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1. Introduction

Let K be a connected compact Lie group andM a HamiltonianK-manifold,
i.e., a symplecticK-manifold equipped with a moment mapµ :M → k∗ :=
(LieK)∗. A theorem of Kirwan (implicitly in [Ki]) asserts:if M is connected
and compact then the level sets ofµ are connected. The purpose of this note is to
prove such a statement in the category of algebraic varieties.

First, we reformulate Kirwan’s theorem: consider the mapψ :M → k∗/K
which is the composition ofµ with the quotient map. For a pointx ∈ k∗ let
H = Kx be its isotropy group andy = Kx ∈ k∗/K its orbit. Then the fiberψ−1(y)

is isomorphic to the fiber productK×H µ−1(x). Thus, since bothK/H andH are
connected, the connectedness of the fibers ofµ is equivalent to the connectedness
of the fibers ofψ . This formulation is more suitable for the algebraic category.

LetG be a connected reductive group (everything overC) andZ a Hamiltonian
G-variety with moment mapµ :Z → g∗ = (LieG)∗. Let g∗//G := SpecC[g∗]G
be the categorical quotient and let̃ψ :Z → g∗//G be the composition ofµ with
the quotient map. Since the latter is not an orbit map, the connection between
fibers ofµ andψ̃ is considerably more loose than in the differential category and
we concentrate oñψ from now on.

✩ This paper is an expanded version of [dg-ga/9712010, Section 6].
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The morphism̃ψ is still not the right map, since sometimes not even its generic
fibers are connected. An example is the action ofG = SL2(C) onZ = C2 × (C2)∗
(this is the cotangent bundle ofC2). Theng∗//G = A1 andψ̃(u,α) = α(u)2. In
particular, the generic fiber of̃ψ has two connected components. This is remedied
by looking at the mapψ(u,α) := α(u) instead. Theñψ is the composition
of ψ with the finite mapA1 → A1, z 
→ z2, the latter being responsible for the
disconnected fibers.

This construction can be generalized as follows: the morphismψ̃ induces an
homomorphism of algebras

ψ̃∗ :C[g∗//G] → C[Z]. (1.1)

Let R ⊆ C[Z] be the integral closure of the image andL := SpecR. Then ψ̃

factors throughψ :Z → L. By construction, the generic fibers ofψ are now
connected, even irreducible. Furthermore, we expect that the behavior ofψ is
dramatically better than that. For example, whenZ is connected and affine, then
it is hoped thatL is smooth andψ is faithfully flat with reduced, connected fibers.
If that were true then most of bad behavior ofψ̃ were on account of the finite
morphismL → g∗//G.

So far, the theory of algebraic Hamiltonian varieties is not developed enough
to convert this hope into a proof, but for one class we know a lot. That is, when
Z is the cotangent bundle of a smoothG-varietyX. Then one can prove [Kn1]
thatL is not only smooth but even an affine space. More precisely,L = a∗/WX

wherea∗ is a finite dimensional vector space andWX a finite reflection group. In
this setting, the main result of this paper is:

Theorem 1.1. LetX be a connected, smoothG-variety andZ := T ∗
X its cotangent

bundle. Then all fibers ofψ :Z → a∗/WX are connected.

Apart from its intrinsic interest this theorem is useful for further investigation
of the fibers ofψ . For example, in [Kn4] it is used to prove that most fibers
of ψ are reduced, providedX is affine. In turn, that latter result is crucial in the
investigation of so-called collective functions on Hamiltonian manifolds in the
differentiable category (also in [Kn4]).

The strategy of the proof of Theorem 1.1 is as follows: the core argument is
an application of Zariski’s connectedness theorem, a theorem which works only
for proper morphisms. For that reason we construct a partial compactification
of Z. Since this works only whenX is homogeneous, the proof splits into two
parts: (1) the proof of the connectedness theorem for homogeneousX and (2) the
reduction of the general case to the homogeneous case.

In both parts certain irreducible subvarieties of the fibers ofψ are used to “tie”
its different parts together, thereby proving connectivity (cf. Lemma 5.3 and the
construction ofE in Section 6).
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Notation. All varieties are defined over an algebraically closed field of charac-
teristic zero, which is denoted byC. Throughout the paper,G is a connected
reductive group. The Lie algebras of the algebraic groupsG,B,U,H, . . . are de-
noted by the corresponding lower case Fraktur lettersg,b,u,h, . . . . For an affine
G-varietyX let X//G := SpecC[X]G be the categorical quotient. For a subspace
U ⊆ V let U⊥ ⊆ V ∗ denote its annihilator.

