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1. Introduction

Let K be a connected compact Lie group afda Hamiltoniank -manifold,
i.e., a symplectick-manifold equipped with a moment magp: M — ¢* :=
(Lie K)*. A theorem of Kirwan (implicitly in [Ki]) assertsif M is connected
and compact then the level sets.ofire connectedlhe purpose of this note is to
prove such a statement in the category of algebraic varieties.
First, we reformulate Kirwan's theorem: consider the mapM — ¢*/K
which is the composition oft with the quotient map. For a point € £* let
H = K, beitsisotropy group and= Kx € £*/K its orbit. Then the fibeyr ~1(y)
is isomorphic to the fiber produdt x # . ~1(x). Thus, since botlk /H andH are
connected, the connectedness of the fibeys igsfequivalent to the connectedness
of the fibers ofyr. This formulation is more suitable for the algebraic category.
Let G be a connected reductive group (everything @pandZ a Hamiltonian
G-variety with moment map: Z — g* = (Lie G)*. Let g*// G := SpedC[g*]°
be the categorical quotient and kgt Z — g*/ G be the composition of. with
the quotient map. Since the latter is not an orbit map, the connection between
fibers ofu and@ is considerably more loose than in the differential category and
we concentrate off from now on.
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The morphismy is still not the right map, since sometimes not even its generic
fibers are connected. An example is the actiofief SLy(C) on Z = C2 x (C?)*
(this is the cotangent bundle 6%). Theng* /G = Al andy (u, @) = a(u)2. In
particular, the generic fiber ﬁ has two connected components. This is remedied
by looking at the mapy (u,«) := a(u) instead. Theny is the composition
of ¥ with the finite mapA® — A%, z — 72, the latter being responsible for the
disconnected fibers.

This construction can be generalized as follows: the morp@s’mﬂuces an
homomorphism of algebras

U Clg* )Gl — C[Z]. (1.1)

Let R € C[Z] be the integral closure of the image ahd= Speck. Then s
factors throughys : Z — L. By construction, the generic fibers gf are now
connected, even irreducible. Furthermore, we expect that the behavipriof
dramatically better than that. For example, whrs connected and affine, then
it is hoped that_ is smooth andy is faithfully flat with reduced, connected fibers.
If that were true then most of bad behaviorfwere on account of the finite
morphismL — g*//G.

So far, the theory of algebraic Hamiltonian varieties is not developed enough
to convert this hope into a proof, but for one class we know a lot. That is, when
Z is the cotangent bundle of a smodaghvariety X. Then one can prove [Kn1l]
that L is not only smooth but even an affine space. More precidely,a*/ Wy
wherea* is a finite dimensional vector space awg a finite reflection group. In
this setting, the main result of this paper is:

Theorem 1.1. Let X be a connected, smoofivariety andZ := T its cotangent
bundle. Then all fibers af : Z — a*/ Wx are connected.

Apart from its intrinsic interest this theorem is useful for further investigation
of the fibers ofy. For example, in [Kn4] it is used to prove that most fibers
of ¥ are reduced, provide# is affine. In turn, that latter result is crucial in the
investigation of so-called collective functions on Hamiltonian manifolds in the
differentiable category (also in [Kn4]).

The strategy of the proof of Theorem 1.1 is as follows: the core argument is
an application of Zariski’'s connectedness theorem, a theorem which works only
for proper morphisms. For that reason we construct a partial compactification
of Z. Since this works only whe is homogeneous, the proof splits into two
parts: (1) the proof of the connectedness theorem for homogeiteand (2) the
reduction of the general case to the homogeneous case.

In both parts certain irreducible subvarieties of the fiberg afre used to “tie”
its different parts together, thereby proving connectivity (cf. Lemma 5.3 and the
construction ofE in Section 6).
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Notation. All varieties are defined over an algebraically closed field of charac-
teristic zero, which is denoted b§. Throughout the papel; is a connected
reductive group. The Lie algebras of the algebraic grawpB, U, H, ... are de-
noted by the corresponding lower case Fraktur letiebsu, b, .. .. For an affine
G-variety X let X/ G := SpedC[X]¢ be the categorical quotient. For a subspace
U C V letU+ C v* denote its annihilator.

