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Abstract

We give a cellular decomposition of the compact connected Lie group Spin(7). We also determine
the L–S categories of Spin(7) and Spin(8).
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1. Introduction

In this paper, we assume that a space has the homotopy type of a CW-complex.
Whitehead [15] constructed a cellular decomposition of SO(n) using the natura

inclusion mapRPn−1 → SO(n) (see also [7]). Yokota [16–18] constructed cellu
decompositions of SU(n), U(n) and Sp(n) according to his principle that the number
the cells in the decomposition should be minimal, where the decomposition of S(n)

is constructed by making use of the natural inclusion mapΣCPn−1 → SU(n); see
Remark 2.4(2). Araki [1] gave a cellular decomposition of Spin(n) using the decompositio
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of SO(n) and the double covering Spin(n)→ SO(n), where the number of the cells of the
f our

ucted
he

tion

3]

d

such as
decomposition is not minimal, that is, it does not satisfy the Yokota principle. One o
objects is to construct the cellular decomposition of Spin(7) so that it satisfy the Yokota
principle.

Among the exceptional Lie groups, the second and third authors [8] constr
a cellular decomposition of G2 which has the minimum number of the cells in t
decomposition, that is, it satisfies the Yokota principle.

Recall that we have the following isomorphisms:

Spin(3)∼= S3, Spin(4)∼= S3× S3,

Spin(5)∼= Sp(2), Spin(6)∼= SU(4).

Thus Spin(7) is the first non-trivial case in determining the cellular decomposi
satisfying the Yokota principle, which is one of our purposes.

The other purpose is to determine the Lusternik–Schnirelmann category of Spin(7) by
using the cellular decomposition.

The Lusternik–Schnirelmanncategory, catX, of a spaceX is the least integern such that
X is the union ofn+ 1 open subsets, each of which is contractible inX. Whitehead [13]
showed that catX � n if and only if the diagonal map∆n+1 :X→∏n+1

X is homotopic
to a composition map

X→ Tn+1(X) ↪→
n+1∏

X,

where Tn+1(X) is the fat wedge

Tn+1(X)= {
(x1, . . . , xn+1) ∈Xn+1 | somexi is the base point

}
and Tn+1(X) ↪→∏n+1X is the inclusion map.

The weak Lusternik–Schnirelmann category,wcatX, is the least integern such that the
reduced diagonal map

∆̄n+1 :X→
n+1∧

X =
n+1∏

X/Tn+1(X)

is trivial. Then it is easy to see thatwcatX � catX using Whitehead’s characterization [1
of the Lusternik–Schnirelmann category.

The strong Lusternik–Schnirelmann category, CatX, is the least integern such that
there exists a spaceX′ which is homotopy equivalent toX and is covered byn+ 1 open
subsets contractible in themselves. CatX is closely related with catX, and Ganea an
Takens [12] showed that

catX � CatX � catX+ 1.

Ganea [3] showed that CatX is equal to the invariant which is the least integern such
that there aren cofibre sequencesAi → Xi−1 → Xi, 1 � i � n, with X0 = ∗ andXn

homotopy equivalent toX.
The Lusternik–Schnirelmann category of some Lie groups has been determined,

cat(U(n))= n and cat(SU(n))= n− 1 by Singhof [10], cat(Sp(2))= 3 by Schweitzer [9],
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cat(Sp(3)) = 5 by the first and second named authors [4], and Fernández-Suárez et al.

g

ctible,
al open

on of
r

ory

he

t

[2], cat(SO(2)) = 1, cat(SO(3)) = 3, cat(SO(4)) = 4, cat(SO(5)) = 8 by James and
Singhof [5]. A simple argument gives that cat(G2) = 4 (see, for example, [4]). Amon
these cases it is shown thatwcatG= catG=CatG for G= Sp(n), G2. As forG= SO(n)
for n= 2,3,4,5, one can also show the equality. We can observe that Cat(SU(n)) � n− 1
by modifying the categorical open subsets given by Singhof [10] so as to be contra
e.g., by adding paths among contractible connected components of each categoric
subset and hence catG= CatG. Thus we havewcatG = catG= CatG for anyG when
catG is determined.

