Planar Graphs of Maximum Degree Seven are Class I

Daniel P. Sanders

Mathematics Department, Princeton University, Princeton, New Jersey 08544

and

Yue Zhao

Department of Mathematics, University of Central Florida, Orlando, Florida 32816-1364

Received December 1, 1998; published online June 25, 2001

In 1965, Vizing proved that planar graphs of maximum degree at least eight have the edge chromatic number equal to their maximum degree. He conjectured the same if the maximum degree is either six or seven. This article proves the maximum degree seven case.

1. INTRODUCTION

Given a (simple) graph G, let $\Delta(G)$ denote the maximum (vertex) degree of G. If the graph is clear from the context, then Δ is frequently used. For instance, this article is about planar graphs with $\Delta = 7$. The other parameter important for this article is the edge chromatic number of G, denoted $\chi_e(G)$. In 1964, Vizing [5] showed that every graph either has edge chromatic number Δ (known as a Class I graph) or $\Delta + 1$ (a Class II graph).

For planar graphs, more is known. As noted by Vizing [6], if C_4, K_4, the octahedron, and the icosahedron have one edge subdivided each, Class II planar graphs are produced for $\Delta \in \{2, 3, 4, 5\}$. He also showed that if $\Delta \geq 8$, then a planar graph is always Class I. His Planar Graph Conjecture is that every planar graph with $\Delta \geq 6$ is Class I. This article proves this conjecture for the $\Delta = 7$ case. The $\Delta = 6$ case remains open.

Combining the result of this paper, the Four Color Theorem (e.g., [2]), and a trick of Yap (see [1]), gives new proofs of two results of the authors:
that every planar graph with \(\Delta = 7 \) has a vertex-edge (total) 9-coloring [3], as well as an edge-face 9-coloring [4].

2. STRUCTURE OF CRITICAL GRAPHS

Let a connected graph be \(\Delta \)-critical if it has maximum degree \(\Delta \), is Class II, and each of its subgraphs on one less edge (throwing away isolated vertices) is Class I. A well-known result is that every Class II graph of maximum degree \(\Delta \) has a \(\Delta \)-critical subgraph. Thus, it suffices to show that no 7-critical graph is planar.

This section contains some useful results on the structure of \(\Delta \)-critical graphs. Although this paper is chiefly concerned with 7-critical planar graphs, the authors hope that the lemmas of this section may also prove useful in other contexts. To this end, the graphs considered in this section are not necessarily planar.

All proofs in this section start by deleting an edge \(xy \) of a \(\Delta \)-critical graph \(G \), and obtaining an edge \(\Delta \)-coloring of \(C - xy \) by means of the definition. It is useful to discuss some properties of this coloring. Some notation is useful. First, given a vertex \(x \) and a color \(c \), if \(x \) is incident with an edge which is colored \(c \), then \(x \) is said to see \(c \). Next, given a vertex \(x \) which sees a color \(c \), let \(xc \) mean the edge incident with \(x \) colored \(c \).

Also, given two colors \(j \) and \(k \), the subgraph of \(G \) induced by the edges colored either \(j \) or \(k \), call it \(G(j,k) \), has maximum degree two, and is thus the disjoint union of paths and cycles. Let a component of \(G(j,k) \) be a Kempe \((j,k) \)-chain. Given an edge \(x \) colored \(j \) and a color \(k \) distinct from \(j \), Kempeing \(x \) to \(k \) means reversing the colors on the Kempe \((j,k) \)-chain \(C \) containing \(x \), so that edges of \(C \) previously colored \(j \) are recolored with \(k \), and edges of \(C \) previously colored \(k \) are recolored with \(j \).

The following is the key lemma when dealing with colorings of \(G - xy \):

Lemma 2.1. Given a \(\Delta \)-critical graph \(G \), an edge \(xy \) of \(G \), and an edge \(\Delta \)-coloring of \(G - xy \), if \(x \) does not see \(j \) and \(y \) does not see \(k \), then \(x \) sees \(k \), \(y \) sees \(j \), and the Kempe \((j,k) \)-chain containing \(xK \) also contains \(yj \).

This is easy to see, for otherwise, an edge \(\Delta \)-coloring of \(G \) is easily obtained. As this is such a basic tool which will be used very frequently, it will be used without reference.

The next lemma, due to Vizing [6], is the only structural result which he needed to prove his planar graph theorem, that a planar graph with maximum degree at least eight is Class I. This lemma has been used in many places, and has thus received a name, Vizing’s Adjacency Lemma, which this article will abbreviate with VAL. It is convenient to refer to a
vertex by its degree. Thus, a j-vertex is a vertex of degree j, an $(\leq j)$-vertex is a vertex of degree at most j, and so forth.

Lemma 2.2 (Vizing’s Adjacency Lemma). If G is a Δ-critical graph and xy is an edge of G, then x is adjacent to at least $(\Delta - \deg(y) + 1)$ Δ-vertices other than y.

VAL thus gives some information about the vertices which are distance one from a given vertex. It is useful to have some information about the vertices which are distance two from a given vertex. The following lemma helps in this regard.

Lemma 2.3. Let x be a j-vertex of a Δ-critical graph which is adjacent to a k-vertex y. If $j < \Delta$, $k < \Delta$, then x is adjacent to at least $2\Delta - j - k + 1$ vertices other than y.