2. The moment map on cotangent bundles

In this section we review some results of [Kn1] about the geometry of the
moment map on a cotangent bundle.

Let X be a smooth connectedG-manifold. LetB ⊆ G be a Borel subgroup
with maximal unipotent subgroupU and maximal torusT . Then one can define
the following important numerical invariants ofX:

n := dimX, nu := max
x∈X

dimUx, nb := max
x∈X

dimBx. (2.1)

The differencec := n − nb is called thecomplexityof X while r := nb − nu is its
rank. Consider

X0 := {x ∈ X | dimUx = nu, dimBx = nb}. (2.2)

This is a dense openB-stable subset ofX. We define the following subbundles of
the cotangent bundleT ∗

X0
:

B :=
.⋃

x∈X0

(bx)⊥ ⊆ U :=
.⋃

x∈X0

(ux)⊥. (2.3)

The fibers of the quotient are:

(U/B)x = Ux/Bx = (ux)⊥/(bx)⊥ = (bx/ux)∗

= (
b/(u + bx)

)∗ ⊆ (b/u)∗. (2.4)

Therefore, we can identify this fiber with a subspacea∗
x of the “abstract” dual

Cartan subalgebrat∗ = (b/u)∗. By construction, the ranks of the vector bundlesB
andU arec andc + r, respectively. Hence we have dima∗

x = r.

Lemma 2.1 [Kn1, 6.3]. The spacea∗ = a∗
x depends neither on the choice of

x ∈ X0 nor on the choice of a Borel subgroupB. In particular, we obtain
a morphismU � a∗ which induces a trivializationU/B ∼−→ a∗ × X0.

The cotangent bundleT ∗
X is a HamiltonianG-variety, i.e., it carries a natural

G-invariant symplectic structure and is equipped with a moment map. More
precisely, letπ :T ∗

X → X be the natural projection. Then the moment map is

µ :T ∗
X → g

∗, α 
→ [
ξ 
→ α

(
ξπ(α)

)]
. (2.5)
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Actually, we are more interested in the compositionψ̃ :T ∗
X

µ−→ g∗ → g∗//G. It
induces a homomorphisms of algebras

ψ̃∗ :C[g∗//G] → C
[
T ∗
X

]
. (2.6)

Let LX be the spectrum of the integral closure of theψ̃∗C[g∗] in C[T ∗
X]. Then we

obtain a factorization of̃ψ

T ∗
X

ψ−→ LX
η−→ g∗//G, (2.7)

where η is a finite morphism andψ is dominant. Moreover,ψ is universal
with these properties. An important property ofψ is that its generic fibers are
irreducible.

Theorem 2.2 [Kn1, 6.2, 6.6a,b].The restriction ofψ to U factors througha∗:

U → a
∗ π−→ LX. (2.8)

The morphismπ is finite and surjective. More precisely, there is a finite reflection
group WX ⊆ GL(a∗) (the little Weyl group ofX) such thatπ induces an
isomorphisma∗/WX

∼−→ LX . In particular,LX is an affine space.

From now on, we identifyLX with a∗/WX . It will also be convenient to use
a less canonical way of stating (2.8). Letx ∈ X0 and leta′ be a complement of
(bx)⊥ ⊆ T ∗

X,x in (ux)⊥ ⊆ T ∗
X,x . Then, by (2.4) we can identifya′ with a∗ and we

have a commutative diagram

a′

∼

T ∗
X

ψ

a∗ a∗/WX.

(2.9)

In other words,a′ is “almost” a section ofψ .

Theorem 2.3 [Kn1, 6.6c].The morphismψ :T ∗
X → a∗/WX is faithfully flat. In

particular, all fibers ofψ are of pure codimensionr.

Now we specialize everything to the case whereX = G/H is a homogeneous
space. Then we can writeT ∗

X = G×H h⊥ and all information aboutψ is contained
in the restriction

ψh :h⊥ → a∗/WX. (2.10)

Theorem 2.4. LetX = G/H be a homogeneous variety.

(i) The rankr, the complexityc, and the little Weyl groupWG/H depend only
on the Lie algebrah.
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(ii) The morphismψh is faithfully flat. All of its fibers are purely of codimen-
sionr. The generic fibers are irreducible.

(iii) LetB be a Borel subgroup ofG andg := dimG. Then

dim(b + h) � g − c and dim(u + h) � g − c − r. (2.11)

Moreover, equality holds for an open set of Borel subgroups.
(iv) Assume that equality holds in(2.11). Let a′ be any complement ofh⊥ ∩ b⊥

in h⊥ ∩ u⊥. Then one can identifya′ with a∗ and the restriction ofψh to a′
is the quotient mapa∗ → a∗/WX .

