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Dermal connective tissue is a supportive structure required for skin’s barrier function; dysregulated dermal
homeostasis results in chronic wounds and fibrotic diseases. The multifunctional cytokine transforming growth
factor (TGF) b promotes connective tissue deposition, repair, and fibrosis. TGF-b acts through well-defined
canonical pathways; however, the non-canonical pathways through which TGF-b selectively promotes connective
tissue deposition are unclear. In dermal fibroblasts, we show that inhibition of the non-canonical TGF-b-activated
kinase 1 (TAK1) selectively reduced the ability of TGF-b to induce expression of a cohort of wound healing genes,
such as collagens, CCN2, TGF-b1, and IL-6. Fibroblast-specific TAK1-knockout mice showed impaired cutaneous
tissue repair and decreased collagen deposition, a-smooth muscle actin and CCN2 expression, proliferating cell
nuclear antigen staining, and c-Jun N-terminal kinase and p38, but not Smad3, phosphorylation. TAK1-deficient
fibroblasts showed reduced cell proliferation, migration, cell attachment/spreading, and contraction of a floating
collagen gel matrix. TAK1-deficient mice also showed progressively reduced skin thickness and collagen
deposition. Thus, TAK1 is essential for connective tissue deposition in the dermis.
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INTRODUCTION
Stromal–epithelial interactions, involving the autocrine and
paracrine effects of a variety of growth factors, are essential for
adult wound healing and connective tissue homeostasis
(Barrientos et al., 2008). Of these growth factors, the trans-
forming growth factor-b (TGF-b) family, consisting of TGF-b1,
b2, and b3 isoforms, is especially important (Gordon and
Blobe, 2008). In the ‘‘canonical’’ TGF-b signaling pathway,
active TGF-b binds to the TGF-b receptors type I (called
activin linked kinase (ALK) 5 in fibroblasts) and II; ALK5
phosphorylates Smad2/3 that dimerizes with Smad4. The
resultant complex migrates into the nucleus to activate
transcription (Feng and Derynck, 2005; Leask, 2008). TGF-b
is pleitropic; TGF-b suppresses proliferation in epithelial cells
but stimulates proliferation and extracellular matrix (ECM)

expression in mesenchymal cells (Rahimi and Leof, 2007). In
the injured skin, macrophages, endothelium, fibroblasts, and
epithelia are all sources of elevated TGF-b expression. TGF-b
signaling at the wound site is thought to be important for ECM
deposition and remodeling, including the differentiation of
resident fibroblasts to myofibroblasts, the critical effecter cell
type of wound repair and fibrosis (Leask, 2008). Failure to
properly initiate tissue repair causes in chronic wounds, which
often result in limb amputations, whereas excessive tissue
repair causes fibrotic disease, which collectively account for
45% of the deaths in the western world (Wynn, 2008; Elliott
and Hamilton, 2011; Rafehi et al., 2011).

Subcutaneous injection of TGF-b1 has been shown to
increase connective tissue deposition and to accelerate wound
healing (Roberts et al., 1986; Cromack et al., 1987). However,
the specific mechanism of TGF-b action on any individual cell
type within tissues is still not understood. These differences are
likely to occur through the activation of ‘‘non-canonical’’
signaling pathways, which are activated in parallel to the
Smad pathway (Leask, 2008; Rahimi and Leof, 2007). Owing
to the pleitropic nature of TGF-b, broad targeting of canonical
TGF-b signaling in vivo to combat connective tissue disease is
likely to have unintended deleterious consequences, neces-
sitating the targeting of TGF-b in the right cell type and at the
right time (Leask, 2008; Dooley and ten Dijke, 2012). In this
regard, targeting non-canonical TGF-b signaling pathways is
likely to be useful, as these might be expected to mediate
gene- or pathway-specific effects. Thus, targeting these
pathways is likely to be useful to control the ability of TGF-
b to modify specific effects on cells (e.g., in the control of
wound healing or fibrosis).
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The non-canonical TGF-b signaling pathways essential for
connective tissue function in vivo are largely unknown. The
MAPKKK TGF-b-activated kinase (TAK)1 has been suggested
to participate in the signal transduction of TGF-b receptors,
and activates stress-activated kinases: p38 through MKK6 or
MKK3 and c-Jun N-terminal kinases (JNKs) via MKK4 (Wang
et al., 2001; Yamashita et al., 2008). TAK1 also activates NF-
kB via Toll-like receptors and the receptors for IL-1, tumor
necrosis factor-a, and TGF-b (Shuto et al., 2001; Takaesu
et al., 2003). TAK1 downstream molecules NF-kB and JNK
can have opposite effects on cell death and carcinogenesis;
therefore, the role of TAK1 in the skin is unpredictable.

