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Abstract

We give a cellular decomposition of the compact connected Lie groug Bpiife also determine
the L-S categories of Spif) and Spiri8).
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1. Introduction

In this paper, we assume that a space has the homotopy type of a CW-complex.
Whitehead [15] constructed a cellular decomposition of(5Qusing the natural
inclusion mapRP"~1 — SOn) (see also [7]). Yokota [16—18] constructed cellular
decompositions of S), U(rn) and Sgn) according to his principle that the number of
the cells in the decomposition should be minimal, where the decomposition @f) SU
is constructed by making use of the natural inclusion nB@P"~1 — SU®n); see
Remark 2.4(2). Araki [1] gave a cellular decomposition of $pjrusing the decomposition
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of SO(n) and the double covering Sgi) — SO(n), where the number of the cells of the
decomposition is not minimal, that is, it does not satisfy the Yokota principle. One of our
objects is to construct the cellular decomposition of $pjirso that it satisfy the Yokota
principle.

Among the exceptional Lie groups, the second and third authors [8] constructed
a cellular decomposition of £5Swhich has the minimum number of the cells in the
decomposition, that is, it satisfies the Yokota principle.

Recall that we have the following isomorphisms:

Spin3) = 3, Spin4) = 5% x $3,
Spin5) = Sp2),  Spin6) = SUA4).

Thus Spirt7) is the first non-trivial case in determining the cellular decomposition
satisfying the Yokota principle, which is one of our purposes.

The other purpose is to determine the Lusternik—Schnirelmann category @7 Sipyn
using the cellular decomposition.

The Lusternik—Schnirelmann category, Kabf a space is the least integer such that
X is the union ofz + 1 open subsets, each of which is contractibl&inWhitehead [13]
showed that caX < » if and only if the diagonal mag\,,+1: X — ]_[”“X is homotopic
to a composition map

n+1
X - T(X) ]_[ X,

where T+1(X) is the fat wedge
T (X) = {(x1, ..., xa11) € X" | somey; is the base poift

and T (X) — [T"*! X is the inclusion map.
The weak Lusternik—Schnirelmann categargatX, is the least integer such that the
reduced diagonal map

n+1 n+1
Aps1: X > /\ X = ]_[ X/ T (X)

is trivial. Then it is easy to see thatatX < catX using Whitehead’s characterization [13]
of the Lusternik—Schnirelmann category.

The strong Lusternik—Schnirelmann category, Xats the least integer such that
there exists a spac€’ which is homotopy equivalent t& and is covered by + 1 open
subsets contractible in themselves. Eais closely related with caf, and Ganea and
Takens [12] showed that

catX < CatX < catX + 1.

Ganea [3] showed that CHtis equal to the invariant which is the least integesuch
that there are: cofibre sequencesg; — X, 1 — X;, 1<i < n, with Xg =% and X,
homotopy equivalent t& .

The Lusternik—Schnirelmann category of some Lie groups has been determined, such as
catiU(n)) =n and catSU(n)) = n — 1 by Singhof [10], caiSp(2)) = 3 by Schweitzer [9],
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cat(Sp(3)) = 5 hy the first and second named authors [4], and Fernandez-Suarez et al.
[2], cat(SO(2)) = 1, catSO3)) = 3, catSO4)) = 4, catSO(5)) = 8 by James and
Singhof [5]. A simple argument gives that ¢@p) = 4 (see, for example, [4]). Among

these cases it is shown thatatG = catG = CatG for G = Sp(n), Gp. As for G = SO(n)

forn =2, 3,4,5, one can also show the equality. We can observe th&s0at)) <n — 1

by modifying the categorical open subsets given by Singhof [10] so as to be contractible,
e.g., by adding paths among contractible connected components of each categorical open
subset and hence dat= CatG. Thus we havevcatG = catG = CatG for any G when

catG is determined.