Proof. (i) The connected componentH 0 of H depends only onh. Moreover,
the morphismX0 := G/H 0 → X = G/H is étale. This implies that dimension,
complexity, and rank ofX0 andX are the same (a direct consequence of the
definitions). The same holds for the little Weyl group (see [Kn1, 6.5.3]).

(ii) By Theorem 2.3, the morphismψ0 :T ∗
X0 → a∗/WX0 = a∗/WX is surjective

and has fibers of codimensionr. Moreover, the generic fibers are irreducible.
Since, foru ∈ a∗/WX we haveψ−1

0 (u) = G×H0
ψ−1

h
(u), the same holds forψh.

It follows thatψh is faithfully flat [EGA, Section 15.4.2].
(iii) Let x0 = eH ∈ G/H be the base point. Then dim(b + h) = dimBx0 +

dimh and dim(u+h) = dimUx0+dimh. Thus, (2.11) follows from the definition
of c and r. Moreover, there is a pointgx0 ∈ G/H such thatBgx0 andUgx0
have maximal dimension. Thus, if we replaceB by g−1Bg we obtain equalities
in (2.11).

(iv) We have

a′ ∼−→ (
h⊥ ∩ u⊥)/(

h⊥ ∩ b⊥) = (h + u)⊥
/
(h + b)⊥

= [
(h + b)/(h + u)

]∗ = [bx0/ux0]∗. (2.12)

Now the assertion follows from Theorem 2.2.✷

3. A partial compactification: construction

Ultimately, we would like to invoke Zariski’s connectedness theorem which
allows one to deduce the connectedness of all fibers from that of the generic
fibers. The essential prerequisite for this theorem is that the morphism is proper.
Therefore, we construct first a partial compactification of the cotangent bundle
which renders the moment map proper. For this we need thatX = G/H is
homogeneous. So we assume this until further notice.

Consider the Lie algebrah as a point of the Grassmannian Gr(g) of all
subspaces ofg. Let Y ⊆ Gr(g) be the closure of the orbitG · h. Recall that a
subalgebra ofg is calledalgebraic if it is the Lie algebra of a closed subgroup
of G. By Theorem 2.4(i) we may speak of the rank, the complexity, and the little
Weyl group of an algebraic Lie subalgebra ofg.
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Lemma 3.1. Every pointm ∈ Y represents an algebraic subalgebra ofg with the
same dimension, complexity, and rank ash.

Proof. First, we claim that there is a smooth affine curveC, a pointc0 ∈ C, and
morphismsα′ :C′ := C \ {c0} → G, α :C → Y such that

α(c) =
{
α′(c) · h for c �= c0,

m for c = c0.
(3.1)

In fact, letG ↪→ G′ be any completion and�G ⊆ G′ × Y the closure of the set
{(g, g · h) | g ∈ G}. Then

G ↪→ �G, g 
→ (g, g · h), (3.2)

is again a completion ofG. Let γ : �G → Y be the second projection. This
morphism is dominant and proper, hence surjective. Choosex ∈ �G with
γ (x) = m. SinceG is open and dense in�G there is an affine curveC1 ⊆ �G with
x ∈ C1 andC1 \ {x} ⊆ G. Let C̃ → C1 be the normalization ofC1 andS the
preimage ofx. This is a non-empty finite subset of̃C. The desired curveC is
obtained by removing from̃C all points but one ofS. The remaining point ofS
is calledc0. The morphismα is just the compositionC → �G → Y . Moreover,
the image ofC′ in �G is contained inG giving α′ :C′ → G. Finally, (3.1) follows
from (3.2) which proves the claim.

Using this curveC, consider the trivial group schemesG := G × C/C and
G′ := G × C′/C′. ThenG′ contains the subgroup scheme

H′ :=
.⋃

c∈C ′
α′(c)Hα′(c)−1 = {

(α′(c)hα′(c)−1, c)
∣∣ h ∈ H, c ∈ C′}

∼= H × C′. (3.3)

Let H be the closure ofH′ in G. Then every irreducible component ofH maps
dominantly toC which implies thatH is flat over C; see, e.g., [Ha2, 9.7].
Therefore, the same holds true for the fiber productH2 :=H×C H which implies
thatH′ ×C H′ is dense inH2. In turn, the multiplication mapG ×C G → G maps
H2 into H. In other words,H is a flat subgroup scheme ofG. In particular, the
fiberHc :=H ×C {c} is a subgroup ofG for everyc ∈ C. Any flat group scheme
is smooth (Cartier, see [DG]). Therefore, the Lie algebrashc := LieHc form
a vector bundle overC. By construction, we havehc = α′(c) · h for all c �= c0.
Thus, by (3.1), we havehc = α(c) for all c. In particular,hc0 = m. This shows
thatm = LieHc0 is algebraic.