Indeed, loss of TAK1 in the liver results in inflammation,
carcinogenesis, and fibrosis (Inokuchi et al., 2010), whereas
loss of TAK1 in kidney results in resistance to the unilateral
ureteral obstruction model of kidney fibrosis (Ma et al., 2011).

TAK1-knockout mice die in utero (Shim et al., 2005; Jadrich
et al., 2006). Immortalized embryonic fibroblasts (E 9.75)
isolated from these mice show impaired pro-fibrotic signaling
in response to TGF-b (Shi-wen et al., 2009). TAK1 is
constitutively phosphorylated in fibroblasts isolated from
fibrotic lesional skin of patients with the autoimmune
connective tissue disease diffuse cutaneous systemic
sclerosis (Shi-wen et al., 2009). However, whether TAK1 is
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Figure 1. Transforming growth factorb (TGF-b)–activated kinase 1 (TAK1) inhibition impairs the ability of TGF-b1to induce an in vitro ‘‘wound healing’’

phenotype. (a) Human dermal fibroblasts were treated with or without TGF-b1 (4 ng ml� 1 (160 pM)) in the presence of DMSO or TAK1 inhibitor (5Z)-7-oxozeaenol

(400 nM). Six hours post TGF-b1 addition, RNAs were harvested and subjected to real-time PCR analysis using the indicated primers. 18S RNA was used as

the internal control. (N¼ 3, *Po0.05, Student’s t-test). (b) Cells were subjected to a scratch wounding assay before the addition of TGF-b1 and inhibitor.

Data represent averages and SD (N¼ 9, *Po0.05, two way analysis of variance). **Po0.01; ***Po0.001.
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essential for the function of cutaneous connective tissue is
unknown. In this report, we use a chemical TAK1 inhibitor
in vitro and a previously unreported fibroblast-specific TAK1-
knockout mice model to investigate the role that TAK1 has in
dermal fibroblasts.

RESULTS
The ability of TGF-b1 to induce expression of wound healing
genes is selectively impaired in dermal fibroblasts treated with
TAK inhibitor

To begin to assess whether, in principle, TAK1 could con-
tribute to TGF-b gene expression in dermal fibroblasts, we first
evaluated whether a selective TAK1 inhibitor could impair the
ability of TGF-b to induce gene expression in cultured human
dermal fibroblasts. Cells were cultured until 80% confluence,
serum-starved for 24 hours, and treated in the presence or
absence of TGF-b1 (4 ng ml�1 (160 mM)) for an additional
6 hours in the presence or absence to TAK1 inhibitor (400 nM).
Total RNA was prepared, reverse transcribed, and subjected to
Affymetrix genome-wide expression profiling. Experiments
were performed twice, and average induction values were
obtained. TGF-b1 induced 1,049 transcripts (775 of which had
Gene Symbols associated with them) 41.7 fold in DMSO. Of
these, 741 transcripts (513 of which had Gene Symbols
associated with them) were not induced in the presence of
inhibitor. Cluster analysis using DAVID revealed that TGF-b-
induced expression of wound healing and ECM genes were
selectively sensitive to treatment with TAK1 inhibitor
(Supplementary Table SI online). These transcripts included:
TGF-b1, endothelin-1, CCN2 (cyr61), PLOD2, IL-6, and
collagen type IV (COL4A2) (Supplementary Table SI online).
Results were verified using real-time PCR (RT-PCR) analysis of
RNA (Figure 1a). To further confirm that TGF-b-induced
expression of wound healing and ECM genes were sensitive
to TAK1 inhibition, RT-PCR analysis was conducted to show
that TGFb induced CCN2 (connective tissue growth factor),
type I collagen (COL1A1 and COL1A2), thrombospondin
(THBS), 1 and serpine 1 mRNAs (Figure 1a). TAK inhibition
reduced the ability of TGF-b to induce endothelin-1, CCN2,
and collagen protein (Figure 2), and the ability of TGF-b1 to
induce cell migration in a scratch wound assay (Figure 1b).
Collectively, these results suggest that TAK1 is required for a
subset of TGF-b responses in fibroblasts, namely those
involved with wound repair. These data suggest TAK1 may
mediate wound repair responses in vivo.