Theorem 1.1. We have wcat(Spin(7)) = cat(Spin(7)) = Cat(Spin(7)) = 5.
Since Spii8) is homeomorphic to Spiid) x S, we obtain the following corollary.
Corollary 1.2. We have wcat(Spin(8)) = cat(Spin(8)) = Cat(Spin(8)) = 6.

The paper is organized as follows. In Section 2 we give a cellular decomposition of
Spin(7) such that Spi(/) contains a subgroup S4), which turns out to be useful for
determining the Lusternik—Schnirelmann category of &finin Section 3 we give a
cone-decomposition of S¥), which gives rise to the Lusternik—Schnirelmann category
of Spin(7) in Section 4.

2. The célular decomposition of Spin(7)

In this section, we use the notation in [8]. L&tbe the Cayley algebra. (We adopt the
definition of the Cayley algebra from [19].) $8) acts on¢ naturally since® = R® as an
R-module. We regard S@) as the subgroup of S@) fixing eg, the unit of&. As is well
known, the exceptional Lie group,Gs defined by

Gz = {g €SO | g(x)g(y) = g(xy), x, y € €} = Aut(Q).

According to [19], for eacly € SO(7), there is a unique elemegtup to sign such that

gx)g(y) = g(xy), and Spin7) = {g | g € SAN}. If g € Go, theng =g, s0o G is a

subgroup of Spi(v). Observe that the algebra generatedebyn ¢ is isomorphic toC.

SU(4) acts on¢ naturally, since® = C* as aC-module whose basis igo, e2, ¢4, es}. We

regard SUW3) as the subgroup of SY) fixing eg and also as the subgroup of €xing e;.
Let D' = {(x1, ..., %) € R' | 3 x2 < 1}. We define four maps:

A:D®— SO@8), B:D?— SO(8),
C: D' - SO@8), D:D?— SO(8)

as follows:



1
1
1
A(x1,x2,x3) =
1
1
yi
y2
B , =
(y1, y2) v
0
1
z1 0 —Z
0O 1 O
Z 0 =1
C(z1) =
w1 —w?2
w2 w1
w 0
0 w
D(wi, wp) =

where we put for simplicity

X:Jl—x%—x%—x%,

2
Z = 1_Zl’
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1
1-2X2 —2x1X —2xX
201X 1-2X? 2x3X
20X —2x3X  1-—2X2
2x3X 2x2X —2x1X
-y =Y O
n 0 -Y
0 y1 ¥y '
Y -y n
1
1
1 ,
z1 0 —Z
01 0
Z 0 21
-W 0
0 -w
w1 w2
—w2 w1
1 ,
1
1

Y =/1-3 -3
W:,/l—w%—w%.

—2x3X
—2x2X
2x1X
1-2x2
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We prepare the following two lemmas.

Lemma 2.1. The elements A(x1, x2, x3), B(y1,y2), C(z1) and D(w1,w2) belong to

Spin(7).

Proof. Note that the elements(x1, x2, x3), B(y1, y2) andC(z1) are exactly the same as

in [8] so they belong to &(see [8] for their properties). In the proof, we dendtaw1, wy)
simply by D. Obviously elements in the image afand D commute with each other. Let

D’ be the matrix

1
1
1
1

wp —w2 W 0
w2 w1 0o —-w

-W 0 w1 —w?2
0 W w2 wi

Then we can show by a tedious calculation that Dy = D(xy) for anyx, y € €, which
gives us the result. O

