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Partition function for a singular background
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Abstract

We present a method for evaluating the partition function in a varying external field. Specifically, we look at the ca
non-interacting, charged, massive scalar field at finite temperature with an associated chemical potential in the backg
delta-function potential. Whilst we present a general method, valid at all temperatures, we only give the result for the
order term in the high temperature limit. Although the derivative expansion breaks down for inhomogeneous backgro
are able to obtain the high temperature expansion, as well as an analytic expression for the zero point energy, by
different approximation scheme, which we call thelocal Born approximation (LBA).
 2005 Elsevier B.V.
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In this Letter we discuss the evaluation of the p
tition function in the non-smooth background of
spherically symmetric shell, a particular motivati
being some recent interest in singular potentials[1–3].
The delta-function profile is a useful approximati
in modelling semi-transparent boundary conditio
which are naturally expected in many problems
physical interest. The Casimir energy has been ev
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ated for a scalar field in the background of a spher
penetrable shell in[4], which used the Jost functio
technique along with contour integral methods, e
see[5] and the references therein.

However, here we shall investigate the partiti
function for a massive, charged scalar field at fin
temperature with a non-zero chemical potential.
shall rely on the fact that the thermal partition functi
can be related (by partial wave analysis) to a radial m
mentum integral and angular momentum sum over
phase shifts. The phase shift method has a simple
nection with the Jost function approach[5]. Numerous
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works have employed the partial waves technique
evaluate one loop and non-perturbative effects. So
of these are for example; the prefactor in bubble
cleation[6,7], quantum effects for solitons[8,9], the
Casimir energy of a skyrmion[10] and instanton ef
fects in QCD[11,12]. Indeed, the phase shift metho
appears to have been first used in the context of fi
theory by Schwinger[13].

Usually, the derivative expansion can be employ
as an approximation to external fields that gradu
vary, but for the case of potentials such as a de
function this approximation clearly breaks dow
However, recent work which deals with the heat ker
asymptotics of singular potentials[14,15] means tha
other approximation schemes can be devised. We s
explicitly show how by obtaining the high temperatu
limit using thelocal Born approximation (LBA).

In tandem we shall also apply the LBA to the c
culation of the zero point energy, which gives s
prisingly good agreement with exact results. The z
point energy must undergo regularisation; and of
many possible approaches, such as subtracting t
from the Born series[8], we tackle the problem by sub
tracting the relevant heat kernel coefficients, enab
an analytically continued expression for the zero po
energy. As discussed in[9] the intrinsically local hea
kernel coefficients can be related to the non-local B
series. Indeed a non-local generalisation of the h
kernel asymptotics exists in the guise of covariant p
turbation theory, which has been applied to finite te
perature field theory in[16].

As is well known, e.g., see[17], the factored one
loop effective action for a charged scalar field isWβ =
Wβ(µ) + Wβ(−µ), where

(1)

Wβ(±µ) = 1

2
logdet�2

[
−�E + m2 − µ2 ± 2iµ

∂

∂t

]
,

and the parameter�, with dimensions of length, keep
the argument of the determinant dimensionless.
connection between the Euclidean effective action
the canonical free energy is well known

(2)Fβ = 1

β
Wβ

where we are ignoring any terms independent of
temperature, e.g., see[16]. We must deal with the
l

eigenvalues of the operator

(3)∆±φ±(x, τ ) = λn,kφ±(x, τ ),

where

(4)∆± = [−�E± + m2]
and the Euclidean d’Alembertian operator is

(5)−�E± = −[
(∂τ ∓ iA0)

2 + ∇2]
with Aµ = (A0,0) andA0 = −iµ. It is related to the
Lorentzian� operator by the Wick rotation−i∂t = ∂τ .
The vectorAµ is a fictitious Abelian gauge potenti
which represents the effect of an external charge d
sity on the quantum system.

Consider the spatial Laplacian,

(6)
(−∇2 + m2 + V (x)

)
φ(x) = E2φ(x)

for a set of eigenvaluesE2, where we shall assume
spatially dependent background coupling with sph
cal symmetry of the form

(7)V (r) = α

R
δ(r − R),

α > 0, i.e., we are considering a massive, char
scalar field in the background of a repulsive spher
shell, at some radiusR. We have chosen the inverse r
dius for our dimensionful parameter in the backgrou
delta function. Other choices can of course be ma
see[4]. If we are interested in a massless field,m = 0,
a slightly different approach must be applied, e.g.,
[7].

