C A}=*$.

To complete the lemma, we must show that $f^{*}: H^{n}\left(F_{2}^{\prime} ; \mathbb{Z}\right) \cong \mathbb{Z} \rightarrow H^{n}\left(F_{1}^{\prime} \cup_{\psi}\right.$ $C A ; \mathbb{Z}) \cong \mathbb{Z}$ is an isomorphism for $n=3,5,7,8,10,12$. We have a commutative diagram

where the bottom row is a part of the exact sequence for the pair $\left(F_{1}^{\prime} \cup C A, F_{1}^{\prime}\right)$. The induced map i^{*} is an isomorphism for $n \leqslant 7$, since $H^{n}\left(F_{1}^{\prime} \cup C A, F_{1}^{\prime} ; \mathbb{Z}\right)=0$ for $n \leqslant 7$ and since ι^{*} is an isomorphism for $n \leqslant 7$. Then we obtain that f^{*} is an isomorphism for $n \leqslant 7$. Moreover we can show that $j^{*}: H^{n}\left(F_{1}^{\prime} \cup C A, F_{1}^{\prime} ; \mathbb{Z}\right) \rightarrow H^{n}\left(F_{1}^{\prime} \cup C A ; \mathbb{Z}\right)$ is an isomorphism for $n \geqslant 8$, by considering the exact sequence for the pair $\left(F_{1}^{\prime} \cup C A, F_{1}^{\prime}\right)$, since we have $H^{n}\left(F_{1}^{\prime}\right)=0$ for $n \geqslant 8$. To perform the other cases for $n=8,10,12$, it is sufficient to show that f^{*} is surjective. In fact, we have a commutative diagram

where Σ is the suspension isomorphism. Since j^{*} is an isomorphism for $n \geqslant 8$, we obtain that δ_{A} is an isomorphism for $n \geqslant 8$. Since the image of δ_{A} is contained in the image ι_{A}^{*}, we see that f^{*} is surjective for $n \geqslant 8$, and hence f is a homotopy equivalence.

Proposition 3.2. We have $w \operatorname{cat}\left(F_{i}^{\prime}\right)=\operatorname{cat}\left(F_{i}^{\prime}\right)=\operatorname{Cat}\left(F_{i}^{\prime}\right)=i$.
Proof. The cohomology of F_{i}^{\prime} implies that $w \operatorname{cat}\left(F_{i}^{\prime}\right) \geqslant i$. The cone-decomposition

$$
F_{1}^{\prime}=\Sigma \mathbb{C} P^{3}, \quad F_{2}^{\prime} \simeq F_{1}^{\prime} \cup C A, \quad F_{3}^{\prime}=F_{2}^{\prime} \cup C S^{14}
$$

implies that $\operatorname{Cat}\left(F_{i}^{\prime}\right) \leqslant i$, which completes the proof.

4. Proof of Theorem 1.1

We define a filtration $F_{0}=* \subset F_{1} \subset F_{2} \subset F_{3} \subset F_{4} \subset F_{5}=\operatorname{Spin}(7)$ by

$$
\begin{array}{ll}
F_{1}=\mathrm{SU}(4)^{(7)}, & F_{2}=\mathrm{SU}(4)^{(12)} \cup e^{6} \\
F_{3}=\mathrm{SU}(4) \cup e^{6} \cup e^{9} \cup e^{11} \cup e^{13}, & F_{4}=\operatorname{Spin}(7)^{(18)}
\end{array}
$$

We need the following lemma to prove Theorem 4.2.
Lemma 4.1. We have a homeomorphism of pairs

$$
\left(C A_{1}, A_{1}\right) \times\left(C A_{2}, A_{2}\right)=\left(C\left(A_{1} * A_{2}\right), A_{1} * A_{2}\right)
$$

(The proof can be found in pp. 482-483 of [14].)
Now Theorem 1.1 follows from the following theorem.

Theorem 4.2. We have $w \operatorname{cat}\left(F_{i}\right)=\operatorname{cat}\left(F_{i}\right)=\operatorname{Cat}\left(F_{i}\right)=i$.

Proof. The mod 2 cohomology of F_{i} implies that $w \operatorname{cat}\left(F_{i}\right) \geqslant i$. Then it is sufficient to show that $\operatorname{Cat}\left(F_{i}\right) \leqslant i$. Obviously we have a homeomorphism $F_{1}=\Sigma \mathbb{C} P^{3}$. Since the cell e^{6} is attached to F_{1}, we obtain that $F_{2} \simeq F_{1} \cup C\left(S^{5} \vee A\right)$ using Lemma 3.1. Since we have $e^{9} \cup e^{11} \cup e^{13}=e^{6}\left(e^{3} \cup e^{5} \cup e^{7}\right)$, the composition map

$$
\begin{aligned}
\left(C S^{5}, S^{5}\right) \times\left(C \mathbb{C} P^{3}, \mathbb{C} P^{3}\right) & \rightarrow\left(C S^{5}, S^{5}\right) \times\left(\Sigma \mathbb{C} P^{3}, *\right) \\
& \rightarrow\left(F_{2} \cup e^{9} \cup e^{11} \cup e^{13}, F_{2}\right)
\end{aligned}
$$