Finally, it is known that the quotientG/H exists ([An, 4.C]). This is a flat
deformation of homogeneousG-varieties with fibersG/Hc. Thus dimension,
complexity and rank do not change [Kn1, 2.5] which proves the second
assertion. ✷
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Now we construct a partial compactification ofT ∗
X . First, choose an equivariant

embedding ofX = G/H into a projective space:X = G/H ↪→ PN . Using the
orbit map

G/H → Gr(g), gH 
→ g · h, (3.4)

we get a diagonal embedding ofG/H in PN × Gr(g). Let X′ be its closure.
This is a projective, possibly singularG-variety. Let �X → X′ be an equivariant
desingularization (see [AHV]). Then we have a smooth completionG/H ↪→ �X
such that the orbit map (3.4) extends to a morphism�X → Gr(g).

LetM → �X be the pull-back of the tautological vector bundle over Gr(g). For
x ∈ �X let mx :=Mx be its fiber overx. Then, by construction, we havemx = g ·h
wheneverx = gH ∈ G/H . Thus, by Lemma 3.1, everymx is an algebraic Lie
subalgebra ofg with the same dimension, complexity, and rank ash.

By construction, the vector bundleM is a subbundle of the trivial vector
bundleg× �X. Let �Z → �X be its annihilator in the dual bundleg∗ × �X. This means
that each fiber�Zx equalsm⊥

x ⊆ g∗. We claim that�Z is a partial compactification
of Z := T ∗

X . In fact, the restriction of�Z to the open orbitG/H is G ×H h⊥
which equals the cotangent bundle overX. Note that�Z is equipped with a natural
G-equivariant morphism

µ : �Z ↪→ g∗ × �X � g∗, (3.5)

which, on each fiber, is simply the natural embeddingm⊥
x ↪→ g∗. This means that

µ is an extension of the moment mapµ :Z → g∗ to �Z. The point is now thatµ is
a propermorphism as one sees from the factorization (3.5) and the fact that�X is
complete.

4. A partial compactification: properties

The first step to our goal is the following lemma.

Lemma 4.1. The morphismψ :Z → a∗/WX extends to a morphismψ : �Z →
a∗/WX . Moreover, all fibers ofψ are connected.

Proof. Let Γψ ⊆ Z × a∗/WX be the graph ofψ and letΓ ψ be its closure in
�Z × a∗/WX . Then the projectionΓ ψ → �Z is an isomorphism overX, hence
birational. Now observe that the compositionZ → a∗/WX → g∗//G has an
extension to�Z, namely, the composition�Z → g∗ → g∗//G. This implies that
Γψ , henceΓ ψ , is contained in the fiber productΓ ′ := �Z ×g∗//G a∗/WX . Since
a∗/WX → g∗//G is a finite morphism, so areΓ ′ → �Z andΓ ψ → �Z. Thus, the
latter is an isomorphism since�Z is normal (even smooth). This shows thatψ

exists.
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To show connectedness of fibers, we need another construction of [Kn1].
Consider the moment mapµ :Z → g∗ and letM be the spectrum of the integral
closure ofµ∗C[g∗] in C[Z]. Then µ factors asZ ϕ−→ M → g∗. As above,
one shows thatϕ extends to a morphismϕ : �Z → M which factorsµ. This
implies that alsoϕ is proper. By construction ofM, the generic fibers ofϕ
are irreducible. Hence the same holds forϕ. SinceM is normal we can apply
Zariski’s connectedness theorem [Ha2, 11.3] and conclude that all fibers ofϕ are
connected. On the other hand, we have a commutative diagram:

�Z ϕ

ψ

M

π

a∗/WX.

(4.1)

If f is aG-invariant regular function onZ which is integral overC[g∗] then it is
also integral overC[g∗]G (apply the Reynolds operator to an integral equation
of f ). This means thatπ is just the categorical quotient byG. Thus, every
fiber of π contains a unique closed (connected) orbit which implies thatπ has
connected fibers, as well. Chooseu ∈ a∗/WX . By applying the following lemma
to the morphismψ−1(u) → π−1(u) we conclude thatψ−1(u) is connected. ✷
Lemma 4.2. Let ϕ :X → Y be a surjective morphism whose fibers are all
connected. Assumeϕ is either closed(e.g., proper) or open(e.g., flat). Assume,
moreover, thatY is connected. ThenX is connected as well.