Proof. Suppose that G is a Δ-critical graph with such x and y. Since G is critical, $G - xy$ has an edge Δ-coloring. Each color appears at either x or y, or G has an edge Δ-coloring. Thus, without loss of generality, the edges incident with x in $G - xy$ are colored $1, \ldots, j - 1$, while those incident with y are colored $\Delta - k + 2, \ldots, \Delta$.

Consider a neighbor z of x such that xz is colored $b \in \{1, \ldots, \Delta - k + 1\}$. First, z sees each color in j, \ldots, Δ, or else coloring xz with a color from j, \ldots, Δ, and then coloring xy with b gives an edge Δ-coloring of G. Next, z sees each color in $1, \ldots, \Delta - k + 1$, or else zj may be Kemped to one of $1, \ldots, \Delta - k + 1$, such that when xz is colored j, and xy is colored b, it gives an edge Δ-coloring of G. (Here is the first implicit use of Lemma 2.1, that Kemping zj does not affect the colors on x so that xz may be colored j; further such uses will not be noted.)

Consider a neighbor $w \neq y$ of z such that wz is colored $c \in \{j, \ldots, \Delta\}$. First, w sees b, or else Kemping xz to c, and coloring xy with b gives an edge Δ-coloring of G. Next, w sees each color in j, \ldots, Δ, or else wb may be Kemped to a color in j, \ldots, Δ, such that Kemping xz to c, and coloring xy with b gives an edge Δ-coloring of G. Also, w sees each color in $1, \ldots, \Delta - k + 1$, or else wi, where $i \in \{j, \ldots, \Delta\} - \{c\}$, may be Kemped to a color in $1, \ldots, \Delta - k + 1$, such that Kemping wb to i, Kemping xz to c, and coloring xy with b gives an edge Δ-coloring of G. Thus, $\deg(w) \geq 2\Delta - j - k + 2$.

Consider a neighbor v of z, distinct from x and y, such that vz is colored $d \in \{1, \ldots, \Delta - k + 1\}$. The final argument shows that $\deg(v) \geq 2\Delta - j - k + 2$ as well. First, v sees each color in j, \ldots, Δ, or else vz may be Kemped to a color in j, \ldots, Δ to give the case of the previous paragraph. Next, v sees each
color in 1, ..., \(A-k+1\), or else \(v_j\) may be Kemped to a color in 1, ..., \(A-k+1\), such that Kemping \(v_z\) to \(j\) gives the case of the previous paragraph. It follows that \(\deg(v) \geq 2A-j-k+2\).

The remaining lemmas in this section deal with vertices which happen to be in triangles. This is useful when dealing with planar graphs. While the previous lemma is in some sense a natural analogue of VAL, the following lemmas were designed to handle specific situations which arise in the planar graph conjecture. Besides Kemping, described above, it is useful in the proof of the following lemma, to swap the colors of two edges \(x\) and \(\beta\), meaning to assign \(x\) the color that \(\beta\) had, to assign \(\beta\) the color that \(x\) had, and to leave the colors of all other edges unchanged. Of course, the general swapping of the colors of two edges of a properly colored graph may not yield a proper coloring of that graph.

Lemma 2.4. No \(A\)-critical graph has distinct vertices \(x, y, z\) such that \(x\) is adjacent to \(y\) and \(z\), \(\deg(z) < 2A - \deg(x) - \deg(y) + 2\), and \(xz\) is in at least \(\deg(x) + \deg(y) - A - 2\) triangles not containing \(y\).

Proof. Suppose that \(G\) is a \(A\)-critical graph with such \(x, y, z\). First we prove that \(\deg(x) + \deg(y) \geq A + 3\). Since \(G\) is critical, from \(\deg(z) < 2A - \deg(x) - \deg(y) + 2\), one can conclude that \(\deg(z) < A\). If \(\deg(x) + \deg(y) = A + 2\), by VAL, \(x\) would be adjacent to at least \(A - \deg(y) + 1 = \deg(x) - 1\) \(A\)-vertices other than \(y\). Since \(\deg(z) < A\), one can conclude that \(\deg(x) + \deg(y) \geq A + 3\).

Since \(G\) is critical, \(G-xy\) has an edge \(A\)-coloring. Thus, \(xy\) sees all \(A\) colors, or it may be colored to give an edge \(A\)-coloring of \(G\). Without loss of generality, then, \(xz\) is colored 1, \(x\) sees 2, ..., \(\deg(x)-1\), and \(y\) sees \(\deg(x), ..., A\).

Assume \(y\) does not see 1. Without loss of generality, \(y\) sees \(A - \deg(y) + 2, ..., \deg(x) - 1\). First, \(z\) sees \(\deg(x), ..., A\), or else coloring \(xz\) with one of \(\deg(x), ..., A\) and \(xy\) with 1 gives an edge \(A\)-coloring of \(G\). It follows that \(\deg(x) \geq A - \deg(x) + 2\). From the upper bound on \(\deg(z)\), it follows that \(2 \leq A - \deg(y) + 1\), hence there is a \(c \in \{2, ..., A - \deg(y) + 1\}\) such that \(z\) does not see \(c\). Thus, Kemping \(z\) to \(c\), then coloring \(xz\) with \(A\) and \(xy\) with 1 gives an edge \(A\)-coloring of \(G\).