Theorem 1.1. We have wcat(Spin(7))= cat(Spin(7))=Cat(Spin(7))= 5.

Since Spin(8) is homeomorphic to Spin(7)× S7, we obtain the following corollary.

Corollary 1.2. We have wcat(Spin(8))= cat(Spin(8))=Cat(Spin(8))= 6.

The paper is organized as follows. In Section 2 we give a cellular decompositi
Spin(7) such that Spin(7) contains a subgroup SU(4), which turns out to be useful fo
determining the Lusternik–Schnirelmann category of Spin(7). In Section 3 we give a
cone-decomposition of SU(4), which gives rise to the Lusternik–Schnirelmann categ
of Spin(7) in Section 4.

2. The cellular decomposition of Spin(7)

In this section, we use the notation in [8]. LetC be the Cayley algebra. (We adopt t
definition of the Cayley algebra from [19].) SO(8) acts onC naturally sinceC∼= R8 as an
R-module. We regard SO(7) as the subgroup of SO(8) fixing e0, the unit ofC. As is well
known, the exceptional Lie group G2 is defined by

G2=
{
g ∈ SO(7) | g(x)g(y)= g(xy), x, y ∈ C

}= Aut(C).

According to [19], for eachg ∈ SO(7), there is a unique elementg̃ up to sign such tha
g(x)g̃(y) = g̃(xy), and Spin(7) = {g̃ | g ∈ SO(7)}. If g ∈ G2, then g = g̃, so G2 is a
subgroup of Spin(7). Observe that the algebra generated bye1 in C is isomorphic toC.
SU(4) acts onC naturally, sinceC∼= C4 as aC-module whose basis is{e0, e2, e4, e6}. We
regard SU(3) as the subgroup of SU(4) fixing e0 and also as the subgroup of G2 fixing e1.

Let Di = {(x1, . . . , xi) ∈Ri |∑x2
i � 1}. We define four maps:

A :D3→ SO(8), B :D2→ SO(8),

C :D1→ SO(8), D :D2→ SO(8)

as follows:
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
1



A(x1, x2, x3)=



1

1

1

1− 2X2 −2x1X −2x2X −2x3X

2x1X 1− 2X2 2x3X −2x2X

2x2X −2x3X 1− 2X2 2x1X

2x3X 2x2X −2x1X 1− 2X2



,

B(y1, y2)=




1

1

y1 −y2 −Y 0

y2 y1 0 −Y

Y 0 y1 y2

0 Y −y2 y1

1

1




,

C(z1)=




1

z1 0 −Z

0 1 0

Z 0 z1

1

z1 0 −Z

0 1 0

Z 0 z1




,

D(w1,w2)=




w1 −w2 −W 0

w2 w1 0 −W

W 0 w1 w2

0 W −w2 w1

1

1

1

1




,

where we put for simplicity

X =
√

1− x2
1 − x2

2 − x2
3, Y =

√
1− y2

1 − y2
2,

Z =
√

1− z2
1, W =

√
1−w2

1 −w2
2.
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We prepare the following two lemmas.

s

t

Lemma 2.1. The elements A(x1, x2, x3), B(y1, y2), C(z1) and D(w1,w2) belong to
Spin(7).

Proof. Note that the elementsA(x1, x2, x3), B(y1, y2) andC(z1) are exactly the same a
in [8] so they belong to G2 (see [8] for their properties). In the proof, we denoteD(w1,w2)

simply byD. Obviously elements in the image ofA andD commute with each other. Le
D′ be the matrix



1

1

1

1

w1 −w2 W 0

w2 w1 0 −W

−W 0 w1 −w2

0 W w2 w1




.