Proof. Assume thatϕ is closed/open. Suppose thatX is not connected. Then
X = X1 ∪̇ X2 is a disjoint union of non-empty closed/open subsets. Thus,
Y = ϕ(X1) ∪ ϕ(X2) is a union of non-empty closed/open subsets. SinceY is
connected, this union cannot be disjoint. Choosey ∈ ϕ(X1) ∩ ϕ(X2). Then the
fiber F = ϕ−1(y) is the union of two disjoint non-empty closed/open subsets,
namely,F ∩ X1 andF ∩X2, which contradicts the connectedness ofF . ✷

Next, we investigate the restriction ofψ to the fibers�Zx = m⊥
x . Let c andr be

the complexity and rank ofG/H . For a fixed Borel subgroupB let �X0 be the set
of x ∈ �X such that

dim(b + mx) = g − c and dim(u + mx) = g − c − r. (4.2)

Sincemx has also complexityc and rankr (Lemma 3.1), this is an open subset
of �X which intersects eachG-orbit non-trivially. Let

B =
.⋃

x∈�X0

(b + mx)
⊥ and U =

.⋃
x∈�X0

(u + mx)
⊥. (4.3)

Then B ⊆ U ⊆ �Z are sub-vector bundles. Consider the fiber of the quotient
a∗
x = Ux/Bx = (b/u + b ∩ mx)

∗ of (b/u)∗ = t∗. For x ∈ X ∩ �X0 it is always
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the same spacea∗ (Lemma 2.1). Thus, by continuity,a∗
x = a∗ for all x ∈ �X0 and

we obtain a projectionU � a∗.

Lemma 4.3. For x ∈ �X, let W(x) be the little Weyl group ofmx . Then
W(x) ⊆ WX . Moreover, letψx be the restriction ofψ to �Zx = m⊥

x . Thenψx

is the composition

m
⊥
x

ψmx−−−→ a
∗/W(x) � a

∗/WX. (4.4)

Proof. The compactification�Z is constructed in such a way that the restriction
of µ : �Z → g∗ to a fiber�Zx is the natural embeddingm⊥

x ↪→ g∗. Thus, we obtain
a commutative diagram (without the dotted arrow):

m⊥
x �Z

a∗/W(x) a∗/WX

g∗//G.

(4.5)

The universal property (as integral closure) implies the existence of the dotted
arrow. In particular,W(x) ⊆ WX . ✷
Lemma 4.4. LetC be an irreducible component of a fiberψ−1(u) and letx ∈ �X.
ThenC∩�Zx is of pure codimensionr in �Zx . Moreover,C is of pure codimensionr
in �Z, and the projectionC → �X is dominant.

Proof. Clearly, the codimension ofC in �Z is at most r. Therefore, the
codimension of every irreducible component ofC∩ �Zx in �Zx is also at mostr. On
the other hand,C∩�Zx is contained in a fiber ofψx which is of pure codimensionr
by Theorem 2.4(ii) and (4.4). HenceC ∩ �Zx is of pure codimensionr in �Zx .

Now consider the projectionp :C → �X. LetY be the closure of its image. We
have seen that the fibers ofp have dimensionn − r. Hence

2n − r � dimC = (n − r) + dimY � (n − r) + n = 2n − r, (4.6)

which implies dimC = 2n − r and dimY = n, henceY = X. ✷
Corollary 4.5. For u ∈ a∗/WX consider the fibersF = ψ−1(u) ⊆ Z and �F =
ψ−1(u) ⊆ �Z. Then�F is the closure ofF in �Z.

Proof. By Lemma 4.4, every irreducible component ofψ−1(u) meets the open
subsetψ−1(u) ∩Z = ψ−1(u). Hence,ψ−1(u) is the closure ofF . ✷
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5. The proof of the connectedness theorem in the homogeneous case

First, we construct very special points in the fiber�F by applying the following
result.

Proposition 5.1. Let Y be an affineGm-variety,V a finite dimensional vector
space, andϕ :V → Y a Gm-equivariant morphism. Assume thatV has a closed
irreducibleGm-stable subvarietyS such that the restrictionϕ|S :S → Y is finite
and surjective. LetC be an irreducible component of a fiber ofϕ. ThenC∩S �= ∅.