2. Themoment map on cotangent bundles

In this section we review some results of [Knl] about the geometry of the
moment map on a cotangent bundle.

Let X be a smooth connected-manifold. Let B € G be a Borel subgroup
with maximal unipotent subgroufd and maximal torug’. Then one can define
the following important numerical invariants &f.

n:=dimX, n, :=maxdimUx, np :=maxdimBx. (2.1)
xeX xeX

The difference: :=n — n,, is called thecomplexityof X while r :=ny, — n, isits
rank. Consider

Xo:={xeX|dimUx =n,, dimBx =np}. (2.2)

This is a dense opeB-stable subset of. We define the following subbundles of
the cotangent bundlﬁ;oz

B:= U (bx)tcif = U (ux)*. (2.3)

xeXo xeXo

The fibers of the quotient are:
U/B)x = Uy /By = (ux)™/(bx)" = (bx /ux)*
= (b/(u+1by))" C (b/w)*. (2.4)

Therefore, we can identify this fiber with a subspageof the “abstract” dual
Cartan subalgebitg = (b/u)*. By construction, the ranks of the vector bundies
andl/ arec andc + r, respectively. Hence we have dih=r.

Lemma 2.1 [Knl, 6.3]. The spacen® = a depends neither on the choice of
x € Xo nor on the choice of a Borel subgroup. In particular, we obtain
a morphismi{ — a* which induces a trivializatiod//B => a* x Xo.

The cotangent bundI&g is a HamiltonianG-variety, i.e., it carries a natural
G-invariant symplectic structure and is equipped with a moment map. More
precisely, letr : Ty — X be the natural projection. Then the moment map is

wiTy =g am [ aEn@)] (2.5)
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Actually, we are more interested in the compositiﬁnT;(k L gt > g*)G. It
induces a homomorphisms of algebras

¥*:Clg* ) G1— C[T%]. (2.6)

Let Ly be the spectrum~of the integral closure of ﬂﬂ’éﬁj[g*] in C[Tg]. Then we
obtain a factorization of

Ty %> Ly > g%/ G, 2.7)

where n is a finite morphism andy is dominant. Moreoverys is universal
with these properties. An important property ¥fis that its generic fibers are
irreducible.

Theorem 2.2 [Kn1l, 6.2, 6.6a,b]The restriction ofys to i/ factors throughn™*:

U—a* I Ly. (2.8)

The morphisnx is finite and surjective. More precisely, there is a finite reflection
group Wx < GL(a*) (the little Weyl group ofX) such thatz induces an
isomorphismu*/ Wx — Lx. In particular, Ly is an affine space.

From now on, we identify. x with a*/ Wx. It will also be convenient to use
a less canonical way of stating (2.8). Let Xo and leta’ be a complement of
(bx)= € Ty  in (ux)* STy .. Then, by (2.4) we can identify with a* and we
have a commutative diagram

Ty
lw lw (2.9)
a* ——a*/Wx.

In other wordsg’ is “almost” a section offr.

Theorem 2.3 [Knl, 6.6¢]. The morphismy : T3 — a*/ Wy is faithfully flat. In
particular, all fibers ofyr are of pure codimension

Now we specialize everything to the case wh&re- G/H is a homogeneous
space. Then we can writ€ = G xH -+ and all information abouf is contained
in the restriction

Yy bt — a*/ Wy. (2.10)
Theorem 2.4. Let X = G/H be a homogeneous variety.

(i) The rankr, the complexity:, and the little Weyl group¥s,r depend only
on the Lie algebrd.
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(i) The morphismyy is faithfully flat. All of its fibers are purely of codimen-
sionr. The generic fibers are irreducible.
(iif) Let B be a Borel subgroup aff andg :=dimG. Then

dmb+h <g—c and dimu+h <g—c—r (2.11)

Moreover, equality holds for an open set of Borel subgroups.

