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Abstract 

Given a positive measure # supported on a set t2 _~ C, an orthonormal system { ~o,}. ~> o and a point a e ~2, we study the 

relationship among p({a}), the kernels Kn(a, a) = ~ = o  ~°k(a)~°k(a) and the denseness of span{¢n}, ~> o in L2(#) and in 
L2(v), where v =/~ + M6a. 
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O. Introduction 

Let/~ be a positive measure supported on a subset t2 ___ C and { q~,:t2 ---, C}, ~ 0 an or thonormal  
system in L2(/~) = L2(f2,p). Then 

fo {0, if n-~m;  
q,,?p,, d# = l, if n = m. 

The system {~o,}n>~o is said to be complete in LZ(p) if the set span{~o,},~o of finite linear 
combinations is dense in L2(p) or, in other terms, if for each • e L2(p) 

fo ~(o, dp=OVn~>O ~ q~=O p-a.e. 

(the orthogonali ty is not required here). 
For  each n ~> 0, set 17. = {Y,~,=o 2kf~k; 20'  " " '  "~'n E C }. The best L 2 ( ~ )  approximant in /7 .  of any 

f E  L 2 (p) is given by the nth partial sum of its Fourier series with respect to the set { ~0, }, ~ o. Thus 
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the best approximant is 

where 

C k ( f ) =  faf~kd#, K.(x,y)= L qgk(X)qgk(Y)" 
k = O  

Furthermore, 

L Ick(f)l 2 ~<f~ I f l2d# VfeL2(#) (1) 
k = O  

(Bessel's inequality). If the system {tp,},~>o is complete in L2(kt), then (1) becomes an equality 
(Parseval's equality) and the approximants {S.(f)}. ~> o converge to f i n  Lz(#). This leads to an 
elementary proof of the following result (see [1, pp. 63, 114], [6, p. 45] for more elaborate proofs 
and only in the case of systems of polynomials). 

Proposition I. Let {tp,},>~ o be an orthonormal system in L2(#) and let a ~ f2. Then 

Kn(a,a) 
- -  >~ p({a})  Vn >~0. (2) 

I f  p({a))  > 0 and {qg.}.~> o is complete, then 

1 
lira, K.(a,a~) = #({a}). (3) 

Proof. We can assume 0 < p({a}) < ~ ,  otherwise the statement holds trivially. Let f be the 
characteristic function at the point a; then Ck(f) = ~ok(a)#({a}), So that 

[ck(f)l z =/~({a}) 2 ~ IqMa)l 2 
k = 0  k = O  

and 

f [fl 2d~ =/~({a}). 

Now, (2) and (3) follow from Bessel's and Parseval's formula, respectively. [] 

Concerning the measure # and the kernels K,(a, a), we have the following well-known, elemen- 
tary result (see I-3, p. 38, Theorem 7.3] or [-4, p. 4], for example). In fact, inequality (2) can also be 
obtained as a corollary of Lemma 2. 
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Lemma 2. Let { q~,,}. ~> o be an orthonormal system in L2(/a) and let a ~ f2. Then 

K,(a, a) - min I R,, { 2 d/a, 

where the minimum is taken over all R. ~ 17. such that R.(a) = 1. Furthermore, this minimum is 
attained for R,(x) = K.(x,  a)/K.(a, a). 

Our aim is to use Proposition 1 and Lemma 2 to obtain, using elementary techniques, some 
relations between lim. K,(a, a)- 1 and certain properties of completeness of the system { q~.}. ~> o. 

1. Addition of  a mass point 

Obviously, one cannot expect (3) to hold if the system { ~o. }. ~ o is not complete. If { ~0. }. ~ o is 
complete but/a({a}) = 0, it can also fail, for the values ~o.(a) are/a-meaningless; in this case, we will 
prove that (3) holds if and only if the system {~o.}. ~ o is complete in L2(v). Here v =/a  + M6a, 
where 6a is a Dirac delta on a, M > 0 and as a consequence 

f f dv  = f fdl~ + Mf(a).  