Proof. Let C be an irreducible component ofF := ϕ−1(y), y ∈ Y . Assume first
y = y0 := ϕ(0). ThenC is a closedGm-stable subset ofV . Hence 0∈ C ∩ S and
we are done. Thus, we may assumey �= y0.

The origin 0 is the only closed orbit ofV , hence ofS. Sinceϕ|S is finite
and surjective, the fixed pointy0 is the only closed orbit ofY . This implies,
in particular, thatGmy is closed inY ′ := Y \ {y0}. Let V0 := ϕ−1(y0) and
V ′ := V \ V0 = ϕ−1(Y ′). ThenGmF = ϕ−1(Gmy) is closed inV ′. Let E ⊂ Gm

be the isotropy group ofy. From GmF � Gmy = Gm/E we obtainGmF =
Gm ×E F . The groupE is necessarily a finite (cyclic) group. Hence the map
Gm × F → GmF is proper, which implies thatZ := GmC is closed inGmF . We
conclude thatZ is also closed inV ′ or, equivalently,

�Z \Z ⊆ V0. (5.1)

Let r := dimS. Using again thatϕ|S is finite and surjective we have thatY

is irreducible of dimensionr. SinceC is an irreducible component of a fiber of
ϕ :V → Y , we have codimV C � dimY = r. Thus, codimV �Z < r. Since 0∈ �Z
and dimS = r, the intersection�Z ∩ S is non-empty of positive dimension (here
we use the smoothness ofV ). On the other hand, the finiteness ofϕ|S implies
that V0 ∩ S is a finite set. Thus we obtain from (5.1) thatZ ∩ S �= ∅, which is
equivalent toC ∩ S �= ∅. ✷
Corollary 5.2. Let a′ ⊆ h⊥ as in Theorem2.4(iv) and letC be an irreducible
component of a fiber ofψh :h⊥ → a∗/WX . ThenC ∩ a′ �= ∅.

Next we study the intersectionC ∩ a′ for the Lie algebrasmx simultaneously
for an open set ofx ∈ X0. For this, letA ⊆ U be a complementary vector bundle
toB over an open subset�X1 ⊆ �X0. That exists in the neighborhood of every point
of �X0. Since the fiber isAx = Ux/Bx = a∗, there is a canonical trivialization
τ :a∗ × �X1

∼−→A.

Lemma 5.3. Let C be an irreducible component of the fiberF := ψ−1(u) and
assume there isα ∈ a∗, x0 ∈ �X1 with τ (α, x0) ∈ C. Thenτ (α, x) ∈ C for every
x ∈ �X1.
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Proof. The restriction ofψ to A is the compositionA � a∗ π−→ a∗/WX .
Therefore,F ∩ A is of pure dimensionn = dimX. More precisely,F ∩ A =
τ (S × �X1) whereS is theWX-orbit π−1(u). On the other hand,C is of pure
codimensionr in �Z andA is irreducible of dimensionn + r. This implies that
the dimension of every irreducible component ofC ∩ A is at leastn. Since
C ∩A ⊆ F ∩A, we conclude thatC ∩A is the union of irreducible components
of F ∩A ∼= S × �X1. Hence there is a subsetS′ of S with C ∩A = τ (S′ × �X1). By
assumption we have(α, x0) ∈ S′ × �X1. Henceα ∈ S′ andτ (α, x) ∈ C ∩ A ⊆ C

for all x ∈ �X1. ✷
Now we are able to prove Theorem 1.1 forX = G/H . Consider the fiber

F = ψ−1(u) and suppose thatF is disconnected. ThenF = F1 ∪̇F2 is the disjoint
union of non-empty closed subsets. By Corollary 4.5, the closure ofF in �Z is the
fiber �F = ψ−1(u) which is connected by Lemma 4.1. This implies�F1 ∩ �F2 �= ∅
but we can say even more. As a fiber of an equidimensional map between smooth
varieties,F is locally a complete intersection. A theorem of Hartshorne [Ha1,
3.4] then asserts thatF is even connected in codimension one, i.e., it stays
connected upon removal of any subset of codimension two or higher. Applied to
our situation, we conclude that�F1 ∩ �F2 has an irreducible componentC0 which
is of codimension 1 in�F , hence of codimensionr + 1 in �Z.