Thus, \(y\) sees 1. Hence if \(\deg(x) + \deg(y) = A + 3\), then \(y\) sees 1, \(\deg(x), ..., A\) and if \(\deg(x) + \deg(y) > A + 3\), without loss of generality, in addition to 1, \(\deg(x), ..., A, y\) also sees \(A - \deg(y) + 3, ..., \deg(x) - 1\).

From the bound on the triangles containing \(xz\), there is a \(w \neq y\) adjacent to \(x\) and \(z\) such that \(wx\) is colored a color in 2, ..., \(A - \deg(y) + 2\). Without loss of generality, \(wx\) is colored 2.

Assume \(wz\) is colored one of \(\deg(x), ..., A\). Without loss of generality, \(wz\) is colored \(A\). First, \(z\) sees 2, or else Kemping \(wx\) to \(A\) and coloring \(xy\) with
2 gives an edge A-coloring of G. If $\deg(x) = A$, it is clear that $\deg(z) \geq 3 = A - A + 3 = A - \deg(x) + 3$. If $\deg(x) \neq A$, z also sees $\deg(x), \ldots, A - 1$, or else z may be Kempe to a color in $\deg(x), \ldots, A - 1$ so that Kempeing wx to A and coloring xy with 2 gives an edge A-coloring of G. Thus z sees 1, 2, $\deg(x)$, \ldots, A and we have $\deg(z) \geq A - \deg(x) + 3$. Since $\deg(z) \geq A - \deg(x) + 3$ in either case, from the upper bound on $\deg(z)$, it follows that $4 \leq A - \deg(y) + 2$. Thus, by the bound on $\deg(z)$, there are two colors of 3, ..., $A - \deg(y) + 2$ not seen by z, without loss of generality, z sees neither 3 nor 4. In this case, Kempeing wz to 3, $z2$ to A and then to 4, wz back to A, wx to A, and coloring xy with 2 gives an edge A-coloring of G.

Assume wz is colored one of 3, ..., $A - \deg(y) + 2$. Without loss of generality, wz is colored 3. First, z sees $\deg(x), \ldots, A$, or else wz may be Kempe to one of $\deg(x), \ldots, A$, yielding the previous case. As before, $4 \leq A - \deg(y) + 2$. In this case, zA may be Kempe to one of 4, ..., $A - \deg(y) + 2$ so that Kempeing wz to A yields the previous case.

Thus, wz is colored one of $A - \deg(y) + 3$, ..., $\deg(x) - 1$, which leads to $(\deg(x) - 1) - (A - \deg(y) + 3) \geq 0$ and thus $\deg(x) + \deg(y) \geq A + 4$. By symmetry, for each triangle uxz with $u \neq y$, if ux is colored a color in 2, ..., $A - \deg(y) + 2$, then uz is colored a color in $A - \deg(y) + 3$, ..., $\deg(x) - 1$. Partition the triangles containing xz into T_1, and T_2, such that T_1 is the set of triangles txz, such that each of tx and tz is colored a color in $A - \deg(y) + 3$, ..., $\deg(x) - 1$. From the hypothesis, $|T_2| \geq \deg(x) + \deg(y) = A - 2 - |T_1|$. Let S be the set of colors of such tz described above (so that $|S| = |T_1|$), and let $R := \{A - \deg(y) + 3, \ldots, \deg(x) - 1\} \setminus S$. Then $|R| = \deg(x) + \deg(y) - A - 3 - |S|$. It follows then that $|T_2| > |R|$. Thus, there is a color $r \in R$ and two triangles sxz and exz in T_2, such that one of sx, sz is colored r, and one of ex, ez is colored r. As the coloring is proper, it may be assumed that sz and ex are colored r, and that $r = \deg(x) - 1$. From the definition of T_2, by relabeling if necessary, it may be further assumed that $s = w$. Finally, again from the definition of T_2, it may be assumed that wz is colored one of 2, ..., $A - \deg(y) + 2$, $\deg(x), \ldots, A$.

Assume rz is colored one of $\deg(x), \ldots, A$. Without loss of generality, rz is colored A. First, z sees 2, or else swapping the colors on ex and ez, and swapping the colors on wx and wz, and coloring xy with 2 gives an edge A-coloring of G. Next, r sees $\deg(x), \ldots, A$, or else rz may be Kempe to a color in $\deg(x), \ldots, A$ so that swapping the colors on ex and ez, and on wx and wz, and coloring xy with 2 gives an edge A-coloring of G. Again, $4 \leq A - \deg(y) + 2$. Thus, without loss of generality, z sees neither 3 nor 4. In this case, however, Kempeing rz to 3, Kempeing $z2$ to A and then to 4, Kempeing rz back to A, swapping the colors on ex and ez, and on wx and wz, and coloring xy with 2 gives an edge A-coloring of G.

Assume rz is colored one of 2, ..., $A - \deg(y) + 2$. First, z sees $\deg(x), \ldots, A$, or else rz may be Kempe to a color in $\deg(x), \ldots, A$ to give the previous
case. Thus, without loss of generality, \(z \) does not see 3. In this case, however, Kemping \(z \) to 3, and \(vz \) to \(A \) gives the previous case.