After separating the eigenmodes into radial fu
tions and spherical harmonics, the phase shift ca
obtained from the solutions of the(d +1)-dimensional
radial wave equation(

−∂2
r − d

r
∂r + m2 + α

R
δ(r − R) + l(l + d − 1)

r2

)
(8)× u(r) = E2u(r)

with angular momentuml. The limit α → ∞ implies
reflecting Dirichlet boundary conditions and the p
tial waves approach should reproduce the functio
determinant for the Dirichlet ball which has been stu
ied in detail in[5] (however, also see the comments
[4]). It is straightforward to show that the phase sh
is (for d = 2)

(9)tanδl(k) =
π
2 αJ 2

l+1/2(kR)

π αJl+1/2(kR)Nl+1/2(kR) − 1
,

2
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where the radial momentum is defined by

(10)k =
√

E2 − m2

andJν(x),Nν(x) are Bessel and Neumann function
respectively. For such a case when the eigenvalue
not explicitly known it is possible to employ the pha
shift method as follows.

From a knowledge of the phase shift it is straig
forward to relate it to the heat kernel by

(11)K(t) = 2

π

∞∫
0

dk e−(k2+m2)t kt
∑

l

χlδl(k),

e.g., see[7,9]. We should mention that in this Lette
we shall assume that there are no bound states, w
is the case for background coupling withα > 0 (e.g.,
see[6,9] for a discussion of the inclusion of any bou
states). The degeneracy factorχl = (2l + 1) in three
dimensions. There is also a free space contribut
which is encoded by theC0 term in the heat kerne
expansion. This term gives the usual constant ba
ground results, which have been well studied at fin
temperature[17,18], so we shall not discuss it. Th
heat kernel can now be used to regularise the one
effective action. Defining the generalisedζ -function
[19] by

(12)ζ(s) = 1

�(s)

∞∫
0

t s−1 trK(t) dt.

The analytic continuation ofζ(s) then gives the one
loop effective action, which is related to the ze
function by

Wβ = Wβ(µ) + Wβ(−µ),

(13)Wβ(±µ) = −1

2
ζ ′±(0) + 1

2
ζ±(0) log�2.

Because we are working on a static manifold,
field can be written in separable form asφ(τ, x) =
e−iωnτ φ(x), whereωn = 2πn/β are the Matsubar
frequencies withβ the inverse temperature. Thus, t
coincidence limit of the heat kernel takes the followi
form

K
β
±(t) =

∞∑
n=−∞

2

π

∞∫
0

dk e−(k2+m2)t kt

(14)×
∑

χlδl(k)e−(ωn±iµ)2t .
l

The thermal effective action for a charged scalar fi
is therefore

Wβ(±µ) = −1

2

∞∫
0

dt ts−1
∞∑

n=−∞

2

π

∞∫
0

dk e−(k2+m2)t kt

(15)×
∑

l

χlδl(k)e−(ωn±iµ)2t .

The analytic continuation can be conveniently p
formed by using the Jacobi–Poisson resummation
mula on the Matsubara modes, e.g., see[20]. After
some formal manipulations we find the total therm
effective action to be

Wβ = −β

π

∞∫
0

dk

∞∑
l=0

(2l + 1)δ̄l(k)

− β

π

∞∫
0

k dk

(k2 + m2)1/2

×
∞∑
l=0

(2l + 1)
δl(k)

eβ(E−µ) − 1
− (µ → −µ)

(16)= W∞ + Wβ(µ) + Wβ(−µ).

In an abuse of our previous notation, see(13), the first
term is the zero point energy (β → ∞) which is ul-
traviolet divergent, hencēδl(k) (see below), while the
other two terms contribute to the thermal part of
effective action, one for each charge±µ. Similar ex-
pressions can be found in[6,7], however, here we hav
incorporated a chemical potential.