SinceC0 ∩ Z ⊆ �F1 ∩ �F2 ∩ Z = F1 ∩ F2 = ∅ we haveC0 ∩ Z = ∅. Let X′ be
the closure of the image ofC0 in �X. ThenX′ ∩X = ∅. Let x ∈ X′. ThenC0 ∩ �Zx

is a subset of a fiber ofψx , hence has dimension at mostn− r (Lemma 4.4). This
implies

2n − r − 1 = dimC0 � (n − r) + dimX′ � (n − r) + (n − 1)

= 2n − r − 1. (5.2)

Since equality has to hold throughout, we obtain, in particular, that there exists
an x0 ∈ X′ such that dimC0 ∩ �Zx0 = n − r. Therefore,C0 ∩ �Zx0 is the union
of irreducible components of a fiber ofψx . Now choose a complementA of
B ⊆ U in a neighborhood ofx0. From Corollary 5.2, we obtainC0 ∩Ax0 �= ∅. In
particular, there isα ∈ a∗ with τ (α, x0) ∈ C0.

Now letC1 ⊆ F1, C2 ⊆ F2 be irreducible components such thatC0 ⊆ �C1 ∩ �C2.
Since τ (α, x0) ∈ �Ci we haveτ (α, x) ∈ �Ci for all x in a neighborhood ofx0
(Lemma 5.3). If we choosex ∈ X we get τ (α, x) ∈ C1 ∩ C2 ⊆ F1 ∩ F2,
a contradiction toF1 ∩ F2 = ∅. This finishes the proof of Theorem 1.1 when
X is homogeneous.

6. The proof in general

From now on, letX be any smoothG-variety. To prove the general case we
use the following trivial lemma.
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Lemma 6.1. LetF be a variety andF ′ ⊆ F an open subset. Assume

(i) F ′ is connected;
(ii) for every pointη ∈ F there are two irreducible subvarietiesD andE of F

such thatη ∈ D, D ∩ E �= ∅, andE ∩F ′ �= ∅.

ThenF is connected.

Fix u ∈ a∗/WX and let F := ψ−1(u). To constructF ′ we start with the
following lemma.

Lemma 6.2. Let X be an irreducibleG-variety. Then there is a non-empty open
G-stable subsetX′ ⊆ X with the following properties:

(i) The orbit spaceQ = X′/G exists, i.e., there is aG-invariant surjective
morphismπ :X′ → Q such that all fibersX′

v := π−1(v) are reduced and
homogeneous.

(ii) The spacesX′ andQ are smooth.
(iii) All orbits X′

v share the same dimension, complexity, rank, and little Weyl
groupWX .

Proof. The existence of an open subsetX′ as in (i) is a well-known theorem of
Rosenlicht ([Ro]; see also [Sp, Section 2]). Then (ii) can be achieved by shrinking
Q to an open subset. Finally, (iii) follows from [Kn1, 2.5] (for dimension,
complexity, and rank) and [Kn1, 6.5.4] (for the little Weyl group).✷

Let X′ ⊆ X be as in the lemma. Let

T ∗
X′/Q :=

.⋃
v∈Q

T ∗
X′

v
→ X′ (6.1)

be the relative cotangent bundle. SinceWX′
v

= WX , we obtain morphisms
ψv :T ∗

X′
v

→ a∗/WX which glue to a morphismψ∗ :T ∗
X′/Q → a∗/WX . Let N ⊆

T ∗
X′/Q be the fiberψ−1∗ (u) and letπ :N → Q be the projection. Thenπ−1(v) =

ψ−1
v (u) is connected sinceX′

v is homogeneous. Upon shrinkingQ to an open
subset we may assume thatπ is flat and surjective. Thus, Lemma 4.2 implies that
N is connected. Next observe that there is a projectionp :T ∗

X′ � T ∗
X′/Q. In fact,

this is a locally trivial bundle of affine spaces and therefore flat, surjective with
connected fibers. On the other hand, the morphismψ :T ∗

X′ → a∗/WX is just the
compositionψ∗ ◦ p. Thus

F ′ := F ∩ T ∗
X′ = p−1(N)

is connected, which verifies part (i) of Lemma 6.1.
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For the second part, letη be any point ofF and letY be the image ofGη in X.
We need to compare the moment map forX with that for the orbitY ⊆ X. The
main tool to study the interrelation is the following local structure theorem.

Theorem 6.3. There exists a parabolic subgroupP (containingB) with Levi
part L (containingT ) and an affineL-stable subvarietyS of X such that:

(i) The natural morphismP ×L S → X is an open embedding.
(ii) The intersectionY0 := Y ∩ S is a non-emptyL-variety.
(iii) LetL0 be the kernel of the action ofL onY0. ThenAY := L/L0 is a torus.
(iv) The action ofAY onY0 is locally free, i.e., has finite isotropy groups.