(iv) Assume that equality holds {8.11) Leta’ be any complement ¢f- N b+
in b Nut. Then one can identify with a* and the restriction ofy, to o’
is the quotient map* — a*/ Wyx.

Proof. (i) The connected componei®t® of H depends only or. Moreover,
the morphismx® := G/H® — X = G/H is étale. This implies that dimension,
complexity, and rank ofk® and X are the same (a direct consequence of the
definitions). The same holds for the little Weyl group (see [Kn1, 6.5.3]).

(i) By Theorem 2.3, the morphismig : T;o — a*/Wyo = a*/ Wx is surjective
and has fibers of codimension Moreover, the generic fibers are irreducible.
Since, foru € a*/ Wy we haveyy *(u) = G x° % (u), the same holds fop,.

It follows that vy is faithfully flat [EGA, Section 15.4.2].

(i) Let xo = eH € G/H be the base point. Then diin+ h) = dimBxg +
dimh and dimu+b§) = dimUxg+dim#h. Thus, (2.11) follows from the definition
of ¢ andr. Moreover, there is a poingxg € G/H such thatBgxo and Ugxo
have maximal dimension. Thus, if we replaBeby ¢~ 1Bg we obtain equalities
in (2.11).

(iv) We have

o = (hEnut) /(b nbet) = (+wt /G +b)t
= [(h+b)/(h+w]" = [bxo/uxol*. (2.12)
Now the assertion follows from Theorem 2.20

3. A partial compactification: construction

Ultimately, we would like to invoke Zariski's connectedness theorem which
allows one to deduce the connectedness of all fibers from that of the generic
fibers. The essential prerequisite for this theorem is that the morphism is proper.
Therefore, we construct first a partial compactification of the cotangent bundle
which renders the moment map proper. For this we need Xhat G/H is
homogeneous. So we assume this until further notice.

Consider the Lie algebrg as a point of the Grassmannian (@r of all
subspaces of. Let Y C Gr(g) be the closure of the orb - h. Recall that a
subalgebra of is calledalgebraicif it is the Lie algebra of a closed subgroup
of G. By Theorem 2.4(i) we may speak of the rank, the complexity, and the little
Weyl group of an algebraic Lie subalgebragof
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Lemma 3.1. Every pointm € Y represents an algebraic subalgebragfvith the
same dimension, complexity, and rankhas

Proof. First, we claim that there is a smooth affine cu@/ga pointcg € C, and
morphismsy’: C’ := C \ {co} - G, «:C — Y such that

a(c) = {o/(c) - for ¢ # co, 3.1)

m for ¢ = co.

In fact, letG < G’ be any completion an@ < G’ x Y the closure of the set
{(g.g-b) | g€G}. Then

is again a completion ofs. Let y:G — Y be the second projection. This
morphism is dominant and proper, hence surjective. Choose G with
¥ (x) =m. SinceG is open and dense i there is an affine curv€; € G with
x €C1andCy \ {x} € G. Let C — C1 be the normalization o€1 and S the
preimage ofx. This is a non-empty finite subset of. The desired curve is
obtained by removing frong' all points but one of§. The remaining point of
is calledco. The morphismy is just the compositio© — G — Y. Moreover,
the image ofC’ in G is contained inG giving o’ : C' — G. Finally, (3.1) follows
from (3.2) which proves the claim.