Lemma 2.5. No \(A \)-critical graph has distinct vertices \(v, w, x, y, z \) such that \(w \) is a \((A - 2)\)-vertex, \(\deg(x) + \deg(y) \leq A + 3 \), \(\deg(x) \geq 5 \), \(\deg(y) \geq 5 \), and \(vwz \) and \(xyz \) are triangles.

Proof. Suppose that \(G \) is a critical graph with such vertices \(v, w, x, y, z \). Since \(G \) is critical, \(G - xy \) has an edge \(A \)-coloring. Thus, \(xy \) sees all \(A \) colors, or it may be colored to give an edge \(A \)-coloring of \(G \). Let \(k := \deg(x) \). Without loss of generality, then, \(xz \) is colored 1, \(x \) sees 2, \(\ldots, k - 1 \), \(yz \) is colored \(k \), and \(y \) sees \(k + 1, \ldots, A \).

Assume \(y \) does not see 1. Without loss of generality, \(y \) does not see 2, \(\ldots, k - 2 \).

Assume \(wz \) is colored one of 2, \(\ldots, k - 2, k + 1, \ldots, A \). Without loss of generality, by symmetry of \(x \) and \(y \), \(wz \) is colored \(k - 2 \). First, \(w \) sees \(k \), or Kemping \(yz \) to \(k - 2 \) and coloring \(xy \) with \(k \) gives an edge \(A \)-coloring of \(G \). Next, \(w \) sees 1, \(\ldots, k - 3 \), or else \(wk \) may be Kemped to one of 1, \(\ldots, k - 3 \) so that Kemping \(yz \) to \(k - 2 \), and coloring \(xy \) with \(k \) gives an edge \(A \)-coloring of \(G \). In this case, \(w1 \) may be Kemped to one of \(k + 1, \ldots, A \), so that Kemping \(wk \) to 1, \(yz \) to \(k - 2 \), and coloring \(xy \) with \(k \) gives an edge \(A \)-coloring of \(G \).

Thus, \(wz \) is colored \(k - 1 \). By the previous paragraph, when interchanging the roles of the colors \(k - 1 \) and \(k - 2 \), \(y \) sees \(k - 1 \). Without loss of generality by the symmetry of \(x \) and \(y \), \(vz \) is colored \(k - 2 \).

Assume \(vw \) is colored \(k \). Here, \(w \) sees \(k - 2 \), or else Kemping \(yz \) to \(k - 2 \), and coloring \(xy \) with \(k \) gives an edge \(A \)-coloring of \(G \). Next, \(w \) sees \(k + 1, \ldots, A \), or else \(wk \) may be Kemped to one of \(k + 1, \ldots, A \) so that Kemping \(yz \) to \(k - 2 \), and coloring \(xy \) with \(k \) gives an edge \(A \)-coloring of \(G \). In this case, \(w1 \) may be Kemped to one of \(1, \ldots, k - 3 \) so that Kemping \(wk \) to \(A \), \(yz \) to \(k - 2 \), and coloring \(xy \) with \(k \) gives an edge \(A \)-coloring of \(G \).

Assume \(vw \) is colored \(c \in \{1, \ldots, k - 3\} \). Then, \(w \) sees \(k \), or else Kemping \(vw \) to \(k \) gives the previous case. Also, \(w \) sees 1, \(\ldots, k - 3 \), or else \(wk \) may be Kemped to one of \(1, \ldots, k - 3 \) so that Kemping \(vw \) to \(k \) gives the previous case. Since \(k \geq 5 \), there is \(d \in \{1, \ldots, k - 3\} \setminus \{c\} \) such that \(wd \) may be Kemped to one of \(k + 1, \ldots, A \) so that Kemping \(wk \) to \(d \), and \(vw \) to \(k \) gives the previous case.

Assume \(vw \) is colored one of \(k + 1, \ldots, A \). Without loss of generality, \(vw \) is colored \(A \). Here, \(w \) sees 1, \(\ldots, k - 3 \), or else \(vw \) may be Kemped to one of 1, \(\ldots, k - 3 \) to give the previous case. In this case, \(w1 \) may be Kemped to one of \(k, \ldots, A - 1 \) so that Kemping \(vw \) to 1 gives the previous case.

Thus, \(y \) sees 1.
Assume \(wz \) is colored one of 2, ..., \(k-1 \). Without loss of generality, \(wz \) is colored 2. First, \(w \) sees \(k \), or else Kempeing \(yz \) to 2 and coloring \(xy \) with \(k \) gives an edge \(A \)-coloring of \(G \). Also, \(w \) sees 3, ..., \(k-1 \), or else \(wk \) may be Kempe to one of 3, ..., \(k-1 \) so that Kempeing \(yz \) to 2 and coloring \(xy \) with \(k \) gives an edge \(A \)-coloring of \(G \). In this case, \(w3 \) may be Kempe to one of \(k+1, \ldots, A \) so that Kempeing \(wk \) to 3, \(yz \) to 2, and coloring \(xy \) with \(k \) gives an edge \(A \)-coloring of \(G \).

Thus, \(wz \) is colored one of \(k+1, \ldots, A \). Without loss of generality, \(wz \) is colored \(A \). First, \(w \) sees 2, ..., \(k-1 \), or else \(wz \) may be Kempe to one of 2, ..., \(k-1 \) to give the previous case. In this final case, \(w2 \) may be Kempe to one of \(k, \ldots, A-1 \) so that Kempeing \(wz \) to 2 gives the previous case.