Then we can show by a tedious calculation thatD′xDy =D(xy) for anyx, y ∈ C, which
gives us the result. ✷

Let ϕ3, ϕ5, ϕ6 andϕ7 be maps

ϕ3 :D3→ Spin(7),

ϕ5 :D3×D2→ Spin(7),

ϕ6 :D3×D2×D1→ Spin(7),

ϕ7 :D3×D2×D2→ Spin(7)

respectively defined by the equalities

ϕ3(x)=A(x),

ϕ5(x,y)= B(y)A(x)B(y)−1,

ϕ6(x,y, z)= C(z)B(y)A(x)B(y)−1C(z)−1,

ϕ7(x,y,w)=D(w)B(y)A(x)B(y)−1D(w)−1,

wherex = (x1, x2, x3), y = (y1, y2), z = (z1) andw = (w1,w2). As noted aboveϕi for
i = 3,5,6 maps into G2 and hence into Spin(7). So doesϕ7, sinceD belongs Spin(7).
We define sixteen cellsej for j = 0,3,5,6,7,8,9,10,11,12,13,14,15,16,18,21
respectively as follows:

e0= {1}, e3= Imϕ3, e5= Imϕ5, e6= Imϕ6, e7= Imϕ7,

e8= e5e3, e9= e6e3, e10= e7e3, e11= e6e5, e12= e7e5,

e13= e6e7, e14= e6e5e3, e15= e7e5e3, e16= e6e7e3,

e18= e6e7e5, e21= e6e7e5e3,
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where the product of two (or more) cells is defined by using the multiplication of Spin(7).

For later use we observe thatϕi for i = 3,5,7 maps into SU(4). In fact, the matricesA, B,
D belong to SU(4) by their definition.

Let S7 be the unit sphere ofC. Then we have a principal bundle over it:

SU(3)→ SU(4)
p0−→ S7,

wherep0(g)= ge0.

Lemma 2.2. Let V 7 = D3 × D2 × D2. Then the composite map p0ϕ7 : (V 7, ∂V 7)→
(S7, e0) is a relative homeomorphism.

Proof. We express the map(p0ϕ7)|V 7\∂V 7 as follows:


a0

a1

a2

a3

a4

a5

a6

a7




=D(w)B(y)A(x)B(y)−1D(w)−1e0=




1− 2X2Y 2W2

2x1XY 2W2

2(w1X− x1w2)XY 2W

−2(w2X+ x1w1)XY 2W

2(−y1X+ x1y2)XYW

2(y2X+ x1y1)XYW

2x2XYW

2x3XYW




and hence we have


1− a0

a1

a2

a3

a4

a5

a6

a7




= 2XYW




XYW

x1YW

(w1X− x1w2)Y

−(w2X+ x1w1)Y

−y1X+ x1y2

y2X+ x1y1

x2

x3




.

By a tedious calculation we can obtain that

x1=
a1

√
(1− a0)2+ a2

1 + a2
2 + a2

3 + a2
4 + a2

5√
2(1− a0)((1− a0)2+ a2

1)

,

x2= a6√
2(1− a0)

,

x3= a7√
2(1− a0)

,

y1= a1a5− (1− a0)a4√
((1− a0)2+ a2

1)((1− a0)2+ a2
1 + a2

2 + a2
3 + a2

4 + a2
5)

,
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y = a1a4+ (1− a0)a5√ ,

tructed,

hich

ve

wer-
s

to
2
((1− a0)2+ a2

1)((1− a0)2+ a2
1 + a2

2 + a2
3 + a2

4 + a2
5)

w1= (1− a0)a2− a1a3√
((1− a0)2+ a2

1)((1− a0)2+ a2
1 + a2

2 + a2
3)

,

w2= −a1a2− (1− a0)a3√
((1− a0)2+ a2

1)((1− a0)2+ a2
1 + a2

2 + a2
3)

.

The details of checking are left to the reader. Thus the inverse map has been cons
which completes the proof.✷

In a similar way to that of Section 3 of [8], we can obtain the following theorem, w
is essentially the same as Yokota’s decomposition [16].

Proposition 2.3. e0 ∪ e3 ∪ e5 ∪ e7 ∪ e8 ∪ e10 ∪ e12 ∪ e15 thus obtained is a cellular
decomposition of SU(4).

Proof. First we show that ˚ei ∩ e̊j = ∅ if i �= j . We consider the following three cases:

(1) For the case wherei, j ∈ {0,3,5,8}; both cellsei andej are in SU(3) ande0 ∪ e3 ∪
e5 ∪ e8 is a cellular decomposition of SU(3); see [8, Proposition 3.2]. Then we ha
e̊i ∩ e̊j = ∅ if i �= j .

