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ABSTRACT 

Let M be an n X n matrix and q an nth order vector. Then the linear complemen- 
tarity problem LCP(q, M) is defined as follows: determine x > 0 such that w = Mx + q 
> 0 and xrw = 0. A vector x which satisfies these conditions is called a solution of the 
problem, and a solution for which x, = wi = 0 for at least one value of i is termed 
degenerate. If the solutions of LCP(q, M) are nondegenerate and their number is odd 
(even), we say that the solution set has odd (even) parity, and Murty has shown that 
this parity is determined uniquely by M. In this paper the idea of parity is extended 
to degenerate solutions and, through these, to solution sets containing both degener- 
ate and nondegenerate solutions. These results are then used to give a generalization 
of Lemke’s method and to analyse the stability of certain degenerate solutions of 

linear complementarity problems. 

1. INTRODUCTION 

Let M be an n X n matrix and q an nth order vector. Then the linear 
complementarity problem LCP(q,M) is defined as follows: determine x > 0 
such that 

w=Mx+q>O 

and 

XTW = 0. 

(1) 
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The nonnegativity conditions together with the complementarity condition 
(2) imply that xi = 0 if wi > 0, and wi = 0 if xi > 0; a vector x which satisfies 
these conditions is called a solution of the problem. A solution for which 
xi = wi = 0 for at least one value of i is termed degenerate, and it is the 
properties of such degenerate solutions that are the concern of this paper. 

We first review some results pertaining to the number of solutions of an 
LCP. A sufficient condition for this number to be finite for particular values 
of M and q, given by Lemke [6], is that no solution of LCP(q,M) is 
degenerate. Subsequently Murty [B] h s owed that a necessary and sufficient 
condition for the number of solutions of LCP(q,M) to be finite for an 
arbitrary choice of q is that M is nondegenerate, i.e. that no principal minor 
of M is equal to zero. This result is true even if some solutions of the LCP 
are degenerate, as they must necessarily be for certain values of q. A similar 
result was obtained by Mangasarian [7]. All these results hinge on the fact 
that if a principal submatrix of M is singular, it is possible to find a vector q 
for which LCP(q,M) has two distinct solutions x1 and x2 such that any 
convex combination of x1 and xp is also a solution of the LCP. Conversely, if 
no principal submatrix of M is singular, then any strictly convex combination 
of two solutions of an LCP fails to satisfy the complementarity condition, and 
a continum of solutions is thus not possible. Since this paper is concerned 
only with finite solution sets, it will be assumed throughout that M is 
nondegenerate. 

Sufficient conditions for every solution of LCP(q, Ml to be nondegenerate 
were considered by, among others, Eaves [2] and Murty [B]. In particular 
Eaves showed that “almost any q” gives rise to nondegenerate solutions. The 
importance of nondegeneracy was demonstrated by Murty [B], who proved 
that if all the solutions of LCP(q,,M) and LCP(q,, M) are nondegenerate, 
then the number of solutions of LCP(q,, M) differs from that of LCP(q,,M) 
by a (possibly zero) multiple of two. We shall subsequently refer to this 
result as Murty’s theorem. It follows from this that if LCP(q,,Ml has an odd 
(even) number of nondegenerate solutions and no degenerate ones, then if all 
the solutions of LCP(q,M) are nondegenerate, the number of such solutions 
is odd (even). As a natural consequence of this, Murty defined the parity of a 
set of nondegenerate solutions to be odd if the set consisted of an odd 
number of solutions, and even otherwise. 

In this paper the idea of parity is extended to a set which may contain 
both nondegenerate and degenerate solutions. It is shown that a degenerate 
solution itself possesses a unique parity (nondegenerate solutions are odd) 
and behaves, from the standpoint of enumerating the number of solutions, 
either like an odd or like an even number of nondegenerate solutions. This 
result is achieved by applying Murty’s theorem to the auxiliary problems 
described by Broyden [I]. 
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2. DEGENERATE SOLUTIONS 

Murty’s theorem states that if M is nondegenerate and the solutions of 
LCP(q,M) are also nondegenerate, then the parity of the solution set is 
independent of q. It is thus a property of M itself, and we thus offer the 
following formal definition. 

