
Science of
Computer

ELSEVIER Science of Computer Programming 26 (1996) 167-177
Programming

An algorithm for type-checking dependent types

Thierry Coquand *
Computer Science Department, Gdteborg University, S 41296, Gtiteborg, Sweden

Abstract

We present a simple type-checker for a language with dependent types and let expressions,
with a simple proof of correctness.

0. Introduction

Type theory provides an interesting approach to the problem of (interactive) proof-
checking. Instead of introducing, like in LCF [lo], an abstract data type of theorems, it
uses the proofs-as-programs analogy and reduces the problem of proof checking to the
problem of type-checking in a programming language with dependent types [9]. This
approach presents several advantages, well described in [l 1,9], among those being the
possibility of independent proof verification and of a uniform treatment for naming con-
stants and theorems. It is crucial however for this approach to proof-checking to have
a simple and reliable type-checking algorithm. Since the core part of such languages,
like the ones described in [9,7], seems very simple, there may be some hope for such
a short and simple type-checker for dependent types. Indeed, de Bruijn sketches such
an algorithm in [9]. However, this last paper leaves unspecified the treatment of con-
version of terms, and more importantly, the treatment of a-conversion, and names of
variables.

Though this problem of a-conversion, and the related problem of the definition of
substitution, may seem at first of small importance, there are both theoretical and
practical evidence that it is an important issue for languages based on 3,-calculus.
We can cite here Abelson and Sussman [2]: “Despite the fact that substitution is a
“straightforward idea”, it turns out to be surprisingly complicated to give a rigorous
mathematical definition of the substitution process . . . Indeed, there is a long history
of erroneous definitions of substitution in the literature of logic and programming
semantics.”

* E-mail: coquand@cs.chalmers.se.

0167-6423/96/$15.00 @ 1996 Elsevier Science B.V. All rights reserved
SSDI 0167-6423(95)00021-6

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82345314?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

168 7: Coquandl Science of Computer Programming 26 (1996) 167-I 77

From a theoretical side, the problem of substitution and a-conversion are anal-
ysed in detail in Stoughton’s paper [17], and one motivation behind the calculus
of explicit substitution [l] was to handle precisely these problems. One other at-
tempt for making precise the substitution operation is the substitution calculus of
P. Martin-Liif, presented in the [19]. Unexpectedly, Pollack discovered that this calcu-
lus is not closed under a-conversion [161, and this illustrates well the subtlety of this
topic.

From the implementation side, it is known that the first implementation of substitution
in Automath [9] was incorrect, and that most of the bugs in the implementation of LCF
came from clashes of bound variables in strange situations [1.51. How to handle names
properly is seen as one of the main problem in the implementation of a language based
on type theory by Hanna and Daeche [111.

Despite its importance, the problem of a-conversion is relatively seldom emphasised
and analysed in the literature of type-checking dependent types. Few papers are explicit
on this point, and even fewer try to argue about the correctness of their treatment of
names of variables (for some exceptions, see [11, 14, 16, 1,181; Refs. [1,16,18] are
more explicit about correctness issues). When the problem is analysed in detail, like in
the proof of the “substitution lemma ” in Stoy’s book on denotational semantics [181,
the arguments lack of conceptual content and it is difficult to grasp intuitively what
makes the whole proof work.

The goal of this note is to present a simple type-checking algorithm for depen-
dent types, with a simple proof of correctness. The main ingredient, which is the
explicit introduction of closures, has been already suggested in [8], for the analy-
sis of environment machines. In this way, we are completely explicit relatively to
a-conversion, but we do not require complicated syntactical lemmata such as the sub-
stitution lemma.

For simplicity, we have chosen to illustrate this method on the simplest possible
type system with dependent types, namely a type system with dependent product and
as only primitive type a type Type of all types. We prove only the soundness of
our type-checking algorithm here. Indeed, it is known [6], that there is no decision
procedure for the typing problem if we have a type of all types. However, with only
minor variations, the same algorithm can be used as the basis of a decision procedure
for Martin-Liif type theory or the normalising type systems described in [4]. We give
in Appendix A a Gofer/Haskell implementation [3].

1. Language and semantics of dependent types

1. I. Expressions

Our expression language will be the one of a type theory with dependent type and a
type of all types. Let Ide be an infinite set of identifiers. The set Exp of expressions

T. CoquandlScience of Computer Programming 26 (1996) 167-177 169

is inductively defined by
_ Ide C: Exp,
_ Type E EXP,
_ if M,N E Exp, x E Ide then Ix M, M N, (x : M)N E Exp.

In the following, let A, B, C,M, N be expressions, x, y,z be identifiers. For instance
(A : Type)(x : A)A will be the type of the polymorphic identity function id = Mjlx x.
If B is a given type, id B is the identity function over the type B.

By structural induction, we can associate with any expression M its set of free
variables FV(M) as usual.