(2) For the case wherei ∈ {0,3,5,8} andj ∈ {7,10,12,15}; we havep0(e̊
i)= {e0} and

p0(e̊
j )= S7\{e0}. Then we have ˚ei ∩ e̊j = ∅.

(3) For the case wherei, j ∈ {7,10,12,15}; suppose thatA ∈ e̊i ∩ e̊j . Since ˚ei = e̊7e̊i−7

and e̊j = e̊7e̊j−7, we can putA = A1A2 = A′1A′2 whereA1,A
′
1 ∈ e̊7, A2 ∈ e̊i−7 and

A′2 ∈ e̊j−7. We haveA1= A′1, sincep0(A1)= p0(A1A2)= p0(A
′
1A
′
2)= p0(A

′
1) and

p0|e̊7 is monic. Then we haveA2=A′2 and the first case shows thati−7= j −7, that
is, i = j . Thuse̊i ∩ e̊j = ∅ if i �= j .

Next, we will check that the boundaries of the cells are included in the lo
dimensional cells. In the proof of Proposition 3.2 [8], it is proved that the boundarieė3,
ė5 andė8 are included in the lower-dimensional cells. Observe that the boundaryė7 is the
union of the following three sets:

ė7= {
DBAB−1D−1 |A ∈A

(
Ḋ3), B ∈B

(
D2), D ∈D

(
D2)},

∪ {
DBAB−1D−1 |A ∈A

(
D3), B ∈B

(
Ḋ2), D ∈D

(
D2)},

∪ {
DBAB−1D−1 |A ∈A

(
D3), B ∈B

(
D2), D ∈D

(
Ḋ2)}.

The first set contains only the identity element, sinceA is the identity element. It is easy
see that the second set is contained ine3 and that the third set is contained ine5. We have
ė10= e7ė3∪ ė7e3⊂ e7e0∪e5e3= e7∪e8. We also havėe12= ė7e5∪e7ė5⊂ e5e5∪e7e3=
e8∪ e10, andė15= ė7e5e3∪ e7ė5e3 ∪ e7e5ė3⊂ e5e5e3∪ e7e3e3 ∪ e7e5= e8∪ e10∪ e12.
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Finally, we will show that the inclusion mape0∪ e3∪ e5∪ e7∪ e8∪ e10∪ e12∪ e15→

e
er IV

-

SU(4) is epic. Letg ∈ SU(4). If p0(g) = e0, theng is contained in SU(3) = e0 ∪ e3 ∪
e5 ∪ e8. Suppose thatp0(g) �= e0. There is an elementh ∈ e7 such thatp0(h) = p0(g).
Thus we haveh−1g ∈ SU(3)= e0∪ e3∪ e5∪ e8, sincep0(h

−1g)= e0. Therefore we have
g ∈ h(e0 ∪ e3 ∪ e5 ∪ e8)⊂ e0∪ e3∪ e5∪ e7∪ e8∪ e10∪ e12∪ e15. ✷
Remark 2.4.

(1) We regard SO(6) as the subgroup of SO(7) fixing e1. Letπ : Spin(6)→ SO(6) be the
double covering. Then, according to the proof of Lemma 2.1,π(SU(4))⊂ SO(6) so
thatπ |SU(4) : SU(4)→ SO(6) is the double covering.

(2) According to [18], there is a subspaceΣCPn of SU(n + 1) which consists of the
elements

M




1
. . .

1
e2iθ


M−1




1
. . .

1
e−2iθ




for any elementsM in SU(n + 1). Obviously, the subcomplexe0 ∪ e3 is SU(2) =
ΣCP 1. It is easy to see that the subcomplexe0∪ e3∪ e5 is homeomorphic toΣCP 2,
since we have

BAB−1= BM




1
1

1
e2iθ


M−1




1
1

1
e−2iθ


B−1

= BM




1
1

1
e2iθ


M−1B−1




1
1

1
e−2iθ




for someM ∈ SU(2). In a similar way, the subcomplexe0 ∪ e3 ∪ e5 ∪ e7 is homeo-
morphic toΣCP 3. Thus the cellular decomposition of SU(4) is essentially the sam
as Yokota’s decomposition. Moreover, according to Proposition 2.6 of Chapt
of [11], we havee2i+1e2j+1 ⊂ e2j+1e2i+1 for i < j ; in fact we havee2i+1e2j+1 =
e2j+1e2i+1 (see [20]).