Deletion of TAK1 causes delayed cutaneous wound repair

On the basis of these data, we then examined whether TAK1
was required for wound healing in vivo. To do this, we
generated mice that were (a) hemizygous for an allele in
which a tamoxifen-inducible cre recombinase is expressed
under the control of a fibroblast-specific collagen type I
promoter and (b) homozygous for a TAK1 allele flanked by
lox P sites. Four-week-old mice were injected with corn oil or
tamoxifen to generate control mice (C/C) or mice deleted for
TAK1 in fibroblasts (K/K). Genotyping was confirmed by PCR
(not shown). Ten days later, mice were subjected to the
dermal punch model of cutaneous tissue repair. Deletion of

TAK1 in fibroblasts was confirmed with indirect immunofluor-
escence analysis of skin and isolated fibroblasts using an anti-
TAK1 antibody, as well as RT-PCR and western blot analyses
of isolated fibroblasts (Figure 3a) Compared with wounded
control animals (C/C), TAK1-deficient (K/K) animals possessed
a reduced rate of wound closure (Figure 3b). TAK1-deficient
animals were examined 7 days post wounding and displayed
reduced collagen production and granulation tissue (Figure 4a
and b), and CCN2, a-SMA- and proliferating cell nuclear
antigen (PCNA)–expressing myofibroblasts (Figure 4c;
Supplementary Table SII online). Loss of TAK1 did not
appreciably impair Smad3 phosphorylation, but displayed a
reduction in p38 and JNK phosphorylation (Figure 4c;
Supplementary Table SII online). The ability of TGF-b1 to
induce Smad3 phosphorylation was not appreciably affected
in fibroblasts derived from control (C/C) or knockout (K/K)
mice (Supplementary Figure S1 online).
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Figure 2. Transforming growth factorb (TGF-b)–activated kinase 1 (TAK1)

inhibition impairs the ability of TGF-b1 to induce CCN2, collagen, and

endothelin-1 (ET-1) protein. Human dermal fibroblasts were treated with or

without TGF-b1 in the presence of DMSO or TAK1 inhibitor (5Z)-7-oxozeaenol

(Oxo). (a, b) Twenty-four hours post TGF-b1-addition, proteins were harvested

and (a) CCN2 was detected by western blot analysis using anti-CCN2 antibody

while anti-GAPDH antibody was used as a control or (b) collagen and ET-1

were detected by ELISA. (N¼ 3, ***Po0.001, two way analysis of variance).
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Deletion of TAK1 causes impaired migration, adhesion,
proliferation, spreading, and ECM contraction

Consistent with our in vivo data showing reduced PCNA
staining in 7-day wounds of TAK1-deficient animals, isolated
TAK1-deficient dermal fibroblasts showed reduced prolifera-
tion compared with wild-type fibroblasts (Figure 5a). More-
over, TAK1-deficient dermal fibroblasts showed a reduced
ability to adhere to fibronectin (Figure 5b). Cell spreading was
also monitored post-adhesion microscopically, using rhoda-
mine phalloidin and anti-vinculin antibodies. Loss of TAK1
also resulted in impaired spreading on fibronectin, as revealed
with anti-vinculin antibody (green) and rhodamine-phallodin
(red) staining to detect actin (Figure 5c). Moreover, TAK1-
deficient cells showed reduced vinculin, integrin b1, and
aSMA protein expression (Figure 5d). TAK1-deficient fibro-
blasts were less able to contract floating collagen
gel matrices in the presence or absence of added
TGF-b(Figure 5e). Finally, TAK1-deficient fibroblasts showed
less migratory ability either in the presence or absence of
added TGF-b (Figure 6a and b). In our studies, we noted a
significant decrease in the skin thickness of TAK1-deficient
mice even 10 days post-cessation of tamoxifen injection (i.e.,
when we initiated our wounding experiments). To assess
whether TAK1 was required for dermal homeostasis, we