Let g3, g5, s andgpz be maps
@31 D — Spin(7),
¢5: D3 x D? — Spin(7),
¢6:D3 x D% x D! — Spin(7),
@7:D® x D? x D% — Spin(7)

respectively defined by the equalities

@3(X) = A(X),
95X, y) = BY)A)BY)
96(X,y,2) = C@BY)AXBY) 'C@ ™,
P7(X, Y, W) = D(W)B(Y) A(X)B(y) ' D(w)~*,

wherex = (x1, x2, x3), Y = (¥1, ¥2), Z= (z1) andw = (w1, w2). As noted above, for
i =3,5,6 maps into G and hence into Spiid). So doesy7, since D belongs Spif7).
We define sixteen cellg/ for j = 0,3,5,6,7,8,9,10,11, 12, 13, 14,15, 16, 18, 21
respectively as follows:

eoz{l}, e3=|m<p3, e5=|mg05, eG=|m<p6, e7=|m<p7,
68 — 6563, 69 — 6663, elO — 6763, ell — 6665, 612 — 6765,
3 08,7, 14— 65,3, 15— o753, 16— (6,73,

B 8075 2L 8,7,5,3,
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where the product of two (or more) cells is defined by using the multiplication of(3pin
For later use we observe thatfori = 3,5, 7 maps into SI#4). In fact, the matriced, B,
D belong to SW4) by their definition.

Let S be the unit sphere &f. Then we have a principal bundle over it:

SU3) — SU4) 2% s7.

wherepo(g) = geo.

Lemma 2.2. Let V7 = D3 x D? x D?. Then the composite map pog7: (V',0V’) —
(S7, ep) is a relative homeomorphism.

Proof. We express the maoy7)|y75y7 as follows:

ao 1—2Xx2%y2w?
ar 2x1XY2W?
a 2(w1X —xlwz)XYZW
as _ _ —2(w2X 4+ x1w1) XY2W
=DW)B(Y)AX)B(Y) *D(wW) teg =
as 2(—y1X +x1y2) XYW
as 2(y2X + x1y1) XYW
ae 20 XYW
ar 2x3XYW
and hence we have

1—agp XYw

ai x1Yw

az (w1 X — xqw2)Y

a —(w2X +xqw1)Y

3 XYW (w2 1w1)

as —y1X + x1y2

as v2X 4+ x1y1

ae X2

ary X3

By a tedious calculation we can obtain that

al\/(l—ao)z+a%+a%+a§+a§+a§

X1 ,
20— a0}~ a0)? + a)
as
X2= ——,
V21— ao)
BT 20—
y aias — (1—ao)as

1= s
\/((l— ag)? —G—a%)((l— ap)? +a% +a§ +a§ +a§ —i—aé)
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aias + (1 — ap)as

2= s
\/((1— a0) + a?) (1 — ag)? + a? + a2 + a? + a2 + a?)

y

wy = (1—ag)az — aias
\/((1 —a0)2 +a?)(1— a2 + a2 + a2 + a?)
—aiaz — (1 —ao)as
wo = .
\/((1 —a0)2 +a?)(1— a2 + a2 + a2 + a?)

The details of checking are left to the reader. Thus the inverse map has been constructed,
which completes the proof.O

In a similar way to that of Section 3 of [8], we can obtain the following theorem, which
is essentially the same as Yokota’s decomposition [16].

Proposition 2.3. QU e3 U e® U e’ U e U elOU 1?2 U ¢15 thus obtained is a cellular
decomposition of SU(4).

Proof. First we show tha¢°’né/ =@ if i # j. We consider the following three cases:

(1) For the case wherie j € {0, 3,5, 8}; both cellse! ande/ are in SU3) ande® U €2 U
e> U €8 is a cellular decomposition of SB); see [8, Proposition 3.2]. Then we have
enel =pifi#j.

(2) For the case wheriec {0, 3,5, 8} and j € {7, 10, 12, 15}; we havepg(é') = {eo} and
po(é)) = S"\{eo}. Then we havei’neé’/ = .

(3) For the case wherie j € {7, 10, 12, 15}; suppose tha# € &' N é/. Sincee’ =é’é!~’
ande’ = é7¢/=7, we can putA = A1A = A} A, whereAq, A} € é’, A, €é'~" and
Al e ¢/=7. We haved; = A7, sincepo(A1) = po(A1A2) = po(A}A%) = po(A) and
polg7 is monic. Then we hava, = A/2 and the first case shows that 7= j — 7, that
is,i=j.Thuse' Né/ =@ifi+#j.