Let S6 be the unit sphere ofR7 whose basis is{ei | 1 � i � 7}. We consider the follow
ing diagram

SU(3) G2 S6

SU(4) Spin(7)
p

π

S6

SO(6) SO(7) S6
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where the horizontal lines are principal fibre bundles andp(g)= π(g)e1.

at

ional

that
,

e
g the

the
Lemma 4.1 of [8] implies the following lemma immediately.

Lemma 2.5. Put V 6 = D3 × D2 × D1. Then the composite map pϕ6 : (V 6, ∂V 6) →
(S6, {e1}) is a relative homeomorphism.

Now we can state one of our main results.

Theorem 2.6. The cell complex e0 ∪ e3 ∪ e5 ∪ e6 ∪ e7 ∪ e8 ∪ e9 ∪ e10∪ e11∪ e12∪ e13∪
e14∪ e15∪ e16∪ e18∪ e21 gives a cellular decomposition of Spin(7).

Proof. First we show that ˚ei ∩ e̊j = ∅ if i �= j . We consider the following three cases:

(1) For the case wherei, j ∈ {0,3,5,7,8,10,12,15}; both cellsei andej are in SU(4)
and e0 ∪ e3 ∪ e5 ∪ e7 ∪ e8 ∪ e10 ∪ e12 ∪ e15 is a cellular decomposition of SU(4),
whence we have ˚ei ∩ e̊j = ∅ if i �= j .

(2) For the case wherei ∈ {0,3,5,7,8,10,12,15} andj ∈ {6,9,11,13,14,16, 18,21};
we havep(e̊i )= {e1} andp(e̊j )= S6\{e1}, whence we have ˚ei ∩ e̊j = ∅.

(3) For the case wherei, j ∈ {6,9,11,13,14,16,18,21}, suppose thatA ∈ e̊i ∩ e̊j . Since
e̊i = e̊6e̊i−6 and e̊j = e̊6e̊j−6, we can putA = A1A2 = A′1A′2, whereA1,A

′
1 ∈ e̊6,

A2 ∈ e̊i−6 andA′2 ∈ e̊j−6. We haveA1= A′1, sincep(A1)= p(A1A2)= p(A′1A′2)=
p(A′1) and p|e̊6 is monic. Then we haveA2 = A′2 and the first case shows th
i − 6= j − 6, that is,i = j . Thuse̊i ∩ e̊j = ∅ if i �= j .

Next, we will check that the boundaries of the cells are included in the lower-dimens
cells. In Proposition 2.3, it is proved that the boundaries of the cells of SU(4) are included
in the lower-dimensional cells. In the proof of Theorem 4.2 in [8], it was shown
ė6⊂ e3∪e5, ė9⊂ e6∪e8, ė11⊂ e5∪e9 andė14⊂ e8∪e9∪e11. By using (2) of Remark 2.4
we also obtain

ė13= e6ė7∪ ė6e7⊂ e11∪ e12,

ė16= e6e7ė3∪ e6ė7e3 ∪ ė6e7e3⊂ e13∪ e14∪ e15,

ė18= e6e7ė5∪ e6ė7e5 ∪ ė6e7e5⊂ e16∪ e14∪ e15,

ė21= e6e7e5ė3∪ e6e7ė5e3∪ e6ė7e5e3 ∪ ė6e7e5e3⊂ e18∪ e16∪ e14∪ e15.

Let S = e0∪ e3∪ e5∪ e7∪ e8∪ e10∪ e12∪ e15 andT = e0∪ e3∪ e5∪ e6∪ e7∪ e8∪ e9∪
e10∪ e11∪ e12∪ e13∪ e14∪ e15∪ e16∪ e18∪ e21. Finally, we will show that the inclusion
mapT → Spin(7) is epic. Letg ∈ Spin(7). If p(g)= e1, theng is contained in SU(4)= S.
Suppose thatp(g) �= e1. There is an elementh ∈ e6 such thatp(h)= p(g). Thus we have
h−1g ∈ SU(4) sincep(h−1g)= e1. Therefore we haveg ∈ hS ⊂ T . ✷
Remark 2.7. Araki [1] also gave a cellular decomposition of Spin(n), but the one we hav
given here is a cellular decomposition with the minimum number of cells, satisfyin
Yokota principle [16,18,20]. As will be seen later, it is effectively used to determine
Lusternik–Schnirelmann category.
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It is easy to give a cellular decomposition of Spin(8) using a homeomorphism

cone

e
to

e

on
Spin(8)→ Spin(7)× S7.