is a relative homeomorphism. Then we obtain $F_{2} \cup e^{9} \cup e^{11} \cup e^{13}=F_{2} \cup C\left(S^{5} * \mathbb{C} P^{3}\right)$ using Lemma 4.1. The cell e^{15} is the highest-dimensional cell of $\mathrm{SU}(4)$ and is attached to F_{2}. Then we obtain $F_{3} \simeq F_{2} \cup C\left(S^{14} \vee\left(S^{5} * \mathbb{C} P^{3}\right)\right)$. Now we consider the following composition map:

$$
\left(C\left(S^{5} * A\right), S^{5} * A\right)=\left(C S^{5}, S^{5}\right) \times(C A, A) \rightarrow\left(C S^{5}, S^{5}\right) \times\left(F_{2}^{\prime}, F_{1}^{\prime}\right) \rightarrow\left(F_{4}, F_{3}\right)
$$

Since we have $e^{14} \cup e^{16} \cup e^{18}=e^{6}\left(e^{8} \cup e^{10} \cup e^{12}\right)$, the right map is a relative homeomorphism. The left map induces an isomorphism of homologies of pairs so that the map $H_{*}\left(F_{3} \cup C\left(S^{5} * A\right), F_{3} ; \mathbb{Z}\right) \rightarrow H_{*}\left(F_{4}, F_{3} ; \mathbb{Z}\right)$ is an isomorphism. Thus we obtain $F_{4} \simeq F_{3} \cup C\left(S^{5} * A\right)$. Obviously we have a homeomorphism $F_{5}=F_{4} \cup C S^{20}$.

References

[1] S. Araki, On the homology of spinor groups, Mem. Fac. Sci. Kyusyu Univ. Ser. A. 9 (1955) 1-35.
[2] L. Fernández-Suárez, A. Gómez-Tato, J. Strom, D. Tanré, The Lusternik-Schnirelmann category of $\operatorname{Sp}(3)$, Trans. Amer. Math. Soc., submitted for publication.
[3] T. Ganea, Lusternik-Schnirelmann category and strong category, Illinois J. Math. 11 (1967) 417-427.
[4] N. Iwase, M. Mimura, L-S categories of simply-connected compact simple Lie groups of low rank, Proc. of the Skye Conference, submitted for publication.
[5] I.M. James, W. Singhof, On the category of fibre bundles, Lie groups, and Frobenius maps, in: Higher Homotopy Structures in Topology and Mathematical Physics (Poughkeepsie, NY, 1996), in: Contemp. Math., Vol. 227, 1999, pp. 177-189.
[6] J. McCleary, A User's Guide to Spectral Sequences, 2nd Edition, Cambridge University Press, Cambridge, 2001.
[7] C.E. Miller, The topology of rotation groups, Ann. of Math. (2) 57 (1953) 90-114.
[8] M. Mimura, T. Nishimoto, On the cellular decomposition of the exceptional Lie group G_{2}, Proc. Amer. Math. Soc. 130 (2002) 2451-2459.
[9] P.A. Schweitzer, Secondary cohomology operations induced by the diagonal mapping, Topology 3 (1965) 337-355.
[10] W. Singhof, On the Lusternik-Schnirelmann category of Lie groups, Math. Z. 145 (1975) 111-116.
[11] N.E. Steenrod, Cohomology Operations, in: Ann. Math. Stud., Vol. 50, Princeton University Press, Princeton, NJ, 1962.
[12] F. Takens, The Lusternik-Schnirelman categories of a product space, Compositio Math. 22 (1970) 175-180.
[13] G.W. Whitehead, The homology suspension, Colloque de topologie algébrique, Louvain (1956) 89-95.
[14] G.W. Whitehead, Elements of Homotopy Theory, in: Graduate Texts in Math., Vol. 61, Springer-Verlag, Berlin, 1978.
[15] J.H.C. Whitehead, On the groups $\pi_{r}\left(V_{n, m}\right)$ and sphere-bundles, Proc. London Math. Soc. 48 (1944) 243291.
[16] I. Yokota, On the cell structures of $\operatorname{SU}(n)$ and $\operatorname{Sp}(n)$, Proc. Japan Acad. 31 (1955) 673-677.
[17] I. Yokota, On the cells of symplectic groups, Proc. Japan Acad. 32 (1956) 399-400.
[18] I. Yokota, On the cellular decompositions of unitary groups, J. Inst. Polytech. Osaka City Univ. Ser. A 7 (1956) 39-49.
[19] I. Yokota, Representation rings of group G_{2}, J. Fac. Sci. Shinshu Univ. 2 (1967) 125-138.
[20] I. Yokota, Groups and Topology, Shokabo, 1971 (in Japanese).

[^0]: * Corresponding author.

 E-mail addresses: iwase@math.kyushu-u.ac.jp (N. Iwase), mimura@math.okayama-u.ac.jp (M. Mimura), nishimoto@kinwu.ac.jp (T. Nishimoto).
 ${ }^{1}$ The first named author is supported by the Grant-in-Aid for Scientific Research \#14654016 from the Japan Society of Promotion of Science.