Using this curveC, consider the trivial group schemés:= G x C/C and
G :=G x C'/C’. Theng’ contains the subgroup scheme

H = | Jd©@Hd ) ={(©hd' () c)[heH, ceC')
ceC’

= HxC. (3.3)

Let H be the closure of{’ in G. Then every irreducible component &f maps
dominantly toC which implies thatH is flat over C; see, e.g., [Ha2, 9.7].
Therefore, the same holds true for the fiber produtt= H x ¢ H which implies
thatH’ x ¢ H' is dense ir{2. In turn, the multiplication mag x ¢ G — G maps
H?2 into H. In other words/H is a flat subgroup scheme 6f In particular, the
fiber H, :=H x¢ {c} is a subgroup o& for everyc € C. Any flat group scheme
is smooth (Cartier, see [DG]). Therefore, the Lie algetfas= Lie H. form
a vector bundle ove€. By construction, we havg. = o’'(c) -  for all ¢ # co.
Thus, by (3.1), we havg. = a(c) for all c. In particular,h., = m. This shows
thatm = Lie H, is algebraic.

Finally, it is known that the quotiend/H exists ([An, 4.C]). This is a flat
deformation of homogeneous-varieties with fibersG/H.. Thus dimension,
complexity and rank do not change [Knl, 2.5] which proves the second
assertion. 0O
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Now we construct a partial compactification®f. First, choose an equivariant
embedding ofX = G/H into a projective spaceX = G/H — PV. Using the
orbit map

G/H — Gr(g), gHr g-b, (3.4

we get a diagonal embedding 6f/H in PV x Gr(g). Let X’ be its closure.
This is a projective, possibly singuld-variety. LetX — X’ be an equivariant
desingularization (see [AHV]). Then we have a smooth complefigfl — X
such that the orbit map (3.4) extends to a morphlsm Gr(g).

Let M — X be the pull-back of the tautological vector bundle ovegg®rFor
x € X letm, := M, beits fiber ovex. Then, by construction, we have, = g-h
wheneverxr = gH € G/H. Thus, by Lemma 3.1, evemy, is an algebraic Lie
subalgebra of with the same dimension, complexity, and rankas

By construction, the vector bundl&1 is a subbundle of the trivial vector
bundleg x X. LetZ — X be its annihilator in the dual bundj¢ x X . This means
that each fibeZ, equalsm- C g*. We claim thatZ is a partial compactification
of Z := Tj. In fact, the restriction ofZ to the open orbitG/H is G x# p*
which equals the cotangent bundle o%erNote thatZ is equipped with a natural
G-equivariant morphism

0:Z—g"x X g (3.5)

which, on each fiber, is simply the natural embedding— g*. This means that
[ is an extension of the moment map Z — g* to Z. The point is now thajt is
apropermorphism as one sees from the factorization (3.5) and the facktfmt
complete.

4. A partial compactification: properties
The first step to our goal is the following lemma.

Lemma 4.1. The morphismyj: Z — a*/Wx extends to a morphisnf : Z —
a*/ Wyx. Moreover, all fibers of) are connected.

Proof. Let I'y € Z x a*/Wx be the graph ofy and letI"y be its closure in
Z x a*/Wx. Then the projection”™y, — Z is an isomorphism ovek, hence
birational. Now observe that the comp03|t|<2h—> a*/Wx — g*/G has an
extension toZ, namely, the compositio — g* — g*//G. This implies that
Iy, hencel , is contained in the fiber produdt’ := Z xg+yG a*/Wx. Since

a*/Wx — g*// G is a finite morphism, so arf’ — Z and Iy — Z. Thus, the
latter is an isomorphism sincg is normal (even smooth). This shows that
exists.
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To show connectedness of fibers, we need another construction of [Kn1].
Consider the moment map: Z — g* and letM be the spectrum of the integral
closure of u*C[g*] in C[Z]. Then u factors asZ 4 M — g*. As above,
one shows thaty extends to a morphismp:Z — M which factorsjz. This
implies that alsop is proper. By construction oM, the generic fibers of
are irreducible. Hence the same holds §orSince M is normal we can apply
Zariski’s connectedness theorem [Ha2, 11.3] and conclude that all fibgraref
connected. On the other hand, we have a commutative diagram:

Z7—"

X lﬂ (4.1)

Cl*/ Wx.