3. The cone-decomposition of SU(4)

Obviously there is a filtrationF ′0 = ∗ ⊂ F ′1 = SU(4)(7) ⊂ F ′2 = SU(4)(12) ⊂ F ′3 =
SU(4). It is well-known thatF ′1 = ΣCP 3 = S3 ∪ e5 ∪ e7 andF ′2 = F ′1 ∪ e8 ∪ e10∪ e12.
Thus the integral cohomologyHn(F ′2;Z) is given by

Hn
(
F ′2;Z

)∼=



Z〈1〉 (n= 0),

Z〈yn〉 (n= 3,5,7,8,10,12),

0 (otherwise).

The action of the squaring operationSq2 is given as follows:

Sq2yn =
{
yn+2 for n= 3,10,

0 for n= 5,7,8,12

where yn is regarded as an element of the mod 2 cohomology. To give the
decomposition of SU(4), we use the following homotopy fibration:

F
Ψ−→ F ′1

ι−→ F ′2. (3.1)

Without loss of generality, we may regard this as a Hurewicz fibration overF ′2.
Firstly we consider the Serre spectral sequence(E

∗,∗
r , dr) associated with the abov

fibration, where the generators ofE∗,02 for ∗ � 7 are permanent cycles and survive
E∞-terms. HenceF is 6-connected and the transgressionτ :H 7(F ;Z)→ H 8(F ′2;Z) is
an isomorphism toH 8(F ′2;Z)∼= Z〈y8〉. ThusH 7(F ;Z)∼= Z〈x7〉 for somex7 ∈H 7(F ;Z).

Similarly, the generators inE3,7
2
∼= Z〈y3⊗ x7〉 andE10,0

2
∼=H 10(F ′2;Z)∼= Z〈y10〉 must lie

in the image of differentialsd3 andd10= τ :H 9(F ;Z)→ H 10(F ′2;Z) respectively, and
we have thatH 8(F ;Z) = 0 andH 9(F ;Z) ∼= Z〈x9〉 ⊕ Z〈x ′9〉, where the elementsx9 and
x ′9 in H 9(F ;Z) correspond tox10 andy3⊗ x7 by the transgressionτ andd3 respectively.
We remark that the choice of the generatorx ′9 is not unique. Continuing this process, w
have thatH 10(F ;Z) = 0 andH 11(F ;Z) ∼= Z〈x11〉 ⊕ Z〈x ′11〉 ⊕ Z〈x ′′11〉 ⊕ Z〈x ′′′11〉 whose
generators correspond tox12, y3⊗x9, y3⊗x ′9 andy5⊗x7 respectively by the transgressi
τ and differentialsd3, d3 andd5.

Thus the integral cohomologyHn(F ;Z) for 0 � n � 11 is given by

Hn(F ;Z)∼=




Z〈1〉 (n= 0),

Z〈x7〉 (n= 7),

Z〈x9〉 ⊕Z〈x ′9〉 (n= 9),

Z〈x11〉 ⊕Z〈x ′11〉 ⊕Z〈x ′′11〉 ⊕Z〈x ′′′11〉 (n= 11),

0 (otherwise)

where x7, x9 and x11 are transgressive generators inH ∗(F ;Z). HenceF has, up to
homotopy, a cellular decompositione0 ∪ e7 ∪ϕ1 e9 ∪ϕ′1 e9

1 ∪ϕ2 e11∪ (cells in dimensions
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� 11), where the cellse7, e9 ande11 correspond tox7, x9 andx11 respectively. Then we

ce
ession

e see

or

p

spect

of
of
obtain a subcomplexA′ = e0∪ e7∪ϕ1 e
9 ∪ϕ′1 e

9
1 ∪ϕ2 e

11 of F .