monitored mice until 40 days post-cessation of tamoxifen
injection; the dermis became progressively thinner, con-
comitant with a progressive loss of collagen (Supplementary
Figure S2 online). Thus, TAK1 is required for dermal
homeostasis.

DISCUSSION
The pleitropic cytokine TGF-b executes essentially all its
functions via the canonical Smad/ALK5 pathway; however,
the importance of non-canonical TGF-b signaling pathways in
mediating cell-, gene-, and pathway-selective effects is being
increasingly appreciated (Leask, 2008; Rahimi and Leof, 2007;
Trojanowska, 2009). TAK1 mediates the ability of TGF-b to
induce JNK and p38 (Yamashita et al., 2008; Shi-wen et al.,
2009). In this study, we show that TAK1 mediates wound
healing responses to TGF-b. In vivo, fibroblast-specific TAK1-
knockout mice show reduced rates of wound closure and
decreased skin thickness.

The contribution of TAK1 to connective tissue function is
controversial. Although loss of TAK1 expression resulted in
resistance to the unilateral ureteral obstruction model of
kidney fibrosis (Ma et al., 2011), hepatocyte-specific
deletion of TAK1 in mice resulted in spontaneous
hepatocyte death, inflammation, fibrosis, and carcinogenesis
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Figure 3. Conditional deletion of transforming growth factorb (TGF-b)–activated kinase 1 (TAK1) in fibroblasts results in impaired cutaneous wound healing.

Fibroblasts or mice containing the TAK1 gene or not are designated (C/C) or (K/K). (a) Loss of TAK1 in fibroblasts was confirmed using real-time PCR using

primers detecting TAK1, and western blot and indirect immunofluorescence analyses of isolated fibroblasts with anti-TAK1 antibodies (N¼ 3; **Po0.01, Student’s

t-test) or by immunohistochemistry of skin with an anti-TAK1 antibody (N¼ 7). (b) Mice were wounded and wound closure was measured as described in

Materials and Methods. For all assays, six mice per group were analyzed. Data represent averages and SD from all these mice (**Po0.01, Student’s t-test).
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that was partially mediated by tumor necrosis factor receptor
signaling (Inokuchi et al., 2010). In heart, TAK1 is activated in
response to stress, and an activating mutation of TAK1
expressed in myocardium of transgenic mice was sufficient
to produce p38 mitogen–activated protein kinase phosphor-
ylation in vivo, cardiac hypertrophy, interstitial fibrosis,
severe myocardial dysfunction, ‘‘fetal’’ gene induction, apop-
tosis, and early lethality (Zhang et al., 2000). Our data
showing that TAK1-deficient mice showed reduced dermal
thickness, delayed wound closure, and impaired JNK and p38,
but not Smad3, phosphorylation are consistent with this
report.

TAK1-deficient fibroblasts showed reduced adhesion and
spreading on collagen concomitant with reduced integrin
b1 and vinculin protein expression. Integrin b1-deficient
mice show reduced rates of tissue repair, yet they retain
their TGF-b responsiveness. Instead activation of latent

TGF-b is impaired in these cells (Liu et al., 2010).
Moreover, although integrin b1 mice show skin thinning
and a reduction in basal collagen production (Liu and
Leask, 2012), this process is much more pronounced in
TAK1-deficient mice in that a skin thinning phenotype is
observed earlier post-deletion of the gene. Vinculin is a
cytoplasmic actin-binding protein enriched in focal
adhesions that has a critical role in regulating integrin
clustering and force generation, and controls cell
proliferation, adhesion strength, and acts as a scaffold of
cell proliferation (Carisey and Ballestrem, 2011). The effect
of loss of vinculin expression in fibroblasts in vivo has not
yet been examined. Thus, the overall phenotype of TAK1-
deficient mice is likely to arise through at least two
independent yet complementary mechanisms, namely an
impaired TGF-b response and a reduction in integrin b1
and vinculin expression.