Lemma 2.6. No \(A \)-critical graph has distinct vertices \(v, w, x, y, z \) such that \(v \) and \(w \) are \((\leq A-1) \)-vertices, \(\deg(x) + \deg(y) \leq A + 3 \), \(\deg(x) \geq 4 \), \(\deg(y) \geq 4 \), \(xy \) is a triangle, and \(z \) is adjacent to \(v \) and \(w \).

Proof. Suppose that \(G \) is a critical graph with such vertices \(v, w, x, y, z \). Since \(G \) is critical, \(G - xy \) has an edge \(A \)-coloring. Let \(k := \deg(x) \). Without loss of generality, \(xz \) is colored \(k-1 \), \(x \) sees 1, ..., \(k-1 \), and \(y \) sees \(k, \ldots, A \), or else \(xy \) may be colored to give an edge \(A \)-coloring of \(G \). Since \(\deg(x) + \deg(y) \leq A + 3 \), without loss of generality, \(y \) does not see 2, ..., \(k-1 \).

Assume \(yz \) is not colored 1. Without loss of generality, \(yz \) is colored \(k \).

Without loss of generality via symmetry of \(v \) and \(w \), \(wz \) is not colored 1. Without loss of generality via symmetry of \(x \) and \(y \), \(wz \) is colored 2. First, \(w \) sees \(k \), or Kempeing \(yz \) to 2 and coloring \(xy \) with \(k \) gives an edge \(A \)-coloring of \(G \). Next, \(w \) sees 3, ..., \(k-1 \), or \(wk \) can be Kempe to a color in 3, ..., \(k-1 \) so that Kempeing \(yz \) to 2, and coloring \(xy \) with \(k \) gives an edge \(A \)-coloring of \(G \). Also, \(w \) sees \(k+1, \ldots, A \), or \(w3 \) can be Kempe to a color in \(k+1, \ldots, A \) so that Kempeing \(wk \) to 3, Kempeing \(yz \) to 2, and coloring \(xy \) with \(k \) gives an edge \(A \)-coloring of \(G \). Since \(\deg(w) \leq A-1 \), \(w \) does not see 1. Finally, \(y \) sees 1, or Kempeing \(wk \) to 1, Kempeing \(yz \) to 2, and coloring \(xy \) with \(k \) gives an edge \(A \)-coloring of \(G \).

Suppose \(vz \) is not colored 1. By symmetry of \(v \) and \(w \), \(v \) does not see 1, and \(v \) sees 2, ..., \(A \). Without loss of generality, \(vz \) is not colored \(A \). By symmetry of \(v \) and \(w \), Kempeing \(wA \) to 1 does not affect \(x \). But after Kempeing \(wA \) to 1, \(w \) sees 1, and nothing else changes; this was handled in the previous paragraph.

Thus, \(vz \) is colored 1. Here, \(v \) sees \(k \), or else one can recolor \(vz \) with \(k \), \(wz \) with 1, \(yz \) with 2, and \(xy \) with \(k \) gives an edge \(A \)-coloring of \(G \). Also, \(v \) sees 2, ..., \(k-1 \), or else \(vk \) may be Kempe to one of 2, ..., \(k-1 \) so that coloring \(vz \) with \(k \), \(wz \) with 1, \(yz \) with 2, and \(xy \) with \(k \) gives an edge \(A \)-coloring of \(G \). But in the final case, since \(\deg(v) \leq A-1 \), \(v3 \) may be
Kemped to one of \(k + 1, \ldots, \Delta \) so that Kemping \(w_k \) to 3, coloring \(v_z \) with \(k \), \(w_z \) with 1, \(y_z \) with 2, and \(x_y \) with \(k \) gives an edge \(\Delta \)-coloring of \(G \).

Thus, \(y_z \) is colored 1.

Suppose \(w_z \) is colored with a color in \(k, \ldots, \Delta \). Without loss of generality, \(w_z \) is colored \(k \). First, \(w \) sees \(k - 1 \), or else Kemping \(x_z \) to \(k \) and coloring \(x_y \) with \(k - 1 \) gives an edge \(\Delta \)-coloring of \(G \). Next, \(w \) sees \(k + 1, \ldots, \Delta \), or else \(w \) may be Kemped to one of \(k + 1, \ldots, \Delta \) so that Kemping \(x_z \) to \(k \), and coloring \(x_y \) with \(k - 1 \) gives an edge \(\Delta \)-coloring of \(G \). Also, \(w \) sees 2, \(k - 2 \), or else \(w \Delta \) may be Kemped to one of 2, \(k - 2 \) so that Kemping \(w(k - 1) \) to \(A \), Kemping \(x_z \) to \(k \), and coloring \(x_y \) with \(k - 1 \) gives an edge \(\Delta \)-coloring of \(G \). Since \(\deg(w) \leq \Delta - 1 \), \(w \) does not see 1. If Kemping \(w \Delta \) to 1 affects either \(x \) or \(y \), it yields a previous case. Thus, Kemping \(w \Delta \) to 1, \(w(k - 1) \) to \(A \), \(x_z \) to \(k \), and coloring \(x_y \) with \(k - 1 \) gives an edge \(\Delta \)-coloring of \(G \).