For numerical purposes, the analytic continuat
of the zero point energy is best performed by subtr
ing terms from the heat kernel. Ast → 0, the heat
kernel ind + 1 dimensions has the asymptotic expa
sion

(17)K(t) ∼ t−(d+1)/2
∑
n=0

Cn(r)t
n

where due to radial symmetry the heat kernel coe
cients are only local functions ofr . The leading terms
which cause the poles in the zeta-function, can be
moved by replacing the sum over phase shifts in(11)
by [7]
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∑
l

χl δ̄l(k) =
∑

l

χlδl(k) − πC1(r)(k
2 + m2)

d−1
2

�(d+1
2 )

− πC3/2(r)(k
2 + m2)

d−2
2

�(d
2)

− πC2(r)(k
2 + m2)

d−3
2

�(d−1
2 )

(18)− πC5/2(r)(k
2 + m2)

d−4
2

�(d−2
2 )

,

where for distributional sources the heat kernel coe
cients only contribute to surface terms[14,15], see be-
low. To obtain a finite regularised sum we only requ
up to C2 for finite temperatures in three dimensio
and zero temperature in four dimensions. Howeve
practice it is useful to include theC5/2 term for better
numerical convergence or to interpolate the largek be-
haviour. A useful check is that the leading asympto
behaviour follows that of theC5/2 term. Indeed, as w
shall show, the dominant contribution to the LBA
given by theC5/2 term.

The analytic continuation of the zero point ener
can be found in[7,10], for example, and we obtain

W∞ = −β

π

∞∫
0

dk

( ∞∑
l=0

(2l + 1)δl(k)

− 2
√

π
√

k2 + m2C1 − πC3/2

−
√

πC2√
k2 + m2

− πC5/2

k2 + m2

)

(19)+ πβC5/2

2m
+ βC2√

4π
logm2�2.

In Fig. 1 is a plot of the integrand (in brackets)
the above equation, given as blue solid lines for v
ious values of the couplingα. The extra factor of two
for the zero point energy(19) as compared to the ex
pression given in[7] is due to the fact that we ar
considering a charged scalar field. Although in t
Letter we do not give explicit results that depend onµ,
apart from(16), the more general expression is r
quired if one wishes to comment on things such
Bose–Einstein condensation, which we hope to re
on in the near future.

For the spatial wave equation(6) with a potential
of the form defined in(7) the heat kernel coefficient
Fig. 1. A plot of the integrand in(19), solid lines (blue lines in
the web version), and the contribution from the integrand in(23),
dashed lines (red dashed lines in the web version), for values o
creasingα = 1.5, 2.25, and 2.75, in units of(mR)−1. For clarity the
z axis has been shifted below the origin by a small amount.

are[14,15]:

C1(r) = 1

(4π)(d+1)/2

∫
Σ

− α

R
,

(20)C3/2(r) = 1

(4π)(d+1)/2

∫
Σ

√
π

4

α2

R2
,

C2(r) = 1

(4π)(d+1)/2

∫
Σ

(
−1

6

α3

R3
+ m2 α

R

)
,

(21)

C5/2(r) = 1

(4π)(d+1)/2

∫
Σ

(√
π

32

α4

R4
+

√
π

4
m2 α2

R2

)
,

where the volume of a spherical shell ind + 1 dimen-
sions is given by

(22)
∫
Σ

= 2π(d+1)/2Rd

�(d+1
2 )

= 4πR2
∣∣
d=2.

In fact, the leading order contribution comes fro
theC5/2 term in (19), up to the renormalisation sca
dependence,�. As can be seen inFig. 1, for example,
the choiceα = x

mR
for various values ofx gives sur-

prisingly good agreement with the integrand of(19).
That is, the zero point energy is dominated by the te

(23)W∞ ≈ β

π

∞∫
0

dk

(
πC5/2

k2 + m2

)
= πβC5/2

2m

for which the integrand of the left-hand side (in brac
ets) we have plotted inFig. 1 as dashed lines (re
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dashed lines in the web version). Clearly, the ac
racy of this approximation improves as the area of
integrand in(19) becomes larger and the oscillato
behaviour for the largek part has less effect. Includin
higher order corrections, such as theC3 term, should
improve the accuracy for smaller values of the area
the integrand in(19).