C/C

K/K

C/C K/K

500 μm 200 μm

Trichrome

Type I
collagen

C/C K/K

90
85
80
75
70
65
60
55
50

C/C K/K

**

50 μm

H
yd

ro
xy

pr
ol

in
e

(μ
g/

m
g 

pr
ot

ei
n)

55
50
45
40
35
30
25
20
15
10
5
0

C/C K/K

***F
lu

or
es

ce
nc

e 
de

ns
ity

C/C K/K

Phospho-
JNK

Phospho-
p38

Phospho-
smad3

α-SMA

PCNA

CCN2

Figure 4. Conditional deletion of transforming growth factorb (TGF-b)–activated kinase 1 (TAK1) in fibroblasts results in impaired cutaneous wound healing:

histological examination. Seven days post wounding mice were examined and measured as described in Materials and Methods using (a) hematoxylin and

eosin (H and E) analysis, (b) trichrome stain, anti-type I collagen antibody, and hydroxyproline levels to detect collagen. For all assays, six mice per group were

analyzed. (**Po0.01, ***Po0.001, Student’s t-test). Note that TAK1-deficient wounds had defects in wound closure as revealed by reduced granulation tissue

in the wound. (c) Seven days post wounding mice were examined and measured as described in Materials and Methods using proliferating cell nuclear antigen
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Collectively our data suggest that TAK1 is essential for
proper cutaneous tissue repair and dermal homeostasis.

MATERIALS AND METHODS
Expression profiling

Expression profiling was performed as described in prior publica-

tions (Guo et al., 2011a,b) at the London Regional Genomics

Centre (Robarts Research Institute, London, Ontario, Canada;

http://www.lrgc.ca). Briefly, 5.5 mg of single-stranded cDNA was

synthesized from 200 ng of total RNA, end-labeled, and

hybridized, for 16 hours at 45 1C, to Human Gene 1.0 ST

arrays. GeneChips were scanned with the GeneChip Scanner

3000 7G and probe level (.CEL file), and the data were generated

using Affymetrix Command Console v3.2.4 (Santa Clara, CA).

Probes were summarized to gene level data in Partek Genomics

Suite v6.6 (Partek, St Louis, MO) using the RMA algorithm.

Experiments were performed twice, and fold changes and

P-values were generated using analysis of variance in Partek.

Genes that significantly changed (at least 1.7 fold change, P-value

o0.05) in the presence or absence of inhibitor were compiled and

exported into DAVID (http://david.abcc.ncifcrf.gov/) for further

analysis.

Generation of TAK1 conditional knockout mice

Mice possessing a tamoxifen-dependent Cre-recombinase under the

control of a fibroblast-specific regulatory sequence from the
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Figure 5. Loss of transforming growth factor-b (TGF-b)–activated kinase 1 (TAK1) results in a reduced ability of fibroblasts to proliferate, to adhere on
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(K/K). Cells were subjected to (a) a proliferation assay and (b) a fibronectin adhesion assay as described in Materials and Methods. (c) Cell spreading was monitored

by plating cells on fibronectin, and fixing and staining cells with anti-vinculin antibody (to detect focal adhesions) and rhodamine phalloidin to detect actin. For all

assays, fibroblasts from six mice per group were analyzed. Data represent averages and SD from all these mice. The number of focal adhesions per cell were

counted (30 C/C or K/K cells per mouse line; **Po0.01, ***Po0.01, Student’s t- test). (d) Cells were subjected to western blot analysis with an anti-a-SMA,

anti-integrin b1, and anti-vinculin antibodies. (e) The effect of loss of TAK1 expression on ECM contraction generated by fibroblasts embedded in a floating

collagen gel matrix was assessed over a 24-hour period. Contraction was assessed photographically and by measuring diameter of contracted gels (fibroblasts from