Next, we will check that the boundaries of the cells are included in the lower-
dimensional cells. In the proof of Proposition 3.2 [8], it is proved that the boundatjes
¢° andé® are included in the lower-dimensional cells. Observe that the bourdasythe
union of the following three sets:

¢'"={DBAB™'D ' A€ A(D®). B e B(D?. D e D(D?},
U{DBAB™'D™'| A€ A(D®), B e B(D?. DeD(D?)}.
U{DBAB™*D ' Ae A(D?), B e B(D?), DeD(D?}.

The first set contains only the identity element, sidcs the identity element. It is easy to
see that the second set is containeddmnd that the third set is containeddh We have
e10=¢7e3Ué"e3 Ce’ePUe®3 = e’ UeB. We also havel? = ¢7¢®Ue’ed C ePe®Ue’ed =
e8U 10 andél® = ¢é7e%e3 U e U ele®63 C ePe®e3 U eleled Uele® = 8 U 10U ¢12,
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Finally, we will show that the inclusion mag® U e U e® Ue’ UeB U el0Uel2Uel® —
SU(4) is epic. Letg € SU4). If po(g) = eo, theng is contained in SB) = 2 U e3 U
e® U ¢8. Suppose thapo(g) # eo. There is an elemerit € ¢’ such thatpo(h) = po(g).
Thus we havé:—1g € SU®R) =P Ue2 U e U eB, sincepo(h~1g) = eg. Therefore we have
g eh(eOUe3Ue5UeS) celUuelue®Ue’UeBuel®Uuel?uel® 0

Remark 2.4.

(1) We regard S@) as the subgroup of S@) fixing e1. Let : Spin(6) — SO(6) be the
double covering. Then, according to the proof of Lemma 2BU4)) c SO(6) so
thatr | sy 4 : SU4) — SQ(6) is the double covering.

(2) According to [18], there is a subspagsCP" of SU(n + 1) which consists of the
elements

1 1
M . M—l T
1 1
2i0 o200
for any elementsV in SU(n + 1). Obviously, the subcomplex’ U 2 is SU?2) =

Y CPL Itis easy to see that the subcompé@x 3 U ¢° is homeomorphic taeC P2,
since we have

BABl=BM

_ -1p-1
=BM 1 M™B 1
2i9 o—2i0

for someM € SU(2). In a similar way, the subcompleX U ¢3 U ¢® U ¢’ is homeo-
morphic to X C P3. Thus the cellular decomposition of $4) is essentially the same

as Yokota's decomposition. Moreover, according to Proposition 2.6 of Chapter IV
of [11], we haveeZt1e2/+1 — ¢2/+1,2+1 for j < j: in fact we havee?+1¢2/+1 =
e?it1e2i+1 (see [20]).

Let S% be the unit sphere @&’ whose basis ige; | 1 <i < 7}. We consider the follow-
ing diagram

SU3) Gy 56

SU(4) —= Spin(7) —2~ ¢6

"

SO6) —SA(7) —— 56
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where the horizontal lines are principal fibre bundles agg) = 7 (g)es.
Lemma 4.1 of [8] implies the following lemma immediately.

Lemma 2.5. Put V6 = D3 x D? x D'. Then the composite map pge: (V6,0V6) —
(S8, {e1}) is arelative homeomorphism.

Now we can state one of our main results.

Theorem 2.6. The cell complex P U eBUe®UebUe’ UeBue®UelPUelluel?ueldy
e U elPU by 18U 2! gives a cellular decomposition of Spin(7).

Proof. First we show tha¢°né/ = ¢ if i # j. We consider the following three cases:

(1) For the case where j € {0, 3,5, 7,8, 10, 12, 15}; both cellse’ ande/ are in SUA4)
ande® UeBUe®Ue’ UeBUel®Uel?uUel®is a cellular decomposition of SY),
whence we havel Né/ =@ if i # j.