DEFINITION 1. A nondegenerate matrix M will be said to be odd (even), 
or to have odd (even) parity, if for every vector q for which every solution of 
LCP(q, M) is nondegenerate, the total number of solutions is odd (even). 

Note that this definition is always valid, since if M is nondegenerate it is 
always possible, as was shown by Eaves [2], to find a q such that every 
solution of LCP(q, M) is nondegenerate. 

The importance of the idea of parity, as was recognized by Murty 
[8, Corollary 6.91, is that if M is odd, then it is a Q-matrix [a matrix M for 
which LCP(q, M) has a solution for any q]. LCPs involving even matrices, on 
the other hand, may have no solution at all for certain values of q, but if they 
have one nondegenerate solution, they must have at least one other solution, 
which may or may not be degenerate. This possibility of further solutions is 
the reason why, unless an LCP is known to have only one solution, Lemke’s 
method should never be terminated when a solution is found but should be 
allowed to continue until it terminates naturally on a ray. It is possible that 
other solutions may be discovered en route. 

LEMMA 1. Let Q he a permutation matrix. Then the parities of M and 
QTMQ are equal. 

Proof. Follows immediately from the fact that x is a solution of 
LCP(q, M) if and only if Q rx is a solution of LCP(QTx, QT MQ). n 

We now show how the notion of parity may be extended to a degenerate 
solution of a linear complementarity problem. 

DEFINITION 2. Let LCP(p,M) h ave a degenerate solution x, so that 
Equation (1) may be written, after suitably permuting the rows and columns 
of M (see [l]), 
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where x, > 0 and wa > 0; and let 

I G = M,, -M,,M, M,,. (4) 

Then G is called an auxiliary matrix of x. 

We see that G depends only on the degeneracy pattern of x, being 
determined by those values of i for which xi = wi = 0 [it is trivial to show 
that G is invariant under identical permutations to the first block row and 
block column of M, i.e. permutations affecting only the elements of xi and 
those of pi in Equation (3)]. It is not unique, since any matrix QrGQ, where 
Q is a permutation matrix, is also an auxiliary matrix of x. Its parity, however, 
is unique from Lemma 1, and it is this property that makes the following 
definition possible. 

DEFINITION 3. The parity of a degenerate solution is defined to be the 
parity of its auxiliary matrices. 

We now use these ideas to generalize Murty’s theorem. 

THEOREM 1. Let M be nondegenerate, and let p be arbitrary. Define 
the parity of a nondegenerate solution of a linear complementarity problem to 
be odd, and let that of a degenerate solution be given by Definition 3. Let w 
be the number of solutions of LCP(p, M) having odd parity. Then M is odd if 
w is odd, and even otherwise. 

Proof. Choose d to be some vector satisfying the nondegeneracy condi- 
tions of Lemma 1 of [l] [these guarantee that if E,, is sufficiently small, then 
every solution of LCP(p+ .cd,M), 0 < E < Ed, is nondegenerate], and assume 
that .sa is sufficiently small for this to occur. It was shown in [I] that if the 
solutions of LCP(p+ Ed,M) are regarded as functions of E, they are distinct 
as long as they remain nondegenerate, but may coalesce into, and branch out 
from, degenerate solutions at particular values of E. It thus follows from the 
assumptions above that the number of solutions of LCP(p + Ed, M) remains 
constant for 0 < a < &a, and is equal to the number of nondegenerate 
solutions at E = 0 together with the total number of branches emanating from 
the degenerate solutions at E = 0 in the direction of increasing E. Moreover, 
since all solutions of LCP(p+ .zod,M) are nondegenerate, the parity of the 
solution set is equal, from Definition 1, to the parity of M. 