The system {q~.}. ~> o may not be orthogonal in L2(v), but it can be orthonormalized so as to get 
an or thonormal  system {~O.}.~o in L2(v), such that ~O. = y~,=o2.,kq~k, with 2.,. 4: 0. Clearly, if 
{ ~b. }. ~ o (or, equivalently, { q~. }. ~ o) is complete in L2(v), then { q~. }. ~> o is also complete in L2(/a), 
but the converse is not true, in general. 

In view of (3), we will mainly deal with the case/~({a}) = 0. However, note that if #({a}) > 0 
then the measures v and /a  are equivalent and so {qg.}.~o is complete in L2(/a) if and only if 
{~.}.  ~ o is complete in L2(v) (for the same reason M could be taken equal to 1). 

Let us state our first result (another proof of part (a) ~ (b) can be found in [2, Lemma 2]). 

Theorem 3. l f  { qg.}. >~ o is a complete orthonormal system in LZ(/a), #({a}) = 0 and v =/a + Mr. ,  
then the followin9 properties are equivalent: 

(a) lim. 1/K.(a, a) = 0; 
(b) { ~,.}. ~> o is a complete orthonormal system in L2(v). 

Proof. ( a )~(b) :  Suppose {@.}.>~o is not complete in L2(v); then, there exists q ' e  L2(v), ~ 9 ~ 0, 
such that 

f cb~ .dv=O Vn>>.O. 

We can also assume 

; } ~ [ 2 d v =  1, 
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so that { 45}u{ 4 .} ,  ~ o is an or thonormal  system in L2(v). Furthermore,  45(a) ¢ 0, otherwise it 
would be orthogonal  to {q),}~ ~> o in L2(/~) and therefore 45 = 0 p- and v-a.e. 

Put D,(a ,a)= 2~,=01Ok(a)l 2. Then, by (2) applied to {45}u{~,.},~>o, the fact 45(a )¢0 ,  and 
Lemma 2, respectively, we have the chain of inequalities 

1 1 1 
M = v({a}) ~< lim_ 145(a)12 + D,(a,a) < lim_ D.(a,a) = lim_ ) t K , ' a ,  a-------~ + M 

and so 

1 
lim - -  > O, 

. K . (a ,  a) 

which is a contradiction. 
(b) ~ (a ) :  By (3) applied to {45}u{~} .  ~ o and Lemma 2, 

1 1 
M = lim. D,(a,a--~) = lim K.(a,a~) + M, 

which gives (a). [ ]  

Under  the conditions of Theorem 3, the or thonormal  system { ~bn }, ~> o may not be complete in 
L2(v), but in this case it becomes complete by adding just one new function. 

Propos i t ion  4. Let {q~,}n~o be a complete system in L2(/.t), /~ ({a} )=0  and v = I~ + Me3, and 
suppose { 4,  } , >~ o is not complete in L 2 ( v ). Then, the system { 45 } to { ~. }, >~ o is orthogonal ( 45 is not 
normalized) and complete in L2(v), where 

oo  

~o ~Ok(X)q~k(a) if X g: a; 
45(x) = k= 

1 
M i f x = a .  

Proof. By Theorem 3, 

[q~k(a)l 2 < oo. 
k = O  

Then, as 

d/~(x) = ( M  + 1) ~ I~o~(a)l 2 
k = n  
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the series C,“=, cpk(x)cpk(a) converges in L*(v) because its partial sums constitute a Cauchy 
sequence in L’(v). So @ is a well-defined function in L’(v). Now, 

s cpn$dv = Mq,(a)@(a) + 5 q,‘(a) cp,,&dp = o 
n k=O s R 

for every IZ 2 0; therefore, we also have 

and 
it is 

If 

s $,$dv=O ‘dn>O 

PLW > ,, ,, p o is an orthogonal system in L2(v). In order to prove that it is complete in L*(v), 
enough to check that 

f~ L2(v), 
s 

f$,,dv = 0 tin 2 0 =s f= C@ v-a.e. 
R 

then 

s nf@ndv=O Vn>O. 

Thus, 

s 
(f+ Mf(a)@)@,dp = 

s 
(f+ Mf(u)@)&,dv = 0 Vn 3 0, 

R R 

i.e., 

f + Mf(u) @ = 0 p-a.e. 

and so 

f + Mf(u)@ = 0 v-a.e. 