If fis aG-invariant regular function o which is integral oveC[g*] then it is
also integral overC[g*]° (apply the Reynolds operator to an integral equation
of f). This means thatr is just the categorical quotient b&. Thus, every
fiber of r contains a unique closed (connected) orbit which implies thags
connected fibers, as well. Choase a*/ Wx. By applying the following lemma

to the morphismy —1(«) — 7 ~1(u) we conclude tha¥ ~1(u) is connected. O

Lemma 4.2. Let ¢: X — Y be a surjective morphism whose fibers are all
connected. Assumgis either closede.g., propey or open(e.g., fla). Assume,
moreover, that’ is connected. TheK is connected as well.

Proof. Assume thaty is closed/open. Suppose th#tis not connected. Then

X = X1 U X, is a disjoint union of non-empty closed/open subsets. Thus,
Y = p(X1) U @(X>2) is a union of non-empty closed/open subsets. Siride
connected, this union cannot be disjoint. Choese¢(X1) N ¢(X2). Then the
fiber F = ¢~1(y) is the union of two disjoint non-empty closed/open subsets,
namely,F N X1 andF N X, which contradicts the connectednesgof O

Next, we investigate the restriction ¢fto the fibersZ, = m;-. Letc andr be
the complexity and rank ofs/ H . For a fixed Borel subgroup let Xo be the set
of x € X such that

dmb+my)=g—c and dimu+my)=g—c—r. (4.2)

Sincem, has also complexity and rank- (Lemma 3.1), this is an open subset
of X which intersects eacti-orbit non-trivially. Let

B=[J®+m)*t and U= |J@+mt (4.3)
xeXo xeXo

Then B € U < Z are sub-vector bundles. Consider the fiber of the quotient
af =U /By = (b/u+bNmy)* of (b/u)* =t*. Forx € X N Xg it is always
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the same spac€’ (Lemma 2.1). Thus, by continuityy = a* for all x € Xo and
we obtain a projectiotf — a*.

Lemma 4.3. For x € X, Igt W(x) be the little !Veyl_group ofm,. Th_en
W(x) € Wx. Moreover, letyr, be the restriction ofy to Z, = m)%. Thenyr,
is the composition

md Lm0 W) - a* ) Wy (4.4)

Proof. The compactific_atiorf is constructed in such a way that the restriction
of i:Z — g* to afiberZ, is the natural embedding;- < g*. Thus, we obtain
a commutative diagram (without the dotted arrow):

mle— >7
a*/ W(x) =a*/ Wx (4.5)
9"/ G.

The universal property (as integral closure) implies the existence of the dotted
arrow. In particularW(x) C Wx. O

Lemma4.4. LetC be an irreducible component of a fibgr L(u) and letx € X.
ThgnC NZ, is of pure codime_nsionin Z.. Moreover( is of pure codimension
in Z, and the projectiorC — X is dominant.

Proof. Clearly, the codimension o in Z is at mostr. Therefore, the
codimension of every irreducible componentoh Z, in Z, is also at most. On
the other hand; N Z, is contained in a fiber af, which is of pure codimension
by Theorem 2.4(ii) and (4.4). Heneen Z, is of pure codimensionin Z,.

Now consider the projectiop: C — X. LetY be the closure of its image. We
have seen that the fibers pfhave dimension — r. Hence

2n—r<dmC=m—-r)+dmY<(n—r)+n=2n—r, (4.6)
which implies dimC =2n — r and dimY =n, hence¥ = X. O

Corollary 4.5. For u € a*/Wx consider the fiberg”™ = ¢/~ lwycZzandF =
¥ ~1(u) C Z. ThenF is the closure of in Z.

Proof. By Lemma 4.4, every irreducible componentipf 1(x) meets the open
subsety —1(u) N Z = v 1(u). Hence,y ~1(u) is the closure of". O
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5. The proof of the connectedness theorem in the homogeneous case

First, we construct very special points in the fifeby applying the following
result.

