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Abstract The primary goal of this work is to extend the work done in, Tamer (2009), to provide high

accuracy satellite attitude and orbit estimates needed for imaging purposes and also before execution

of spacecraft orbital maneuvers for the next Egyptian scientific satellite. The problem of coarse satel-

lite attitude and orbit estimation based on magnetometer measurements has been treated in the liter-

ature. The current research expands the field of application from coarse and slow converging estimates

to accurate and fast converging attitude and orbit estimates within 0.1�, and 10 m for attitude angles

and spacecraft location respectively (1-r). The magnetometer is used for both spacecraft attitude and

orbit estimation, aided with gyro to provide angular velocity measurements, star sensor to provide

attitude quaternion, and GPS receiver to provide spacecraft location. The spacecraft under consider-

ation is subject to solar radiation pressure forces and moments, aerodynamics forces and moments,

earth’s oblateness till the fourth order (i.e. J4), gravity gradientmoments, and residualmagnetic dipole

moments. The estimation algorithm developed is powerful enough to converge quickly (actually

within 10 s) despite very large initial estimation errors with sufficiently high accuracy estimates.
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1. Introduction

Magnetometer has the advantages of, low cost, high reliabil-

ity, non-intermittent measurements (compared to sun-senor
which could not be used during eclipse times), and long life-
time due to the absence of moving parts inside. On the other
hand, magnetometer measurements could not be used for

instantaneous spacecraft attitude determination process. This
is because attitude determination algorithms found in refer-
ences (Mekky, 2003; Wertz, 1997) (such as q-method, alge-

braic method, optimized triad, modified algebraic method,
etc.) require at least two or more sensors that measure more
than a single physical quantity. In order to use measurements

of a single physical quantity (such as the earth’s magnetic field
measured by a three-axis magnetometer) estimation algo-
rithms (which are by default model based) must be used in-

stead. The problem of coarse satellite attitude and orbit
estimation based on magnetometer measurements has been
treated in the literature (Tamer, 2009). In this treatment, nec-
essary derivations to reveal the algorithms found in Shorshi

and Bar-Itzhack (1995), and Deutschmann and Bar-Itzhack
(2001) have been made. The magnetometer is used mainly
to provide measurements during the detumbling and the

standby mode of operation which by definition do not require
high accuracy attitude or orbit estimates. The nature of the
estimation process of satellite attitude and orbit based on

magnetometer is characterized by slow convergence (typically
requires several revolutions about the earth) and low accuracy
estimates (of about 5�–7�). During high accuracy satellite
operation mode, magnetometer is used mostly for attitude

estimation (Ersin and Hajiyev, 2010; Jizheng et al., 2008).
Inclusion of magnetometer measurements for spacecraft orbit
estimation in addition to attitude estimation during high accu-

racy operation mode is considered to be a challenge. The
resulting solution enhances attitude and orbit estimation er-
rors those are incorporated with standard estimation tech-

niques. The primary goal of this work is to provide fast
converging and high accuracy satellite attitude and orbit esti-
mates needed for imaging purposes and also before execution

of spacecraft orbital maneuvers for the next Egyptian scien-
tific satellite despite large initial estimation errors. The current
research expands the field of attitude and orbit estimation
based on magnetometer from coarse and slow converging to

accurate (typically within 0.1�, and 10 m for attitude angles
and spacecraft location respectively 1-r) and fast converging
(actually within 10 s) attitude and orbit estimates. The

magnetometer is used for both spacecraft attitude and orbit
estimation, aided with gyro to provide angular velocity mea-
surements, star sensor to provide attitude quaternion, and

GPS to provide spacecraft location. The spacecraft under
consideration is subject to many disturbances such as solar
radiation pressure forces and moments, aerodynamics forces
and moments, earth’s oblateness till the fourth order (i.e.J4),

gravity gradient moments, and residual magnetic dipole mo-
ments. Large initial attitude estimation errors typically about
(180� for the yaw angle, 175� for the roll and 85� for the pitch

angle) are used to test the convergence of the estimation algo-
rithms from nearly lost in space conditions. The estimation
algorithm developed is powerful enough to converge quickly

(actually within 10 s) despite very large initial estimation
errors with sufficiently high accuracy predictions.
2. Modeling spacecraft dynamics