three separate animals were used, and experiments were performed in triplicate; average ±SD is indicated). Note that wild-type (C/C) fibroblasts were able to

contract a collagen gel matrix (Student’s t-test; **Po0.01, ***Po0.01), relative to TAK1-deficient cells (K/K).
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proa2(I) collagen gene (Zheng et al., 2002) were crossed with

mice homozygous for a conditional TAK1 allele (B6;129S7-

Map3k7tm1Mds/J; Jackson Laboratories; Xie et al., 2006) to generate

Cre/TAK1 heterozygote mice, which were mated to generate mice

hemizygous for Cre and homozygous for TAK1. Animals used for

experiments were genotyped by PCR (Zheng et al., 2002; Xie et al.,

2006). To delete TAK1 in fibroblasts (K/K), 3-week-old mice were

given intraperitoneal injections of tamoxifen suspension (0.1 ml of

10 mg ml� 1 4-hydroxitamoxifen, Sigma, St Louis, MO) over 5 days.

Littermate mice of identical genotype were injected with corn oil and

were used as controls (C/C). All animal protocols were approved by

the appropriate regulatory authority.

Wound surgery

Littermate mice homozygous for the loxP-TAK1 allele and hemi-

zygous for type I collagen-cre were treated with tamoxifen (‘‘knock-

out TAK1’’, K/K) or corn oil (‘‘conditional TAK1’’, C/C). Two weeks

post-cessation of tamoxifen injection, wounding experiments were

conducted essentially as previously described (Liu et al., 2009).

Wounds were separated by a minimum of 6 mm of uninjured skin,

and photographed at 0, 2, 4, 7, and 10 days post wounding using a

Sony D-9 digital camera. The wound area was determined using

Northern Eclipse (Empix, Mississauga, Canada) software, and wound

closure was expressed as percentage of initial wound size.

Immunohistochemistry and assessment

Sections were cut and processed as described above. Immunolabeling

of a-SMA, CCN2, p-Smad3, p-p38, p-JNK, and PCNA was conducted

and average fluorescence intensity percentage was calculated using

image analysis software (Northern Eclipse, Empix) (Liu et al., 2010).

To assess the effects of TAK1 deletion on wound collagen synthesis,

trichrome collagen stain was also used. The amount of collagen was

calculated using a kit, as described by the manufacturer (Quickzyme,

Leiden, The Netherlands).

Cell culture, immunofluorescence, and western analysis

Mouse dermal fibroblasts were isolated from explants (4- to 6-week-

old animals) as described (Liu et al., 2009, 2010), and cultured in

DMEM and 10% fetal bovine serum (Life Technologies, Burlington,

Canada). Cells were subjected to indirect immunofluorescence

analysis as described (Liu et al., 2009, 2010) using anti-a-SMA,

rhodamine phalloidin (Sigma), and anti-vinculin (Sigma) antibodies,

followed by an appropriate secondary antibody (Jackson Immuno-

research, West Grove, PA). Cells were photographed (Zeiss Axiphot

B-100, Empix). Alternatively, cells were lysed in 2% SDS, proteins

quantified (Fisher, Nepean, Canada), and subjected to western blot

analysis as described (Liu et al., 2009, 2010). Endothelin-1 and

collagen levels were measured by ELISA, as described by the manu-

facturers (Medicorp Montreal, QC and Quickzyme, respectively).

Human dermal fibroblasts were purchased (ATCC, Manassas, VA).

When appropriate, cells (70% confluence) were serum-starved

(DMEM, 0.5% fetal bovine serum) for 18 hours. Cells were then

incubated for 45 minutes in the presence or absence of DMSO or

400mM TAK inhibitor ((5Z)-7-oxozeaenol; Tocris, Bristol, UK) before

incubation for 6 hours (for RNA extraction) or 24 hours (for protein

analysis), indicated in the presence or absence of 4 ng ml� 1 TGF-b1

(R and D Systems, Minneapolis, MN).

Real-time PCR

RT-PCR was performed essentially as described (Guo et al., 2011a,b).