Thus, \(w_z \) is colored with a color in \(2, \ldots, k - 1 \). Without loss of generality, \(w_z \) is colored 2. First, \(w \) sees \(k, \ldots, \Delta \), or else Kemping \(w_z \) to one of \(k, \ldots, \Delta \) yields the previous paragraph. Also, \(w \) sees \(3, \ldots, k - 1 \), or else \(w_k \) may be Kemped to one of \(3, \ldots, k - 1 \) so that Kemping \(w_z \) to \(k \) yields the previous paragraph. Finally, Kemping \(w_k \) to 1 does not affect \(x \) or \(y \), or else a previous case is obtained. Thus, Kemping \(w_k \) to 1 and then \(w_z \) to \(k \) yields the previous paragraph.

3. STRUCTURE OF PLANAR GRAPHS OF MAXIMUM DEGREE SEVEN

This section gives a proof of the main result. The technique used to prove the theorem is the Discharging Method, the same technique used to prove the Four Color Theorem [2]. As a starting point, an initial charge function \(ch \) is defined on \(V \cup F \) as follows: For each vertex \(x \), let \(ch(x) := 6 - \deg(x) \). For each face \(y \), let \(ch(y) := 2(3 - \deg(y)) \). The key, well-known observation is the following, which easily follows from Euler’s formula:

Lemma 3.1. For a connected plane graph,

\[
\sum_{x \in V \cup F} ch(x) = 12.
\]

Next, a modified charge function \(ch' \) is defined as a modification of \(ch \) by moving some charge locally among vertices and faces according to the following discharging rules. Each rule sends charge from a vertex of degree at most 6 to either a face of degree at least 4 or to a vertex of degree at
least 6 (possibly via another vertex). Let \(j \)-neighbor, \(j \)-face, etc., be defined analogous to \(j \)-vertex, etc. Let an \((i, j, k)\)-face be a 3-face incident with distinct vertices \(x, y, z \) such that \(\deg(x) = i \), \(\deg(y) = j \), and \(\deg(z) = k \).

1. For each 2-vertex \(x \), and for each 7-vertex \(y \) adjacent to \(x \), send 1 from \(x \) to \(y \).

2. For each 2-vertex \(x \), for each 7-vertex \(y \) adjacent to \(x \), and for each \((\geq 4)\)-face \(F \) incident with \(xy \), send \(\frac{1}{2} \) from \(x \) to \(F \), and send \(\frac{3}{2} \) from \(x \) via \(y \) to \(F \). (Note: Since each 2-vertex \(x \) is adjacent two 7-vertices \(y, z \) such that \(xy, xz \) are incident with \(F \), \(x \) actually sends \(\frac{3}{2} \) directly to \(F \).)

3. For each 3-vertex \(x \), and for each 7-vertex \(y \) adjacent to \(x \), if \(xy \) is incident with two 3-faces, then send 1 from \(x \) to \(y \), else send \(\frac{1}{2} \) from \(x \) to \(y \).

4. For each vertex \(x \) such that \(3 \leq \deg(x) \leq 6 \), for each \((\geq 4)\)-face \(F \) incident with \(x \), and for each vertex \(y \) such that \(xy \) is incident with \(F \), send \(\frac{1}{2} \) from \(x \) to \(F \), and if \(\deg(y) = 7 \), send an additional \(\frac{1}{2} \) from \(x \) via \(y \) to \(F \). (Note: Since each vertex \(x \) with \(3 \leq \deg(x) \leq 6 \), is adjacent two vertices \(y, z \) such that \(xy, xz \) are incident with \(F \), \(x \) actually sends \(\frac{3}{2} \) directly to \(F \).)

5. For each 3-vertex \(x \), for each 6-vertex \(y \) adjacent to \(x \), and for each 7-vertex \(z \) adjacent to \(y \), but not to \(x \), send 1 from \(x \) to \(z \).

6. For each 4-vertex \(x \) adjacent to a 5-vertex, and for each 7-vertex \(y \) adjacent to \(x \), send \(\frac{1}{2} \) from \(x \) to \(y \).

7. For each 4-vertex \(x \) not adjacent to a 5-vertex, and for each 7-vertex \(y \) adjacent to \(x \), if \(xy \) is incident with two 3-faces, then send \(\frac{1}{2} \) from \(x \) to \(y \), else send \(\frac{1}{2} \) from \(x \) to \(y \).

8. For each 4-vertex \(x \), and for each 6-vertex \(y \) adjacent to \(x \), send \(\frac{1}{2} \) from \(x \) to \(y \).

9. For each 5-vertex \(x \) adjacent to a 4-vertex, and for each 7-vertex \(y \) adjacent to \(x \), send \(\frac{1}{2} \) from \(x \) to \(y \).

10. For each 5-vertex \(x \) not adjacent to a 4-vertex, and for each \((\geq 6)\)-vertex \(y \) adjacent to \(x \) such that \(xy \) is incident with two 3-faces, if \(xy \) is incident with exactly one \((5, 5, 7)\)-face, then send \(\frac{3}{2} \) from \(x \) to \(y \), else send \(\frac{1}{2} \) from \(x \) to \(y \).

11. For each 6-vertex \(x \) not adjacent to a 3-vertex, and for each 7-vertex \(y \) adjacent to \(x \), if \(xy \) is incident with two \((4, 6, 7)\)-faces, then send \(\frac{2}{3} \) from \(x \) to \(y \), else if \(xy \) is not incident with two \((6, 7, 7)\)-faces, then send \(\frac{1}{2} \) from \(x \) to \(y \).