(2) For the case wheree {0, 3,5,7,8,10,12, 15} andj € {6,9,11,13 14, 16, 18, 21};
we havep(é') = {e1} and p(é/) = 58\{e1}, whence we have hé/ = ¢.

(3) For the case whetiej € {6,9, 11, 13, 14, 16, 18, 21}, suppose that € ¢ N é/. Since
é =¢850 and eV = 58775, we can putd = A14, = A}A), where Ay, A} € é°,
Az € é~®andA, € 8/75. We haveA; = A}, sincep(A1) = p(A142) = p(A}AL) =
p(A)) and p|s is monic. Then we havel, = A’ and the first case shows that
i—6=j—6,thatisi = j. Thuse' Né/ =@ if i # j.

Next, we will check that the boundaries of the cells are included in the lower-dimensional
cells. In Proposition 2.3, it is proved that the boundaries of the cells ¢#Safe included

in the lower-dimensional cells. In the proof of Theorem 4.2 in [8], it was shown that
6% ceBUed, 6 c ePueB, 61 c e®Ue® andél? c eBue®Uell. By using (2) of Remark 2.4,

we also obtain

513

BB =e8%"U %" cellu 612,

10— 80763 U eBe7eB U éBeed c 1B U et U 615,
18— 080765 U b7 U eBee® c U ttu 615,
6?1 = 87563 U eBe %3 U eP¢7 % U 6% e%e® c B U el U elt U et®.

LetS=cPUePUe®Ue’UcBUelPUe2Uuel®>andT =P UeBUe®UebUce’ Uetue®uU
Ut Uel2UelBUel®Uel®Uel®UelBUe?l, Finally, we will show that the inclusion
mapT — Spin(7) is epic. Letg € Spin(7). If p(g) = e1, theng is contained in SIX) = S.
Suppose thap(g) # e1. There is an elemerit € €® such thatp(h) = p(g). Thus we have
h—1g e SU4) sincep(h~1g) = e1. Thereforewe have e hS C T. O

Remark 2.7. Araki [1] also gave a cellular decomposition of S@ip, but the one we have
given here is a cellular decomposition with the minimum number of cells, satisfying the
Yokota principle [16,18,20]. As will be seen later, it is effectively used to determine the
Lusternik—Schnirelmann category.
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Itis easy to give a cellular decomposition of S@nusing a homeomorphism
Spin(8) — Spin(7) x S”.

3. The cone-decomposition of SU(4)

Obviously there is a filtrationF) = x C F; = SU#)" C F, = SU41? c F} =
SU4). It is well-known thatF; = XCP3 = S3Ue%Ue’ andFy = F] UeB U e10U 12
Thus the integral conomology” (F,; Z) is given by

Z{1) (n=0),
H"(Fj;Z) = Z{y,) (n=3,5,7,8,10,12),
0 (otherwisé.

The action of the squaring operati§n? is given as follows:
So2y — {yn+2 forn =3, 10,
T"=1o  forn=57812

where y, is regarded as an element of the mod 2 cohomology. To give the cone
decomposition of S, we use the following homotopy fibration:

F-L B -5 F (3.1)

Without loss of generality, we may regard this as a Hurewicz fibration Byer
Firstly we consider the Serre spectral sequefleg™, d,) associated with the above

fibration, where the generators ﬁfﬁ’o for x < 7 are permanent cycles and survive to
Eo-terms. HenceF is 6-connected and the transgressiarH ' (F; Z) — HB8(F}; Z) is
an isomorphism td8(Fy; Z) = Z(ys). ThusH'(F; Z) = Z(x7) for somex; € H'(F; Z).
Similarly, the generators i’y ' = Z(y3 ® x7) and E;>° = H1O(F}; Z) = Z(y10) must lie
in the image of differentialgls anddig = 7: H%(F; Z) — H¥(F}; Z) respectively, and
we have that8(F; Z) = 0 and H(F; Z) = Z(xg) ® Z(xy), where the elementsy and
xgin HO(F; Z) correspond ta1o and yz ® x7 by the transgression andds respectively.
We remark that the choice of the genera:t@ris not unique. Continuing this process, we
have thatH0(F; Z) = 0 and HY(F; Z) = Z{x11) ® Z(x}) & Z{x},) ® Z(x}}) whose
generators correspondigy, y3 ® xg, y3® xg andys ® x7 respectively by the transgression

t and differentialsls, d3 andds.
Thus the integral conomology” (F'; Z) for 0 < n < 11 is given by