Example. Let U be the unit circle, 52 = %u{O} and ,u the measure 

Let { (~~1”~~ be given by q,(z) = z” for n 2 0 and q,(z) = (Z)-” for n < 0 (the system is indexed in Z, 
but this makes no difference). This system is orthonormal and complete in L* ( ,u). Take v = p + do. 
Then, the system (qPn}nez is not complete in L2(v) and G(O) = - 1, @p(z) = 1 for z E T. 

Given any finite positive measure v supported on the unit circle, the orthonormal system 
obtained from { z”}“~~ is complete in L* (v) (see, e.g., [ 1, p. 180, Theorem 5.1.21). Then, if we consider 
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a finite positive measure p supported on the unit circle and the or thonormal  system {q~.}.~z 
obtained from {z"},~, part (b) in Theorem 3 holds, so that part (a) also holds. 

In contrast, the real case is more interesting, as we see in the next section. 

2. Orthogonal polynomials on the real line 

In the following we will consider a system { p, }, ~ o of polynomials (p. of degree n) or thonormal  
with respect to some positive measure ~t on ~. 

The measure/~ is said to be determinate if there does not exist any other positive measure r /on 
such that 

f x"dl~(x)  = f~ x"dr/(x) Vn >/0; 

otherwise,/~ is said to be indeterminate. 
The system {P.}.~0 is complete in L2(d#) if and only if # is N-ex tremal  (see [5]). Every 

determinate measure is N-extremal, and every indeterminate N-extremal measure is a countable 
sum of Dirac deltas (see [2]). 

If/~ is determinate, then 

1 
lim - -  - #( { a ) ) Va e ~ (4) 

, K , ( a , a )  

(see, e.g., [6, p. 45, Corollary 2.6]), while if/2 is indeterminate then 

1 
l i m - - > 0  V a e C  (5) 

, K . ( a , a )  

(see, e.g., [1, p. 50], [6, p. 50, Corollary 2.7-1). 
Now, the previous results provide a simple proof of the following: 

Theorem 5. Let  {p,}, ~ o be a system o f  polynomials orthonormal with respect to a positive measure 
l~ on ~. Le t  a e ~, M > O, v = /~ + M6a. Then: 

(a) /~ indeterminate N-extremal ,  /~( { a } ) = 0 =~ v indeterminate not N-extremal .  
(b) # indeterminate N-extremal ,  #({a}) > 0 =~ v indeterminate N-extremal .  
(c) # indeterminate not N-ex t remal  =¢, v indeterminate not N-extremal .  
(d) # determinate, #(  ( a } ) = 0 =~ v determinate or indeterminate N-extrema[.  
(e) # determinate, #({a}) > 0 =~ v determinate. 

Proof. (a)-(c): Since /~ is indeterminate, v = # + Mr,,  is also indeterminate. Now, if # is not 
N-extremal (i.e., the polynomials are not dense in L2(#)) then clearly v is not N-extremal. If # is 
N-extremal and ~({a}) > 0, then v is also N-extremal, for both measures are equivalent. Finally, if 
#({a}) = 0, from (5) and Theorem 3 it follows that the polynomials are not dense in L2(v). 

(d) and (e): If # is determinate, from (4) and Theorem 3 it follows that the polynomials are dense 
in L2(v), so that v is either determinate or indeterminate N-extremal. This proves (d). Now, assume 
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/~({a})  > 0. Then,/1 and v are equivalent measures. Take b ~ It~ such that ~ ( { b } )  = 0. Applying (d), 
the measure /~ + 6b is N-extremal.  Since /t + 6b is equivalent to v + 6b, this measure is also 
N-extremal.  By part (a), v cannot  be indeterminate N-extremal,  so that it is determinate. [ ]  

Remark. Both cases in part  (d) can actually occur. Indeed, if 

V = ~ Mk(}ak 
k=O 

is either indeterminate  N-extremal (every indeterminate N-extremal measure is of this form) or 
determinate  (take, for example, { ak }k >~ 0 bounded),  it can be shown that  the measure 

= ~ Mk(~ak 
k=l 

is determinate. A proof  can be seen in [2]; it is also a consequence of inequality (5) and Theorem 3. 
In this context,  let us ment ion that, in case (d), if the measure/~  is not discrete, then v is not 

discrete; therefore, it must be also determinate. 
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