Now the proof of the main result may be given. The proof proceeds as follows. It is supposed that a 7-critical planar graph exists. Each face or vertex is examined according to its degree. The results of Section 2 are used to show that each such element has non-positive modified charge. This contradicts Lemma 3.1 to prove the theorem.
THEOREM 3.1. No 7-critical graph is planar.

Proof. Suppose that G is a 7-critical planar graph. By Lemma 3.1, $\sum_{v \in V(x)} ch(x) = 12$. The rules only move charge around, and do not affect the sum, and so we have $\sum_{v \in V(x)} ch'(x) = 12$, as well. A contradiction follows by showing that every face and every vertex has non-positive modified charge.

Let F_3 be a 3-face. Thus, $ch(F_3) = 0$, and nothing sends charge into F_3, so $ch'(F_3) = 0$ as well.

Let F_4 be a 4-face. Let x, y, z, w be the vertices incident with F_4 cyclically ordered according to the embedding of G. If x, say, is a 2-vertex, then y, z, w are 7-vertices by VAL, and z sends no charge into F_4, while each of x, y, w sends $\frac{1}{2}$ by Rule 2, so that $ch'(F_4) = 0$. Otherwise, each vertex incident with F_4 sends at most $\frac{1}{2}$ into F_4 by Rule 4, and $ch'(F_4) \leq 0$.

Let F_5 be a k-face for $k \geq 5$. By definition, $ch(F_5) = 2(3 - k)$. Let xyz be a sequence of vertices in the facial walk of F_5. If x is a 2-vertex, then by VAL, y and z are 7-vertices, and the only charge y sends into F_5 is $\frac{1}{2}$ from Rule 2. If y is a 2-vertex, then y sends $\frac{1}{2}$ into F_5 by Rule 2. If none of x, y, or z is a 2-vertex, then y sends $\frac{1}{2}$ at most twice into F_5 by applications of Rule 4. Since F_5 receives at most $\frac{1}{2}$ from each vertex incident with it, $ch(F_5) \leq 2(3 - k) + 2k/3 = (9 - 2k)/3 \leq 0$.

Let v_2 be a 2-vertex. Thus, $ch(v_2) = 4$. No rule sends charge into v_2. By VAL, v_2 is adjacent to two 7-vertices, and v_2 sends out 2 by Rule 1. Since G is simple, and clearly not K_4, v_2 is incident with at least one (≥ 4)-face, and v_2 sends out at least 2 by Rule 2. Thus, $ch'(v_2) \leq 0$.

Let v_3 be a 3-vertex. Thus, $ch(v_3) = 3$. No rule sends charge into v_3. By VAL, v_3 is adjacent to three (≥ 6)-vertices, at least two of which are 7-vertices. By Rules 3 and 4, v_3 sends out at least 1 for each of its 7-neighbors. Thus, if v_3 is adjacent to three 7-vertices, $ch'(v_3) \leq 0$. Otherwise, v_3 sends out at least 1 by Rule 5, and $ch'(v_3) \leq 0$.

Let v_4 be a 4-vertex. Thus, $ch(v_4) = 2$. No rule sends charge into v_4. By VAL, v_4 is adjacent to four (≥ 5)-vertices, at least two of which are 7-vertices. If v_4 is adjacent to a 5-vertex, by VAL, v_4 is adjacent to three 7-vertices, v_4 sends out 2 by Rule 6, and $ch'(v_4) \leq 0$. Otherwise, by Rules 4 and 7, v_4 sends out at least $\frac{1}{2}$ for each of its 7-neighbors. By Rule 8, v_4 sends out at least $\frac{1}{2}$ for each of its 6-neighbors. Since v_4 has at least two 7-neighbors, $ch'(v_4) \leq 0$ here as well.

Let v_5 be a 5-vertex. Thus, $ch(v_5) = 1$. No rule sends charge into v_5. By VAL, v_5 is adjacent to five (≥ 4)-vertices, at least two of which are 7-vertices. If v_5 is adjacent to a 4-vertex, by VAL, v_5 is adjacent to four 7-vertices, v_5 sends out $\frac{1}{2}$ by Rule 9, and $ch'(v_5) \leq 0$. If v_5 is adjacent to five (≥ 6)-vertices, by Rules 4 and 10, it sends out at least $\frac{1}{2}$ to each of its neighbors, and $ch'(v_5) \leq 0$ again.
Thus v_5 is adjacent to a 5-vertex, and by VAL, v_5 is adjacent to at least three 7-vertices; by Rules 4 and 10, it sends at least \(\frac{1}{2} \) to each of them. If v_5 is also incident with an (≥ 4)-face, it sends \(\frac{1}{2} \) to it by Rule 4, and $ch'(v_5) \leq 0$. Otherwise, v_5 is incident with five 3-faces. In this case, if v_5 is adjacent to two 5-vertices, by Rule 10, it sends out \(\frac{2}{7} \) to each of two of its 7-neighbors, and \(\frac{1}{7} \) to the other 7-neighbor, and otherwise, by Rule 10, it sends out \(\frac{1}{2} \) to one of its 7-neighbors, and \(\frac{1}{7} \) to the other three (≥ 6)-neighbors. In either of these cases, $ch'(v_5) = 0$.