Secondly, we determine the attaching mapsϕ1 and ϕ′1: Let us recall thatπ8(S
7) ∼=

Z/2〈η7〉 whose generatorη7 can be detected bySq2, the mod 2 Steenrod operation. Sin
the action of mod 2 Steenrod operation commutes with the cohomology transgr
(see [6, Proposition 6.5]), we see thatSq2x7 is transgressive, and hence iscx9 for some
c ∈ Z/2. We know thatτx9 = y10 �= 0 andτSq2x7 = Sq2τx7 = Sq2y8 = 0, and hence
Sq2x7 must be trivial. Thus the attaching mapsϕ1 andϕ′1 are both null homotopic andA′
is homotopy equivalent to(S7 ∨ S9∨ S9

1)∪ϕ2 e
11.

Thirdly we check the composition of projections with the attaching mapϕ2 : S10→
S7 ∨ S9 ∨ S9

1 to S9 and S9
1, which can also be detected bySq2. Again by the

commutativity of the action of mod 2 Steenrod operation with the transgression, w

that the composition map prS9 ◦ϕ2 :S10 ϕ2−→ S7 ∨ S9 ∨ S9
1 → S9 represents a generat

of π10(S
9) ∼= Z/2〈η9〉, sinceSq2 :H 8(F ′2;Z/2)→ H 10(F ′2;Z/2) is non-trivial. If the

composition mapφ1= prS9
1
◦ϕ2 :S10 ϕ2−→ S7∨ S9∨ S9

1 → S9
1 is non-trivial, we replaceϕ2

by the composition ofϕ2 and the homotopy equivalenceξ :S7 ∨ S9 ∨ S9
1 → S7 ∨ S9 ∨ S9

1
where ξ |S7 and ξ |S9

1
are the identity maps andξ |S9 is the unique co-H-structure ma

φ :S9 → S9 ∨ S9
1; then we obtain thatφ1 is trivial, since 2η9 = 0. ThenA′ is homotopy

equivalent to((S7∨ S9)∪ϕ2 e
11)∨ S9

1. LetA denote the subcomplex(S7 ∨ S9)∪ϕ2 e
11 of

A′ andψ = Ψ |A :A→ F ′1.

Lemma 3.1. F ′2 is homotopy equivalent to F ′1 ∪ψ CA.

Proof. The elements inH ∗(F ;Z) corresponding to those inH ∗(A;Z) under the induced
map of the inclusion coincides with the module of transgressive elements with re
to the fibration (3.1) (see [6, Chapter 6]). Thus we may identifyHn−1(A;Z) =
δ−1
F (ι∗F (Hn(F ′2,∗;Z)))⊂Hn−1(F ;Z):

Hn−1(F ;Z)
δF Hn(F ′1,F ;Z) Hn(F ′2,∗;Z)

ι∗F

=

Hn−1(A;Z)
δA Hn(F ′1,A;Z) Hn(F ′2,∗;Z),

ι∗A

whereιF andιA are given byι, andδF andδA denote the connecting homomorphisms
the long exact sequences for the pairs(F ′1,F ) and(F ′1,A), respectively. Thus the image
δA is contained in the image ofι∗A and we also have

Hn
(
F ′1,A;Z

)∼=Hn
(
F ′1 ∪ψ CA,CA;Z)∼=Hn

(
F ′1 ∪ψ CA,∗;Z)

.

Since the composition mapA
ψ→ F ′1

ι→ F ′2 is trivial, we can define a map

f :F ′1 ∪ψ CA→ F ′2,

by f |F ′1 = ι :F ′1→ F ′2 andf |CA = ∗.
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To complete the lemma, we must show thatf ∗ :Hn(F ′;Z) ∼= Z → Hn(F ′ ∪ψ

m

r

2 1
CA;Z)∼= Z is an isomorphism forn= 3,5,7,8,10,12. We have a commutative diagra

Hn(F ′2;Z) ι∗

f ∗

Hn(F ′1;Z)