Now it was shown in [l] that the number of branches emanating from a 
degenerate solution is identical to the number of solutions of LCP(h,G), 
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where G is an auxiliary matrix of the degenerate solution and h is some 
vector derived from M and d. Moreover, if d satisfies the assumptions of the 
theorem, each such solution is nondegenerate. It therefore follows from 
Definitions 1 and 3 (above) that the number of branches emanating from 
each degenerate solution at E = 0 is odd if the parity of that solution is odd, 
and even otherwise. Now the parity of the solution set of LCP(p + Eod, M) 

remains unchanged if the branches emanating from the even degenerate 
solutions are deleted and those emanating from the odd degenerate solutions 
are replaced by a single branch. The parity of M is thus the parity of this 
modified solution set, and the theorem follows from the observation that this 
in turn, since nondegenerate solutions are odd by definition, is determined 
by the number of odd solutions of LCP(p, M). n 

COROLLARY. If M is odd, then LCP(q,M) has at least one odd solution. 

Proof. Straightforward. H 

We note that, if all solutions of LCP(p, M) are nondegenerate (and hence 
odd), Theorem 1 reduces essentially to Murty’s theorem. 

3. APPLICATIONS AND CONCLUSIONS 

Lemke’s method of solving a linear complementarity problem consists 
essentially of tracking a particular solution of LCP(q+ 6d,M) as 8 varies, 
and it is usually assumed (e.g. [l] and [2]) that d is such that this solution is 
nondegenerate except for a finite number of values of 19. This restriction on 
d is based on purely practical considerations, i.e. the difficulty of computing 
degenerate solutions, but it is possible in principle to use the same ideas 
to track along arcs of the solution graph (see [l]) on which the solution 
is degenerate. By way of illustration, we solve LCP(q,M) by solving 
LCP(q + 6d, M), where 

the unorthodox value of d being chosen for purpose of illustration. 
Clearly, for 19 > 1, x = 0 and w = q + fid is a nondegenerate solution of 

LCP(q + 6d, M), but when 6 is reduced to unity x becomes doubly degener- 
ate, a situation that would normally be resolved by perturbation. Now the 
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auxiliary problems for this solution (see [ 11) are LCP( k h, G) where 

and it is readily shown that x = [O,O] r is the only solution of LCP(h,G). Since 
this solution is nondegenerate, it follows that G is odd. LCP( - h, G), how- 
ever, has two solutions, namely [O, llT and [l, O]r, the second of which is 
degenerate. Since G is odd, this solution must be even, a deduction which 
may be confirmed by computing its auxiliary matrix. This, from Equation (4), 
is 

gz2 - g,, gYl’g12 = m33 - m3,G’m13 = -2. 

Now each solution of LCP( - h, G) corresponds to a branch of the solution 
graph of LCP(q + 6d, M) for 19 decreasing, and taking these in turn gives the 
two solutions of LCP(q+ 6d, M), 6 < 1, to be x = [O,O, 1 - 191~ and x = 
[l - 6,O,O]r, for which the corresponding values of w are [l - 6,2,O]r and 
[0, 1+ 13,O]r. The second of these two solutions is degenerate for V6, since 
xg = w3 = 0. Thus if an auxiliary problem of a degenerate solution itself has a 
degenerate solution, the solution on the corresponding arc of the solution 
graph is also degenerate. Since the supports of both x and w are constant on 
this arc, the auxiliary matrices, and hence the parity, of the solution as 6 
varies are constant. In the case quoted the auxiliary matrix is equal to 

m33 
-1 

- m31m11 ml3 = -2. The degenerate solution is thus even for all 6, and 
putting 19 = 0 gives two solutions of LCP(q, M) to be [O,O, llT and [l, O,O]r. 
Note that the possibility of further solutions is not excluded. 