Let v_6 be a 6-vertex. Thus, $ch(v_6) = 0$. By VAL, v_6 is adjacent to six (≥ 3)-vertices. If v_6 is adjacent to a 3-vertex, then by VAL, it is adjacent to five 7-vertices, nothing sends charge into v_6, and $ch'(v_6) = 0$. If v_6 is adjacent to a 4-vertex, then by VAL, it is adjacent to four 7-vertices; v_6 receives at most \(\frac{1}{2} \) from each of its (\(\leq 5 \))-neighbors by Rules 8 and 10, but it sends out by Rules 4 and 11 at least what it receives, and thus $ch'(v_6) \leq 0$ here as well. If v_6 is adjacent to a 5-vertex, then by VAL, it is adjacent to three 7-vertices; v_6 receives \(\frac{1}{7} \) from each of its 5-neighbors by Rule 10, and it sends out by Rules 4 and 11 at least what it receives, since VAL shows that no edge incident with v_6 is incident with two (5, 5, 6)-faces, and thus, $ch'(v_6) \leq 0$. Otherwise, no rule sends charge into v_6, and $ch'(v_6) = 0$.

Let v_7 be a 7-vertex. Thus, $ch(v_7) = -1$. If v_7 is adjacent to a 2-vertex, then by VAL, v_7 is adjacent to six 7-vertices, and the only charge v_7 receives is 1 from its 2-neighbor by Rule 1. If v_7 is adjacent to a 6-vertex which is adjacent to a 3-vertex y, but v_7 is not adjacent to y, then by Lemma 2.3, v_7 is adjacent to six 7-vertices, and the only charge v_7 receives is 1 from y by Rule 5. If there is a $j \in \{4, 5\}$ such that v_7 is adjacent to a j-vertex x which is adjacent to a $(9 - j)$-vertex y, then by Lemma 2.3, every neighbor of v_7 besides x and y is a 7-vertex, and the only charge v_7 receives is at most 1 from x and y by Rules 6 and 9, and $ch'(v_7) = 0$.

If v_7 is adjacent to a 3-vertex, then by VAL, v_7 is adjacent to five 7-vertices. If v_7 is adjacent to two 3-vertices, then by Lemma 2.4, v_7 receives only \(\frac{1}{2} \) from each of its 3-neighbors by Rule 3, and $ch'(v_7) \leq 0$. Thus, assume that v_7 is adjacent to only one 3-vertex. If v_7 receives 1 from it from Rule 3, Lemma 2.4 says that v_7 receives no other charge. Otherwise each of the two neighbors of v_7 of degree at most six sends at most \(\frac{1}{2} \) into v_7. In either case, $ch'(v_7) \leq 0$.

Suppose v_7 is adjacent to a 4-vertex. By VAL, v_7 is adjacent to four 7-vertices.

If a 4-vertex x sends \(\frac{1}{2} \) into v_7, then since VAL says that x is not adjacent to a 4-vertex, Lemma 2.4 says that v_7 is adjacent to only one 4-vertex. By Lemma 2.5, no vertex sends \(\frac{1}{2} \) into v_7 by Rule 10. It follows that each of the at most two other (\(\leq 6 \))-neighbors of v_7 sends at most \(\frac{1}{2} \) into v_7, and $ch'(v_7) \leq 0$.

Thus, assume no 4-vertex x sends \(\frac{1}{2} \) into v_7. Then, each 4-neighbor of v_7 sends \(\frac{1}{2} \) into v_7, and each (\(\leq 6 \))-neighbor of v_7 sends at most \(\frac{1}{2} \) into v_7. In this case, $ch'(v_7) \leq 0$ as well.
Thus, assume v_7 is not adjacent to a 4-vertex. If a 5-vertex sends $\frac{2}{5}$ into v_7 by Rule 10, then by Lemma 2.6, v_7 is adjacent to at most three (≤ 6)-vertices, and by examining the Rules, one of those three sends at most $\frac{1}{5}$ into v_7, while the other two send at most $\frac{2}{5}$, and $ch'(v_7) \leq 0$. By VAL, v_7 is adjacent to at most five (≤ 6)-vertices. In the only case which remains, each (≤ 6)-neighbor of v_7 sends at most $\frac{1}{5}$ into v_7, and $ch'(v_7) \leq 0$ in this final case as well.

4. PROJECTIVE PLANAR GRAPHS

In closing, it is appropriate to mention the similar problem for graphs which embed in the projective plane, even though Vizing never considered it. The results in Section 2 certainly apply to projective graphs. Also, Lemma 3.1 has an analogue for projective graphs with the 12 simply replaced with a 6. As the proof of Theorem 3.1 only used that this sum is positive, this article also gives a proof that projective graphs of maximum degree seven are Class 1. The same is easily seen to be true for maximum degree at least eight.

ACKNOWLEDGMENT

The authors thank the referees for their valuable suggestions and for carefully reading manuscript.

REFERENCES

4. D. P. Sanders and Y. Zhao, On improving the edge-face coloring theorem, Graphs Combinatorics, in press.
6. V. G. Vizing, Critical graphs with given chromatic index, Metody Diskret. Analiz 5 (1965), 9–17. [In Russian]