=

Hn(F ′1 ∪CA,F ′1;Z)
j∗

Hn(F ′1 ∪CA;Z) i∗ Hn(F ′1;Z),

where the bottom row is a part of the exact sequence for the pair(F ′1 ∪ CA,F ′1). The
induced mapi∗ is an isomorphism forn � 7, sinceHn(F ′1 ∪ CA,F ′1;Z) = 0 for n � 7
and sinceι∗ is an isomorphism forn � 7. Then we obtain thatf ∗ is an isomorphism fo
n � 7. Moreover we can show thatj∗ :Hn(F ′1 ∪ CA,F ′1;Z)→ Hn(F ′1 ∪ CA;Z) is an
isomorphism forn � 8, by considering the exact sequence for the pair(F ′1 ∪ CA,F ′1),
since we haveHn(F ′1) = 0 for n � 8. To perform the other cases forn = 8,10,12, it is
sufficient to show thatf ∗ is surjective. In fact, we have a commutative diagram

Hn−1(A;Z)
δA

∼=Σ

Hn(F ′1,A;Z)

∼=
Hn(F ′2,∗;Z)

ι∗A

f ∗

Hn(ΣA,∗;Z)
∼= Hn(F ′1 ∪CA,F ′1;Z)

j∗
Hn(F ′1 ∪CA,∗;Z),

whereΣ is the suspension isomorphism. Sincej∗ is an isomorphism forn � 8, we obtain
thatδA is an isomorphism forn � 8. Since the image ofδA is contained in the imageι∗A,
we see thatf ∗ is surjective forn � 8, and hencef is a homotopy equivalence.✷
Proposition 3.2. We have wcat(F ′i )= cat(F ′i )=Cat(F ′i )= i .

Proof. The cohomology ofF ′i implies thatwcat(F ′i ) � i. The cone-decomposition

F ′1=ΣCP 3, F ′2 F ′1 ∪CA, F ′3= F ′2 ∪CS14

implies that Cat(F ′i ) � i, which completes the proof.✷

4. Proof of Theorem 1.1

We define a filtrationF0= ∗⊂ F1⊂ F2⊂ F3⊂ F4⊂ F5= Spin(7) by

F1= SU(4)(7), F2= SU(4)(12) ∪ e6,

F3= SU(4)∪ e6∪ e9∪ e11∪ e13, F4= Spin(7)(18).

We need the following lemma to prove Theorem 4.2.

Lemma 4.1. We have a homeomorphism of pairs

(CA1,A1)× (CA2,A2)=
(
C(A1 ∗A2),A1 ∗A2

)
.
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(The proof can be found in pp. 482–483 of [14].)
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Now Theorem 1.1 follows from the following theorem.

Theorem 4.2. We have wcat(Fi)= cat(Fi)=Cat(Fi)= i .

Proof. The mod 2 cohomology ofFi implies thatwcat(Fi) � i. Then it is sufficient to
show that Cat(Fi) � i. Obviously we have a homeomorphismF1=ΣCP 3. Since the cel
e6 is attached toF1, we obtain thatF2 F1∪C(S5∨A) using Lemma 3.1. Since we ha
e9∪ e11∪ e13= e6(e3∪ e5∪ e7), the composition map

(
CS5, S5)× (

CCP 3,CP 3)→ (
CS5, S5)× (

ΣCP 3,∗)
→ (

F2 ∪ e9 ∪ e11∪ e13,F2
)

is a relative homeomorphism. Then we obtainF2 ∪ e9 ∪ e11∪ e13= F2 ∪ C(S5 ∗ CP 3)

using Lemma 4.1. The celle15 is the highest-dimensional cell of SU(4) and is attached
to F2. Then we obtainF3  F2 ∪ C(S14∨ (S5 ∗ CP 3)). Now we consider the following
composition map:(

C
(
S5 ∗A)

, S5 ∗A)= (
CS5, S5)× (CA,A)→ (

CS5, S5)× (
F ′2,F ′1

)→ (F4,F3).

Since we havee14 ∪ e16 ∪ e18 = e6(e8 ∪ e10 ∪ e12), the right map is a relativ
homeomorphism. The left map induces an isomorphism of homologies of pairs s
the mapH∗(F3 ∪C(S5 ∗A),F3;Z)→H∗(F4,F3;Z) is an isomorphism. Thus we obta
F4 F3 ∪C(S5 ∗A). Obviously we have a homeomorphismF5= F4 ∪CS20. ✷
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