The nonlinear differential equations describing the combined

translational and rotational motions of the satellite is given
by Tamer (2009),
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where

0i·j: Is an i · j zero matrix.
Ii·j: Is an i · j unit matrix.
lE: Is the earth’s gravitational constant (lE = 3.986 · 1014

m3/s2).
X: Is the skew symmetric matrix of the inertial angular
velocities defined by
2 3
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J: Is the spacecraft inertia matrix given by
J �J �J
2 3
J ¼
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�Jzx �Jzy Jzz

64 75:

Hw: Is the angular momentum of the wheels (the case study

at hand has a momentum wheel mounted in the pitch
direction).

[c·]: Is the cross product matrix of ½c� ¼ ½ cx cy cz �T calcu-
lated from

c�½ � ¼
0 �cz cy
cz 0 �cx
�cy cx 0

2
64
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75

aI: Is the input inertial acceleration.
M: Is the input torque.

The state vector,X, of the spacecraft dynamics is chosen
as X ¼ ½X T

O X T
A �

T
with X O ¼ ½X I Y I ZI X I

o
Y I

o
ZI

o �T
defined as the orbital state vector comprised from inertial posi-

tion and velocity components respectively, and X A ¼
½ q1 q2 q3 q4 xx xy xz �T is the attitude state vector
composed from the quaternion vector with q4 representing
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the real component of the attitude quaternion (representing the

rotation from inertial to body axes), and the inertial angular
velocities.. The case study satellite is subject to many distur-
bances such as solar radiation pressure forces and moments,

aerodynamics forces and moments, earth’s oblateness till the
fourth order (i.e. J4), gravity gradient moments, and residual
magnetic dipole moments. All these models are propagated
through Eq. (1) for the true and estimated spacecraft but not

included in the propagation of the state transition matrix cal-
culated by the extended Kalman filter algorithm. This is
because of several factors: 1- The motion of the spacecraft is

mostly modeled by Eq. (1). 2- The disturbances presented
are too high nonlinear functions of the states which impose
many complications over (and even could inhibit) the compu-

tation of the derivatives needed by the state transition matrix
with approximately no gain for the accuracy. 3- The complete
effect of disturbance forces and moments is taken into consid-

eration during state propagation of the extended Kalman filter
4- The state propagation matrix is typically used to calculate
the Kalman gain which could be computed based on that
approximation nearly without loss of accuracy. In addition,

The estimation algorithms developed are not restricted to
small angles such as those restrictions found in Si Mohammed
et al. (2008), and Deutschmann and Bar-Itzhack, 2001.

3. Development of the extended Kalman filter estimation

algorithm

The basic structure of the extended Kalman filter is
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where

X̂�k : A priori state estimate at a time step k.
Ak: Is the state transition matrix.

Hk: Is the measurement matrix.
X̂ k : A posteriori state estimate at a time step k.
Pk: A posteriori estimate error covariance at a time step k.
Qk: Is the discrete process noise covariance.

Rk: Is the discrete measurement noise covariance.
zk: Is the measurement vector provided by measurement
devices.

ẑk : Is the estimated measurement vector.

The state transition matrix according to (Shorshi et al., 1995) is

calculated from

Ak�1ðX̂þk�1Þ ¼ fIþ ðFk�1ðX̂þk�1ÞÞDTg ð7Þ

with DT defined as the sampling time interval and

Fk�1ðX̂þk�1Þ ¼ @f=@XjðX̂þ
k�1Þ

ð8Þ

The measurement matrix Hk is computed from

Hk ¼
@hðXÞ
@X

����
X¼X̂

ð9Þ

where the measurement vector hcorresponding to magnetome-
ter, gyro, star sensor, and GPS is given by

h¼ ½bxb byb bzb xx xy xz q1 q2 q3 q4 XI YI ZI �T

ð10Þ

where

b.b: is earth’s magnetic field component measured by the
magnetometer in the corresponding direction. The mea-

surement matrix according to Eqs. (9) and (10) are
Detail of computing the first three rows of Eq. (11) are
lengthy and could be given in Tamer (2009). As evident from

Eq. (11), there is no need to check the observability of the sys-
tem because of several reasons:



Figure 2 Angular velocity estimation error.
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1- All of the components of the attitude state vector are

directly measured with a sensor in addition to
magnetometer.