Another use of the ideas of this paper lies in their application to the 
stability of the solution of a linear complementarity problem, i.e. the sensitiv- 
ity of the solutions with respect to perturbations of either or both of q and M. 
Ha [3] gave a definition of stability, and Jansen and Tijs [4] introduced the 
idea of robustness, and showed that a solution is stable in the sense of Ha if 
and only if it is both robust and isolated. Since the solutions of linear 
complementarity problems involving nondegenerate matrices are always 
isolated [7], the two definitions are, for our purposes, equivalent, so we give 
the simpler one of Jansen and Tijs and say that a solution x of LCP(q,M) is 
stable if for every neighborhood V of x there is a neighborhood U of (q,M) 
such that for V(q’, M’) E U, LCP(q’,M’) has a solution in V. Moreover, 
following Ha, we shall say that the solution is strongly stable if it is unique 
in V. 
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Ha showed that a nondegenerate solution of a linear complementarity 
problem is strongly stable iff it is isolated. If we consider only perturbations 
to q, it follows from [l, Theorem 31 that if M is nondegenerate, a degenerate 
solution of LCP(q,M) is stable iff its auxiliary matrices are Q-matrices and 
strongly stable iff its auxiliary matrices are P-matrices (matrices M for which 
LCP(q,M) has a unique solution for any q; see [S]). Thus odd solutions are 
stable, and even solutions may or may not be stable but can never be strongly 
stable. 

If we consider perturbations to M as well as to q, the situation is far more 
complex, and the author is indebted to the referee for drawing his attention 
both to this aspect of the problem and to the associated references ([5], [9], 
and [lo]). It was shown by Tamir [9] that if LCP(0, M) has only one solution 
(and LCPs involving nondegenerate matrices certainly have this property), 
then if M is odd, its parity is invariant under small perturbations. We 
therefore conjecture that a degenerate solution of LCP(q,M) is stable if it is 
odd, and indeed would go further to suggest that if the auxiliary matrix of 

such a solution is a P-matrix, then the solution is strongly stable. However, 
an earlier conjecture of the author, that if M is nondegenerate then a 
degenerate solution of LCP(q,M) IS stable if the corresponding auxiliary 
matrix is a Q-matrix, was demolished by the quite remarkable example of 
Kelly and Watson [5], who showed that if 

(5) 

4 4 -4 

c = [ - 1, l,O,OIT, and e4 = [O,O,O, llT, then although M is a Q-matrix, M+ 
scez is not a Q-matrix for 0 < E < 1, since LCP(q+ .sd,M + scez), where 

q = [0, 0,32, OIT and d = [0.26, -0.02, - 1.20, -0.081T, has no solution for 
0 < E < 1. If such an M were the auxiliary matrix of some degenerate 

solution, that solution would not be stable. This example is so surprising that 
we examine it in some detail to see just what it is that makes it tick. 

We first look at a related problem 

Pl= LCP(q+ Ed,M), (6) 

where M, q, and d are defined by Equation (5) et seq., i.e. the example of 
Kelly and Watson but with the matrix of the problem held constant. This has 
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no fewer than three solutions at E = 0, all degenerate and all even. These are 

Solution A: x = [O,O,O,O]T, w = [0,0,32,0]‘, 

Solution B: x = [9,0,7,0]‘, w = [0,0,0,8]‘, 

Solution C: x = [o,9,7,11T, w = [o,o,o,o]‘. 

The variation of these solutions with E in the neighborhood at E = 0 is shown 
schematically in Figure 1, and it can be seen that, for E < 0 and increasing, 
four (nondegenerate) solutions merge into two degenerate ones at F = 0 and 
then vanish completely. The Q-ness of M is maintained as E increases by the 
appearance of a totally unrelated solution at E = 0, which becomes two 
solutions as E increases further. It would seem therefore that the Q-ness of 
this particular M is somewhat fragile and that a small perturbation could 
distort the solutions, opening up a “gap” between them leaving a small 
interval of E for which no solution exists. Such changes might be expected 
when Pl is replaced by the Kelly-Watson example, but the changes that in 
fact do occur are far more dramatic. 

If then 

P2 = LCP(q+ ed,M+ ece;), (71 

the Kelly-Watson example, and we trace the solutions in the region of E = 0, 
we obtain Figure 2. Solution C has “flipped’ and now appears when E < 0 
instead of when F > 0. To explain this behavior we need to consider the 

Solution A 

Solution B 

Solution C 
\ 

r=O 

FIG 1. 
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Solution A 

Solution B 

&=O 

FK:. 2. 

auxiliary problem of solution C, but this is complicated by the fact that 
M + .sceI varies with E. We need, therefore, to take this variation into 
account when carrying out the analysis. 