Proof. This theorem is essentially due to Brion–Luna–Vust [BLV]. We use the
refinement in Sections 1–2 of [Kn2] as follows. By [Kn2, 2.1], we may replaceX

by aG-stable open subset which supports an ampleG-linearized line bundleL.
Now we choose a sectionσ of a power ofL, as in [Kn2, 2.10]. LetP = G〈σ 〉 be
the stabilizer of the line〈σ 〉 = Cσ .

Now (i) follows from [Kn2, 1.2.3], while (ii) is implied by [Kn2, 2.10.2].
Furthermore, [Kn2, 2.10.3 and 2.8.1] assert (iii). Finally, by [Kn2, 2.10.4] all
orbits of AY in Y0 are closed. SinceY0 is affine, all orbits are of the same
dimension. Since the generic isotropy group is trivial by construction, we see
that all isotropy groups are finite.✷

Let Pu be the unipotent radical ofP . SinceP = Pu ×L (as a rightL-variety),
we haveP ×L S = Pu × S. Thus,

Pu × S → X (6.2)

is an open embedding. That implies thatS is smooth and irreducible. Moreover,
for everyx ∈ S the tangent space splits:

TX,x = pux ⊕ TS,x. (6.3)

That allows us to embedT ∗
S into T ∗

X . The relationship between the moment maps
is given by the following lemma.

Lemma 6.4. The image ofT ∗
S under the moment map onT ∗

X is in p⊥
u . Moreover,

the following diagram commutes:

T ∗
S

µS

T ∗
X

µX

l∗ p⊥
u g∗

l∗//L g∗//G.

(6.4)
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Proof. That image ofT ∗
S under the moment map onT ∗

X is in p⊥
u , is a reformula-

tion of the definition of the embeddingT ∗
S ↪→ T ∗

X . That proves the commutativity
of the quadrangle. The triangle commutes sinceS ↪→ X is L-equivariant. Finally,
the commutativity of the pentagon is given by [Kn1, 6.1].✷

Now choosey ∈ Y0. SinceS is affine and since the orbitLy is closed, it has
a “slice” in S, i.e., an irreducible, smooth,L0-stable subvarietyS0 of S with
y ∈ S0 and such thatL ×L0 S0 → S is étale. The Lie algebra ofL decomposes as
l = aY ⊕ l0 which induces a decomposition of tangent spaces:TS,x = aY x ⊕TS0,x

for everyx ∈ S0. Thus, we get embeddings and a commutative diagram

a∗
Y × S0 T ∗

S
T ∗
X

a∗
Y l∗//L g∗//G.

(6.5)

Now we look more closely at the subspacea0 := a∗
Y × {y} ⊆ T ∗

X,y . We have

TX,y = puy ⊕ aY y ⊕ TS0,y . (6.6)

SinceaY y = ly, we have

puy ⊕ aY y = by and puy = uy. (6.7)

Thus,a0 is a complement of(by)⊥ in (uy)⊥.
On the other hand, sinceP ×L Y0 → Y is an open embedding, the generic

P -orbit in Y is isomorphic toP/L0. BecausePy = P/L0 = B/(B ∩ L0) = By

it follows thatBy represents a genericB-orbit in Y . Moreover,Uy is a generic
U -orbit in Y .

Now consider the restriction mapρ :T ∗
X,y � T ∗

Y,y = g⊥
y . The moment mapµ

clearly factors throughρ. Moreover, the imagea′ := ρ(a0) is a complement of
(by)⊥ in (uy)⊥. It follows from Corollary 5.2 thata′ intersects every irreducible
component of every fiber ofT ∗

Y,y → g∗//G. The same holds fora0 with respect to
the morphismT ∗

X,y → g∗//G.
Now we are able to prove the connectedness theorem in general: by changingη

in its G-orbit we may assume thatη ∈ T ∗
X,y ∩ F . Let D be an irreducible

component of the fiber ofT ∗
X,y → g∗//G containingη. By construction,F is

a union of connected components of a fiber ofT ∗
X → g∗//G. Thus D ⊆ F .

Moreover, there isα ∈ a∗
Y with (α, y) ∈ D. Let E := {α} × S0. Then the

commutative diagrams (6.4) and (6.5) show thatE is contained in a fiber of
T ∗
X → g∗//G. ThusE ⊆ F andD ∩ E �= ∅. Finally,G · S0 is dense inX. Hence

S0 ∩ X′ �= ∅ impliesE ∩ F ′ �= ∅. Thus, we conclude with Lemma 6.1 thatF is
connected.
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