2- The components of the orbital state vector are the iner-

tial position and velocity. GPS provide measurements of
the satellite position, which in turn could be used to
compute satellite velocity. Thus, all the components of
the orbital state vector are measured through GPS, in

addition to magnetometer.

4. Errors

Errors affecting the estimation process result from different

sources. The first source is the different disturbance forces
and moments affecting the spacecraft. The case study satellite
is subject to many disturbances such as solar radiation pressure

forces andmoments, aerodynamics forces andmoments, earth’s
oblateness till the fourth order (i.e. J4), gravity gradient mo-
ments, and residual magnetic dipole moments. Modeling of

these disturbance forces and moments is taken into consider-
ation. Details of these models are given in references (Tamer,
2009; Mekky, 2003; Wertz, 1997; Larson and Wertz, 1999).
The earth’s magnetic field model coefficients are given in Maus

et al. (2010). The second source of errors results from the un-
modeled disturbances acting on the satellite. These disturbances
are treated as a zero-mean Gaussian white process noise, w This

manipulation could be mathematically expressed as

X
o

¼ fðXÞ þ Bþ w ð12Þ

The third source of errors is related to the measurement pro-
cess. The un-modeled measurement process is given by the

measurement equation

z ¼ hðXÞ þ t ð13Þ

where t, is a white Gaussian noise associated with the measure-
ment device.

5. Simulation parameters, and results

The initial parameters of the case study spacecraft are a (semi
major axis) = 7139200 m, e (orbit eccentricity) = 0, i (orbit
inclination) = 101.085�, X (right ascension of ascending

node) = 339.5�, x(argument of perigee) = 69�, t (true anom-
aly) = 6�, u (roll angle) = �175�, w (yaw angle) = 180�,
and h (pitch angle) = 85� .The estimated satellite parameters
Figure 1 Attitude estimation error.
are initialized with a (semi major axis) = 7039200 m, e (orbit

eccentricity) = 0, i (orbit inclination) = 98.85�, X (right ascen-
sion of ascending node) = 337.5�, x = 69�, and t = 0�, u (roll
angle) = 0�, w (yaw angle) = 0�, and h (pitch angle) = 0�.
Epoch time (1/4/2013 0 h:0 m:0 s). Time step (DT) = 4 s. The

continuous measurement noise covariance matrix is given by

R ¼
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The continuous process noise covariance matrix is given by
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where
Figure 3 Magnitude of position estimation error.



Table 1 Enhancements of the algorithm of reference (Tamer, 2009).

Algorithm developed in Tamer (2009) Current research algorithm

Convergence time 8000 s 10 s

Attitude estimation accuracy 5� 0.11�
Orbit estimation accuracy 115 km 9.9 m

Sensors Magnetometer Magnetometer, GPS, Gyro, Star Sensor, Gyro

Capability to deal with large initial estimation errors Capable Capable

Satellite operation mode Detumbling and stand-by mode High accuracy operation mode
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;
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The initial estimation error covariance matrix is given by
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The estimation error of attitude angles is shown in Fig. 1.

As clear in this figure, the estimation error is converging to
near zero within about 10 s despite large initial attitude estima-
tion error. Fig. 2 shows the angular velocity estimation error.

Fig. 3 shows the magnitude of the position estimation error be-
tween the true and estimated satellites. As shown in this figure
the estimation error is reduced drastically before 5 s. The max-
imum standard deviation of the attitude angles estimation er-

ror was 0.11�. The standard deviation of the magnitude of
the position estimation error is about 9.9 m.

6. Conclusion

The proposed structure of the estimation algorithm had suc-

cessfully extended the capability of the work done in Tamer
(2009) as seen in Table 1.
The developed estimation algorithm converged within less
than 10 s despite large initial estimation error. The estimation
algorithm developed is characterized by fast convergence (typ-
ically within 10 s), high accuracy (0.11� for estimation errors

and 10 m for position error), and the capability to deal with
large initial estimation errors (as high as 180�). Therefore, con-
sidered to be suitable during imaging and before execution of

any orbital maneuver.
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