Z(1) (n=0),

Z{x7) (n=7),
H"(F; Z) = | Z(x9) ® Z{xg) (n=9),

Z(x11) @ Z(x1,) ® Zixyy) ® Zixy)  (n=11),

0 (otherwise

where x7, xg and x11 are transgressive generators i (F; Z). Hence F has, up to
homotopy, a cellular decompositiefl U e’ Uy, ¢° Uyt €3 Uy, e1U (cells in dimensions
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> 11), where the cellg’, ¢° ande!! correspond toc7, xg andx11 respectively. Then we
obtain a subcomplex’ = ¢®U e’ Uy, €% Uy, ef Uy, e't of F.

Secondly, we determine the attaching mgpsand ¢}: Let us recall thatrg(S7) =
7./2(n7) whose generatof; can be detected h§g?, the mod 2 Steenrod operation. Since
the action of mod 2 Steenrod operation commutes with the cohomology transgression
(see [6, Proposition 6.5]), we see thfatx7 is transgressive, and hencecig for some
c € 7Z/2. We know thatrxg = y10 # 0 andz Sq%x7 = Sq°tx7 = Sq%yg = 0, and hence
Sq?%x7 must be trivial. Thus the attaching mapsandy; are both null homotopic and’
is homotopy equivalent tas” v $% v §7) Uy, e11.

Thirdly we check the composition of projections with the attaching maps© —

ST v $%v s to §° and S, which can also be detected b§y?. Again by the
commutativity of the action of mod 2 Steenrod operation with the transgression, we see
that the composition map progs: §1° 2 §7 v §9 v 59 — $° represents a generator

of w10(8°) = Z/2(ng), since Sq?: H8(F};7/2) — H¥O(F}; 7Z/2) is non-trivial. If the
composition magsy = prgs og; 510 %2, 57\ §9v 59 — 59 is non-trivial, we replace,

by the composition of, and the homotopy equivalengeS” v 5% v 59 — 57 v $9v §?

where &|¢7 a”d5|sf are the identity maps angl 4o is the unique co-H-structure map
$:89 > $2v Sf; then we obtain thap; is trivial, since 2j9 = 0. ThenA’ is homotopy
equivalent to((S” v §%) Uy, 1) v S9. Let A denote the subcomples” v 5%) Uy, ! of
Alandy =¥|s A — Fl.

Lemma 3.1. F; ishomotopy equivalent to F; Uy, CA.

Proof. The elements irH*(F; Z) corresponding to those iIH*(A; Z) under the induced

map of the inclusion coincides with the module of transgressive elements with respect
to the fibration (3.1) (see [6, Chapter 6]). Thus we may identtfy1(A;Z) =
S (H™ (F}, % 2))) € H'X(F; Z):

H'-Y(F: 7) —2E~ H"(F], F; Z) <" H"(F}, *; 7)
H"Y(A: Z)—2= H"(F], A; Z) <2 — H"(F}, %; 7)),

wherectr andiy are given by, andér andé4 denote the connecting homomorphisms of
the long exact sequences for the p&iFg, F) and(F;, A), respectively. Thus the image of
84 is contained in the image of and we also have