Three independent experiments were conducted. Cells were cultured

until 80% confluence, serum-starved for 24 hours, and total RNA was

isolated (Trizol). Total RNA (25 ng) was then reverse transcribed and

amplified (TaqMan Assays on Demand; Life Technologies) as

described (One-step Mastermix; Life Technologies) using the ABI

Prism 7900 HT sequence detector (Perkin-Elmer-Cetus, Vaudreuil,

Quebec, Canada). Triplicates of each samples were run, and expres-

sion values were standardized to values obtained with control 18S

RNA primers using the delta delta ct method.
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Figure 6. Loss of transforming growth factorb (TGF-b)–activated kinase 1 (TAK1) results in a reduced ability of fibroblasts to migrate on extracellular matrix

(ECM). Fibroblasts were isolated by explant culture from mice containing the TAK gene (C/C) or not (K/K). Cells were subjected to scratch wound assay of cell

migration in the absence (a) or presence (b) of added TGF-b as described in Materials and Methods. Fibroblasts from six mice per group were analyzed. Data

represent averages and SD from all these mice (**Po0.01, ***Po0.01, Student’s t-test).
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Adhesion assay
Fibroblasts were isolated and cultured as described above. Adhesion

assays were performed essentially as previously described (Liu et al.,

2009, 2010; Guo et al., 2011a). Wells of 96-well plates were

incubated overnight, 4 1C, with 10mg ml� 1 fibronectin (Sigma) in

0.5% BSA, 1X phosphate-buffered saline (PBS). Subsequently, cells

were blocked for 1 hour in 10% BSA in PBS at room temperature.

Fibroblasts were harvested with 2 mM EDTA in PBS (20 minutes, room

temperature), washed twice with DMEM serum-free medium

containing 1% BSA (Sigma), resuspended in the same medium at

2.5� 105 cells ml� 1, and 100ml of suspension was incubated in each

well for the times indicated. Non-adherent cells were removed by

washing with PBS. Adherent cells were quantified by incubation with

10ml MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium

bromide) solution for 4 h at 37 1C, after which formazan reaction

products in each well were dissolved in 100ml of dimethyl sulfoxide

and A570 was measured. Comparison of adhesive abilities was

performed by using Student’s unpaired t-test. A P-valueo0.05 was

considered as statistically significant.

Collagen gel contraction
Experiments were performed essentially as described (Liu et al.,

2010). For a floating gel assay, 24-well tissue culture plates were

pre-coated with BSA. Cells were used at passage 3. Trypsinized

fibroblasts were suspended in MCDB medium (Sigma) and

mixed with collagen solution (one part of 0.2 M N-2-

hydroxyethylpiperazine-N’-2-ethanesulfonic acid (HEPES), pH8.0;

four parts collagen (Nutragen, Advanced Biomatrix, San Diego, CA,

3 mg ml� 1) and five parts of MCDB X 2) for a final concentration of

80,000 cells per ml in 1.2 mg ml� 1 collagen. Collagen/cell

suspension (1 ml) was then added to each well to polymerize. Gels

were then detached from wells by adding 1 ml of MCDB medium.

Gel contraction was quantified by measuring changes in diameter

using image analysis software (Empix).

Migration and proliferation assays

For in vitro wounding (migration) experiments, fibroblasts obtained

from TAK1 conditional (C/C) and knockout (K/K) mice were cultured

in 12-well plates. Medium was removed, and cells rinsed with serum-

free mediumþ 0.1% BSA and cultured for an additional 24 hours

in serum-free mediumþ 0.1% BSA. The monolayer was artificially

injured by scratching across the plate with a blue pipette tip

(B1.3 mm width). Cells were washed two times to remove

detached cells or cell debris, and cultured in serum-free medium in

the presence of mitomycin C (10mg ml� 1, Sigma) to prevent

cell proliferation. After 24 and 48 h, images of the scratched

areas under each condition were photographed. For the cell

proliferation assay, cells were seeded in 96-well plates at 2,000 cells

per well. Cell number was determined after 24, 48, and 72 h

incubation using a kit (Roche, Laval, Canada).
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