Proposition 5.1. Let Y be an affineG,,-variety, V a finite dimensional vector
space, andp: V — Y a G,,-equivariant morphism. Assume thathas a closed
irreducible G,,-stable subvarietys such that the restrictio|s: S — Y is finite
and surjective. Le€ be an irreducible component of a fiber@fThenC N S # @.

Proof. Let C be an irreducible component &f:= ¢~ (y), y € Y. Assume first
y = yo:=¢(0). ThenC is a closeds,,-stable subset of . Hence 0= C N S and
we are done. Thus, we may assumg yg.

The origin 0 is the only closed orbit o, hence ofS. Sinceg|s is finite
and surjective, the fixed point is the only closed orbit of’. This implies,
in particular, thatG,,y is closed inY’ := ¥ \ {yo}. Let Vg := ¢ 1(y0) and
V' :=V\ Vo=¢ 1(Y). ThenG,,F = ¢~ 1(G,,y) is closed inV’. Let E C G,,
be the isotropy group of. FromG,,F — G,,y = G,,/E we obtainG,,F =
G, xE F. The groupE is necessarily a finite (cyclic) group. Hence the map
Gu x F — G, F is proper, which implies tha := G,,C is closed inG,, F. We
conclude tha¥ is also closed irV’ or, equivalently,

Z\Z < V. (5.1)

Let r :=dimS. Using again thap|s is finite and surjective we have thit
is irreducible of dimension. SinceC is an irreducible component of a fiber of
¢:V — Y, we have codim C <dimY =r. Thus, codiny Z < r. Since Oc Z
and dimS = r, the intersectiorZ N S is non-empty of positive dimension (here
we use the smoothness &f). On the other hand, the finiteness@f implies
that Vo N S is a finite set. Thus we obtain from (5.1) thatn S £ @, which is
equivalenttoC NS #¢. O

Corollary 5.2. Let o’ € bt as in Theoren®.4(iv) and letC be an irreducible
component of a fiber afy, : ht — a*/Wx. ThenC Na’ # 9.

Next we study the intersectiafi N o’ for the Lie algebras, simultaneously
for an open set af € Xo. For this, letA C U/ be a complementary vector bundle
to B over an open subsét; C X. That exists in the neighborhood of every point
of Xo. Since the fiber isd, = U/, /B, = a*, there is a canonical trivialization
T.a* x )_(1 = A.

Lemma 5.3. Let C be an irreducible component of the fib&r:= v L(u) and
assume there ig € a*, xo € X1 with 7(«, xo) € C. Thent(a, x) € C for every
x € X1.
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Proof. The restriction ofy to A is the compositiond — a* &> a*/Wyx.
Therefore,F N A is of pure dimensiom = dim X. More precisely,F N A =
7(S x X1) where S is the Wx-orbit 7 ~1(x). On the other hand( is of pure
codimension- in Z and A is irreducible of dimension + . This implies that
the dimension of every irreducible component®©fn A is at leastn. Since
CNACFnNA,we conclude thaf N A is the union of irreducible components
of FN A= S x X1. Hence there is a subsgtof S with CN A = 7(S’ x X1). By
assumption we haver, xg) € S’ x X1. Hencex € 8’ andz(a,x) e CNACC
forallx e X1. O

Now we are able to prove Theorem 1.1 f&r= G/H. Consider the fiber
F =y ~1(u) and suppose thdt is disconnected. TheR = F; U F; is the disjoint
union of non-empty closed subsets. By Corollary 4.5, the closufeinfZ is the
fiber F = ¢ ~1(u) which is connected by Lemma 4.1. This impliEsN F> # ¢
but we can say even more. As a fiber of an equidimensional map between smooth
varieties, F is locally a complete intersection. A theorem of Hartshorne [Hal,
3.4] then asserts thakt is even connected in codimension one, i.e., it stays
connected upon removal of any subset of codimension two or higher. Applied to
our situation, we conclude th@h N F> has an irreducible compone@ipy which
is of codimension 1 irF, hence of codimension+ 1 in Z.