For problem P2 it follows from Equations (1) and (7) that 

(M+ .sceT)x+q+ Ed = w. (8) 

Since x is a function of E, we may write its fourth element as X&E), so that 
Equation (8) becomes 

Mx+q+ +x4(g) +d] = w. (9) 

Now since M is nondegenerate, it follows from standard perturbation theory 
(see e.g. [ll, p. 189 et seq.]) that for 1~1 sufficiently small, X&E) = r,(O)+ O(E). 
Now the value of x,(O) for solution C is unity, and substituting this value in 
Equation (9) and ignoring terms of order E’ then gives problem 

P3 = LCP(q+ sd,,M), (LO) 

where d,, the “equivalent value” of d, is given by 

d,=c+d=[-0.74,0.98,-1.20,-O.O8]r. 
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Thus, for ]E] sufficiently small, solution C of P2 behaves virtually identically 
to solution C of P3. Note that solutions A and B do not correspond, since d, 
involves the value of x,(O) specific to solution C. Note further that all three 
problems are the same if E = 0. 

Now for Pl and P3 the behavior of solution C as E varies is governed by 
its auxiliary problem (see [l]). This, for Pl, is LCP(h,G), where G is defined 
by Equation (4) above and h is given (see [l]) by 

h = d, -M,,M,‘d,, (11) 

with obvious notation, but where both M and d are assumed to be permuted 
and partitioned as in Equation (3) above. The comparable result for problem 
P3 is obtained by substituting d, for d in Equation (11). Now for solution C, 
xi = wi = 0 for only one value of i, so both G and h are scalars, G being the 
same for both Pl and P3. For these problems G = -5.333, and its negativity 
implies that solution C branches either into two solutions for E > 0 and none 
for E < 0 or vice versa, depending on the sign of h. For Pl, h = 0.746 and is 
positive, so that solution C branches into two solutions for E > 0. For P3, 
h = -0.586, so the solutions branch out in the reverse direction. 

The behavior of all the solutions of P3 in the neighborhood of F = 0 is 
shown in Figure 3. Note also that, although the perturbation to M may be 
arbitrarily small, the crucial difference between d and d, is quite substantial 
and is, moreover, independent of E. 

Solution B 

Solution C 

&=O 

FIG. 3. 
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Although the Kelly-Watson example destroys the supposition that nonde- 
generate matrices are stable, it leaves unscathed the conjecture that even- 
parity nondegenerate matrices form an open set. Comparison of Figures 1 
and 2 shows that not only is the total number of solutions even in each case, 

but the even degenerate solutions remain even. Thus not only the matrix 
itself, but three of its auxiliary matrices, remain even under the perturbation. 
We thus conjecture that provided M is nondegenerate, small perturbations 
alter the parity neither of M nor of any of its principal submatrices or Schur 
complements. Indeed, we conjecture that these parities remain constant until 
a crucial principal minor of M changes sign. If true, this would suggest that 
the parity of a matrix is determined in some way by the signs of its principal 
minors, a suggestion that is reinforced by the fact that if all these are 
positive, then M is a P-matrix whose parity, and that of all possible auxiliary 
matrices, is odd (see [l]). However, if M is not a P-matrix, no simple 
relationship appears to exist. 

Finally, since parity has been identified as the property of a matrix, it is 
only natural to ask how this relates to the parities of other matrices. It is 
trivial to show that the parities of M and M- ’ are identical [merely compare 
the solutions of LCP(q, Ml and LCP(-M-‘q,M-‘)I, but even so simple an 
operation as negating M gives rise to complications. If M is the 2X2 unit 
matrix, then M is odd and - M is even, but if one of the diagonal elements of 
M is negated, then both M and -M are even. It is hoped to deal more fully 
with these matters in a subsequent paper. 

The author thanks the referee for this helpful comments, and W. E. Hart 
and J. A. Ford from the University of Essex, as well as the University itself for 

help in preparing this manuscript. 
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