H"(F{,A;Z) = H"(F{Uy CA,CA; Z) = H"(F{ Uy CA, x; Z).
Since the composition mapi F] > F} is trivial, we can define a map
fiF{Uy CA— F},

byf|Fl/=t:Fi—> Fyand f|ca = *.
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To complete the lemma, we must show that: H"(F}; Z) = Z — H"(F] Uy
CA;Z)=Zis an isomorphism for = 3,5, 7, 8, 10, 12. We have a commutative diagram

o+

H"(FL; 7) H"(F;Z)

|

H"(F{UCA, F}: Z) > H"(F]UCA; Z) —" =~ H"(F}; 7)),

where the bottom row is a part of the exact sequence for the(pgit CA, F)). The
induced map* is an isomorphism fon < 7, sinceH"(F{ U CA, F{;Z) =0 forn <7
and since™ is an isomorphism forn < 7. Then we obtain that* is an isomorphism for
n < 7. Moreover we can show thagt: H"(F; U CA, F{;Z) — H"(F; U CA;Z) is an
isomorphism forn > 8, by considering the exact sequence for the p&jrU CA, F;),
since we haved" (F;) = 0 for n > 8. To perform the other cases for=8, 10,12, it is
sufficient to show thay ™ is surjective. In fact, we have a commutative diagram

H (A3 ) — = HP(F}, A )~ H"(F}, %, 7)
zlg T S J/f*
H'(SA, % 7)—==H"(FJUCA, Fj: Z) —L = H"(F| U CA, % Z),

whereX is the suspension isomorphism. Singceis an isomorphism for > 8, we obtain
thats 4 is an isomorphism for > 8. Since the image aof, is contained in the imagg,,
we see thay* is surjective fom > 8, and hencg is a homotopy equivalence.c

Proposition 3.2. We have wcal( F)) = cat(F/) = Cat(F)) =i.
Proof. The cohomology of implies thatwcat(F) > i. The cone-decomposition

F{=XCP3  F,~F/UCA, F,=F,ucs*

implies that CatF}) < i, which completes the proof.O

4. Proof of Theorem 1.1

We define afiltrationfo =+« C F1 C Fo C F3 C F4 C F5 = Spin(7) by
F1=SU®)?, Fo=SU4)12 U 5,
F3=SU@) UebUe®Uelluels, F4 = Spin(7)19.

We need the following lemma to prove Theorem 4.2.

Lemma 4.1. We have a homeomor phism of pairs

(CA1, A1) x (CAp, A2) = (C(A]_ * Ag), A1 % Az).
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(The proof can be found in pp. 482—-483 of [14].)
Now Theorem 1.1 follows from the following theorem.

Theorem 4.2. We have wcat(F;) = cat(F;) = Cal(F;) =i.

Proof. The mod 2 cohomology of; implies thatwcat(F;) > i. Then it is sufficient to
show that CatF;) < i. Obviously we have a homeomorphigi= > CP3. Since the cell
% is attached td”;, we obtain that, ~ F1 U C(S° v A) using Lemma 3.1. Since we have
QU ellyeld=eb(e3UedUe’), the composition map

(€%, 8°) x (CCP3,CP3) — (CS°, $°) x (ZCP3, %)
— (F2 Ueduelltu 613, F2)

is a relative homeomorphism. Then we obt#nu e U el U e13 = F, U C(S° % CP3)
using Lemma 4.1. The celi!® is the highest-dimensional cell of $4) and is attached
to F». Then we obtainFs >~ F» U C(S1* v (S° x CP3)). Now we consider the following
composition map:

(C(S°% A), S % A) = (CS°, 8°) x (CA, A) — (CS°, §°) x (F}, F{) — (Fa, F3).

Since we haveel? U €16 U €18 = ¢5(¢8 U €10 U ¢1?), the right map is a relative
homeomorphism. The left map induces an isomorphism of homologies of pairs so that
the mapH..(F3U C(S° x A), Fs; Z) — H,(Fa4, F3; Z) is an isomorphism. Thus we obtain
F4~ F3UC(S° % A). Obviously we have a homeomorphisia= F4 U CS%°. O
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