SinceCoNZC FiNF>NZ=F N F=0wehaveConN Z=4¢. Let X’ be
the closure of the image @l in X. ThenX’ N X =@. Letx € X'. ThenCoN Z,
is a subset of a fiber af ,, hence has dimension at mast- » (Lemma 4.4). This
implies

2n—r—1=dmCo<(n—r)+dmX' <(n—r)+m -1
=2n—r-—1 (5.2)

Since equality has to hold throughout, we obtain, in particular, that there exists
an xo € X’ such that din€o N Z,, = n — r. Therefore,Co N Z,, is the union
of irreducible components of a fiber @f,. Now choose a complement of
BciUina neighborhood afo. From Corollary 5.2, we obtaifip N A, # @. In
particular, there is € a* with 7 («, xg) € Co.

Now letC; C Fy, C» C F> be irreducible components such tigat < C1 N Co.
Since t(«, xo) € C; we haver(a, x) € C; for all x in a neighborhood ofig
(Lemma 5.3). If we choosa € X we gett(o,x) € C1 N Co C F1 N Fy,
a contradiction toFy N F» = @. This finishes the proof of Theorem 1.1 when
X is homogeneous.

6. Theproof in general

From now on, letX be any smootlG-variety. To prove the general case we
use the following trivial lemma.
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Lemma 6.1. Let F be a variety andf’ C F an open subset. Assume

(i) F’is connected
(ii) for every pointy € F there are two irreducible subvarietied® and E of F
suchthatye D, DNE #@,andENF' #@.

ThenF is connected.

Fix u € a*/Wx and let F := v~ 1(u). To constructF’ we start with the
following lemma.

Lemma 6.2. Let X be an irreducibleG-variety. Then there is a non-empty open
G-stable subseX’ C X with the following properties

(i) The orbit spaceQ = X'/G exists, i.e., there is &-invariant surjective
morphismz : X’ — Q such that all fibersX] := 7 ~1(v) are reduced and
homogeneous.

(i) The spaceX’ and Q are smooth.

(iii) All orbits X/, share the same dimension, complexity, rank, and little Weyl
group Wy .

Proof. The existence of an open subsé&tas in (i) is a well-known theorem of
Rosenlicht ([Ro]; see also [Sp, Section 2]). Then (ii) can be achieved by shrinking
Q to an open subset. Finally, (iii) follows from [Knl1, 2.5] (for dimension,
complexity, and rank) and [Kn1, 6.5.4] (for the little Weyl group)a

Let X’ C X be as in the lemma. Let

Tiyo=UTs, — X 6.1)
veQ

be the relative cotangent bundle. Sin&y, = Wy, we obtain morphisms
Yy Ty, — a*/Wx which glue to a morphisny, : T;//Q — a*/Wx. Let N C
Ty o bethe fiberny1(u) and letr : N — Q be the projection. Then~1(v) =
w;l(u) is connected sinc&’, is homogeneous. Upon shrinkin@ to an open
subset we may assume thats flat and surjective. Thus, Lemma 4.2 implies that
N is connected. Next observe that there is a projectiofiy, — Ty, 0 In fact,
this is a locally trivial bundle of affine spaces and therefore flat, surjective with
connected fibers. On the other hand, the morphjsnfy;, — a*/ Wy is just the
compositiony, o p. Thus

F:=FNT;=p YN)

is connected, which verifies part (i) of Lemma 6.1.
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For the second part, lgtbe any point ofF and letY be the image o7 in X.
We need to compare the moment map fowith that for the orbitt € X. The
main tool to study the interrelation is the following local structure theorem.

Theorem 6.3. There exists a parabolic subgroup (containing B) with Levi
part L (containingT) and an affinel-stable subvariety of X such that

(i) The natural morphisnP xS — X is an open embedding.