For large temperatures numerical evaluation
Wβ(±µ) in (16) becomes difficult and it is useful t
have analytic expressions valid in the high tempe
ture limit, β → 0. We can achieve this by using th
LBA, as we have already done for the zero point
ergy. The high temperature expansion can be obta
in various ways, however, we shall simply adapt
method used in[18]. First, let us rewrite the therma
effective action explicitly in terms ofk as

Wβ(±µ) = −β

π

∞∫
0

k dk

(k2 + m2)1/2

(24)

×
∞∑
l=0

(2l + 1)
δl(k)

eβ(k2+m2)1/2
e±βµ − 1

.

Our approach will be to substitute the sum over ph
shifts[7]

(25)
∑

l

χlδl(k) ∼
∞∑

n=1

πCn(k
2 + m2)

d+1−2n
2

�(d+1−2n+2
2 )

into our expression forWβ (24), i.e., Wβ(±r) =∑
n W

β
n (±r)

Wβ
n (±r) = −β2n−d−1Cn

�(d+1−2n+2
2 )

(26)×
∞∫

0

x dx
(x2 + m̄2)

d−2n
2

e(x2+m̄2)1/2
e±rm̄ − 1

,

where we have made the change of variablesx = βk,
m̄ = βm andr = µ/m.

In this Letter we shall only consider the leading o
der contribution to the high temperature expansion
d = 2), which corresponds ton = 1, i.e.,

W
β

1 (±r) = −β−1 C1

�(3
2)

(27)×
∞∫

x dx
1

e(x2+m̄2)1/2
e±rm̄ − 1

.

0

The smallm̄ expansion of the above integral is we
known[18] and leads to the result

(28)W
β

1 (±r) = −2C1√
πβ

g2(m̄,±r),

where the functiong2(m̄, r) is defined in Appendix A
of [18]. Then, it is simple to show that

g2(m̄, r) + g2(m̄,−r)

= π2

3
− 2m̄ + m̄r ln

[
(1+ r)

(1− r)

]
+ m̄2(1− r2)

2

(29)+O
(
m̄3)

and thus, the leading order contribution for smallm̄ to
the thermal part of the effective action is

W
β

1 (µ) + W
β

1 (−µ) =
(−2C1√

πβ

)
π2

3

(30)= 1

12β

∫
Σ

α

R
= 1

12β
4παR,

where the second equality is specific to a spher
shell. Thus, for the free space field theory, i.e., in
constant background, the leading order contributio
the free energy isFβ

0 ∝ β−4, e.g., see[18], whereas
the effect of a repulsive delta-function potential is
contribute to leading orderFβ

1 ∝ β−2.
The method we have discussed is sufficiently g

eral such that we can choose any spherically symm
ric background potential, smooth or inhomogeneo
the only requirement being a knowledge of the h
kernel coefficients. Of course if they are not kno
then the heat kernel coefficients can be derived by
ing the local part of the Born approximation, which
an expansion in powers of small coupling of the ph
shift. This is also true for the case when there is
analytic expression for the phase shift, where reco
can be made to the WKB method[6,12].

Furthermore, the finite temperature expression(24)
is a general expression valid at any temperature, w
requires numerics for the general case. However,
instructive to have analytic expressions for a char
scalar field in the high temperature limit, for examp
to consider Bose–Einstein condensation. In this Le
we showed how to obtain the leading order term.
deed, next to leading order corrections will depend
the chemical potential,µ. The low temperature expan
sion can also be obtained in a similar way.
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The local Born approximation (LBA) was also ap-
plied to give an approximate expression for the n
thermal part of the one loop effective action, i.e.,
zero point energy. We employed zeta-function a
heat kernel methods to subtract the divergences in
ent in the zero point energy, this being one of the m
commonly used subtraction procedures.

As well as for delta-function type potentials o
could consider step function profiles, which are use
in modelling many physically interesting situation
such as instantons in bubble nucleation[7]. For such
a case it would also be possible for the chemical
tential,µ, to vary with the same radial profile as th
mass, e.g., a step-function with profilesµ2θ(r − R)

andm2θ(r −R). However, this is a considerably mo
complicated set up, which we shall report on in for
coming work, as well as other related issues.
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