I .2. Models

We do not need to make completely precise the notion of models, but only to
list some general operations and properties that any “reasonable” model should have.
We use the notion of models described in [13], due to Hindley and Longo. This
notion can be traced back to Henkin in the framework of simply typed A-calculus

[=I.
First, we define the set Env of environments associated with a given set D and

dam(p) C Ide, defined for p E Env. The set Env consists of the empty environment
() and of the update environment (p,x = d) for p E Env and x E Ide, d E D.
Furthermore, we take dom(()) = 0 and dom((p,x = u)) = dom({x}. We define
lookup xp for x E dam(p), by taking lookup x (p, y = d) to be d if x = y and
lookup xp otherwise.

A model is a tuple (D, App, eval,Type, :) where D is a set, App : D&+[D-+D] a
binary operation, and eval M p is an element of D for M expression and p E Env
such that FV(M) C dam(p). ’ The meaning of Type and the relation : C D x D are
explained below.

First, we require that (D,App, eval) forms a model of the untyped A-calculus, that
is:
- App (eval (AxM)p)a = eval M(p,x = u),
_ eval xp = lookup xp,

- eval (M, M2) p = App (eval M, p) (eval M2 p),
_ if, for all elements d E D, we have eval M (p,x = d) = eval N (v, y = d) then we

have also eval (1xM) p = eval (,?yN) v.
The first condition can be seen as a semantical version of /&conversion. The last
condition is called Berry’s condition in [13]. This is a quite elegant definition of
model of /2-calculus, which is presented as Exercise 11.9 in [131. We write [TM] for
eval M 0.

’ With respect to the presentation of Hindley-Seldin [131, we have made the following change: we replace
environments as functions in Ide+D, by suitable finite representations of these functions.

170 T CoquandlScience of Computer Programming 26 (1996) 167-177

The situation is richer here because we have a special constant Type and a product
operation. We add the conditions
_ eval Type p = Type for all p,
_ if eval A p = eval C v and eval B (p,x = d) = eval D (v, y = d), for all d E D,

then we have also eval ((x : A)B) p = eval ((y : C)D) v.
Finally, we have to express in some way that some expressions denote types, that
represent collections of objects. For this, we introduce a typing relation : C D x
D, written infix; the relation a : d means intuitively that the value a E D is of
type d.
- Type : Type,
_ eval ((x : A)B) p : Type if first, eval A p : Type and second, a : eval A p implies

eval B (p,x = a) : Type,
_ App ca : eval B (p,x = a) if c : eval ((x : A)B) p and a : eval A p,
- eval (,IyN) v : eval ((x : A)B) p if a : eval Ap implies eval N (v,y = a) :

eval B (p,x = a).
The following lemma can be proved by structural induction on the expression M.

Lemma 1. Zf FV(M)cdom(p), FV(M)Gdom(v), and lookup xp = lookup x v

for all x E FV(M), then eval A4 p = eval A4 v.

When later on we refer to a “model D”, we shall mean by this any structure
(0, App, eval, Type, :) that satisfies all the conditions listed above.

2. The type system

2.1. Expressions and values

Let G be an infinite set of new variables, the generic values. We write vi, ~2, us,. . .
for elements of G.

Then we define by simultaneous induction the set of values V and the set of envi-
ronments Env together with dam(p) & V for p E Env :
- G&v,
_ if u,w E V, then uw E V,
- Type E V,
_ if A4 is an expression, p E Env, FV(M) C dam(p), then Mp E V,
- () E Env, and dom(()) = 0,
_ if p E Env, x E Ide, u E V, then (p,x = u) E Env, and dom((p,x = u)) =

domb) u {x1.
We define lookup xp as before. In the following, assume u, u, w E V. Any assignment
f E G+D extends uniquely to an f E V-+D such that

- f Type = Type,
- f (~1~2) = APP (full (f~2),

T. CoquandlScience of Computer Programming 26 (1996) 167-177 171

- f WP) = eval M (f*p),
where f *() = () and f *(p,x = u) = ((f*p),x = f u).

We can define inductively when a generic value occurs in a given value, and prove
that f u = gu if f and g agree on all generic values that occur in U.

2.2. Conversion relation

Conversion applies only to values. Like for A-calculus, we use the ordinary equality
symbol u = v to denote the fact that the values u and v are convertible. This relation
is defined inductively as the least congruence such that (notice that this congruence
appears only positively in the clauses that follow, and this is why we can define
conversion inductively):
- (/?xM)p v = M(p,x = v),
_ X(&X = U) = 24,
_ x(p,y=n)=xp, ifx#y,

- (MN)P = (MP) (JJP)>
~ if vk does not occur in p,v, and M(p,x = vk) = N(v,y = vk), then (ixM)p =

0.~ WV,
- Type P = Type,
_ if vk does not occur in p, v, and Ap = Bv, B(p,x = vk) = @V,y = f&), then

((x : A)B)p = ((y : C)D)v.
The following lemma is similar to Lemma 1, and follows from the fact that the set G
of generic values is infinite.