(i) The intersectiorYp := Y N S is a non-empty_-variety.
(i) LetLg be the kernel of the action @f on Yy. ThenAy := L/Lg is a torus.
(iv) The action ofAy on Yy is locally free, i.e., has finite isotropy groups.

Proof. This theorem is essentially due to Brion—Luna—Vust [BLV]. We use the
refinementin Sections 1-2 of [Kn2] as follows. By [Kn2, 2.1], we may repléace
by a G-stable open subset which supports an antplénearized line bundle.
Now we choose a sectian of a power ofZ, as in [Kn2, 2.10]. LetP = G, be

the stabilizer of the linéo) = Co.

Now (i) follows from [Kn2, 1.2.3], while (ii) is implied by [Kn2, 2.10.2].
Furthermore, [Kn2, 2.10.3 and 2.8.1] assert (iii). Finally, by [Kn2, 2.10.4] all
orbits of Ay in Yy are closed. Sincdy is affine, all orbits are of the same
dimension. Since the generic isotropy group is trivial by construction, we see
that all isotropy groups are finite.xI

Let P, be the unipotent radical @f. SinceP = P, x L (as a rightL-variety),
we haveP xL § =P, x S. Thus,

P, xS—>X (6.2)

is an open embedding. That implies tifats smooth and irreducible. Moreover,
for everyx € S the tangent space splits:

Tx x =pux ® Tsx. (6.3)

That allows us to embefls into 7'¥. The relationship between the moment maps
is given by the following lemma.

Lemma 6.4. The image of’y under the moment map dfy is in pui. Moreover,
the following diagram commutes

Tg¢ Ty
l’*Si \ ILX\L
r* i C g (6.4)
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Proof. That image off’¢ under the moment map dfy is in pML, is a reformula-
tion of the definition of the embeddirify < 7'§. That proves the commutativity
of the quadrangle. The triangle commutes sifice- X is L-equivariant. Finally,
the commutativity of the pentagon is given by [Kn1, 6.1}

Now choosey € Yp. SinceS is affine and since the orbity is closed, it has
a “slice” in S, i.e., an irreducible, smootliT,o-stable subvarietysy of S with
y € Sp and such that. xo S — S is étale. The Lie algebra df decomposes as
[ = ay @ [p which induces a decomposition of tangent spages:= ayx ® T,
for everyx € Sp. Thus, we get embeddings and a commutative diagram

aj x So¢ T§cC Ty
l l l (6.5)
ay */L g°/G.

Now we look more closely at the subspade= ay x {y} € T;’y. We have
Tx,y=puy ®ayy ®Ts, . (6.6)
Sinceayy = ly, we have
puy®ayy=>by and p,y=uy. (6.7)

Thus,a is a complement oft ) in (uy)=,.

On the other hand, sincB x’ Yo — Y is an open embedding, the generic
P-orbit in Y is isomorphic toP/Lg. BecausePy = P/Lo= B/(B N Lg) = By
it follows that By represents a generg-orbit in Y. Moreover,Uy is a generic
U-orbitinY.

Now consider the restriction map: T;,y —» T;y = gyl.. The moment ma
clearly factors throughp. Moreover, the image’ := p(a®) is a complement of
(by)* in (uy)L. It follows from Corollary 5.2 that intersects every irreducible
component of every fiber df;y — g*//G. The same holds far® with respect to
the morphisn?y | — g%/ G.

Now we are able to prove the connectedness theorem in general: by changing
in its G-orbit we may assume that € Ty N F. Let D be an irreducible
component of the fiber oT;’y — g*//G containingn. By construction,F is
a union of connected components of a fiber@f — g*/G. Thus D C F.
Moreover, there ise € aj with (a,y) € D. Let E := {a} x So. Then the
commutative diagrams (6.4) and (6.5) show tlkais contained in a fiber of
Ty — g*//G. ThusE C F andD N E # ¢. Finally, G - Sp is dense inX. Hence
SoN X' # ¢ implies E N F’ # @. Thus, we conclude with Lemma 6.1 thétis
connected.
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