Lemma 2. Zf F&WC dam(p), FV(M) C dam(v), and lookup XP = lookup x~

for all x E FV(M), then Mp = Mv.

The following property expresses the soundness of our notion of conversion between
values.

Proposition 1. Zf u] and u2 are convertible value, then for any model D, and any
assignment f E G-D, we have f u1 = fu2 in D.

Proof. We present the rule corresponding to Berry’s condition, because this is the only
delicate case.

We have to show eval (/ZxM) (f*p) = eval (2yN) (f*v) in D, given that
M(p,x = vk) = N(v, y = vk) where ok does not occur in p, v. Let d be an arbitrary
element of D. Let then g be the assignment that differs from f only on the variable
ok and such that g vk = d. Because ok does not occur in p, v we have f *p = g*p and
f *v = g*v, and hence ((f*p),x = d) = g*(p,x = vk) and ((f *v),x = d) = g*(v,x =
vk). So, by induction, eval M ((f*p),x = d) = eval N ((f*v),y = d). Since this
holds for all d E D, we get eval (AxM) (f*p) = eval (/ZyN) (f*v) because Berry’s
condition holds for D. 0

172 T. CoquandlScience of Computer Programming 26 (1996) 167-177

2.3. Conversion algorithm

2.3.1. Weak head normal form
The conversion algorithm uses an algorithm that computes the weak head normal

form of a value. This algorithm is represented by a relation u -U_ u’ between values,
which can be read as u evaluates to u’. This relation is inductively defined by:
_ if u J,!, (i,xM)p, and M(p,x = w) JJ v, then u w JJ v,
_ if u .I,l u’ and u’ is a generic value or an application, then u w .lJ u’ w,
_ if lookup xp 4) v, then xp $ v,

- Type P U Type,
- if 00) VP) JJ 0, then (MJVp U 21,
_ v U v if v is of the form vk or Mp, where M is an abstraction or a product.
Notice that this relation is partial and deterministic. Furthermore,

Lemma 3. If u 4.l v, then u = v.

Corollary 1. If u J,l v, then f u = f v E D, for any model D, and any assignment
f EG+D.

2.3.2. Conversion
The conversion algorithm is represented by a relation ur N ~2. We define inductively

that ur - 2.~ holds if
_ ul .lJ Type and u2 J,l Type, or
_ u1 JJ tl ~1, 24 .!,l t2 ~2, and tl N t2 and wr N ~2, or
_ ~1 4 uk,, ~2 U ukz and kl = k2, or
_ ~1 U (hMl)pl, ~2 U (AxzM2)~2 and Ml(Pl,xl = uk) N M2(P2,x2 = ok) where uk

does not occur in pr , ~2, or
_ u2 JJ ((xl : Al)Bl)pl, 2.42 A,l. ((x2 : A2)&)p2 and we have both Alp1 N A2p2 and

Bl(pl,xl = vk) N B2(p2,x2 = vk) where Uk does not occur in pl,p2.
From Lemma 3, we get the semantical soundness of this algorithm.

Lemma 4. Zf u1 N 24, then ul = ~2.

Corollary 2. If 2.q N ~2, then f u1 = f u2 for any model D and any assignment
f EG-+D.

2.4. Type-checking algorithm

Ultimately, we want to check when an expression A is a correct type, and given
such an expression A, when an expression A4 is of type A. As a technical intermediary
notion, it is convenient to introduce a typing relation between expressions and values:
M is of type u will mean that the value M() is of type u. Recursively, we need to
express when a given expression M, in a given pair of environments p and r, is of

T. CoquandlScience of Computer Programming 26 (1996) 167-177 113

type U, where u is a value. Intuitively, p assigns values and r type values to the free
variables of A4. We write this relation p; r E A4 =+ v. We need to define simultaneously
the type inference relation p; r t- A4 H v, meaning that it is possible to infer the type
value v for M in the environments p and r.

The type-checking algorithm p; r I- A4 j v and the type inference algorithm p; r k
M H v are represented by two relations defined inductively and simultaneously.
_ If v JJ ((v : A)B)p’, and p,x = ok; r,x : Ap’ k N * B(p’, y = Ok) where uk does not

occur in p, r, p’, then p; r t iy N =$ v,
_ if p; r t A + Type, and p,x = ok; T,x : Ap t B + Type, where rk does not occur

in p, r, and v A,l. Type, then p; r I- (x : A)B + v,
_ if p; r t M H w and w N v, then p; r t M + v,
- p; r t x H xr, if x occurs in r,
_ if p; r t MI H u1 and u1 JJ ((x : A)B)p’, and p; r I- M2 + Ap’, then p; r t

MI Mz H B(p’,x = MOP>,
_ p; r t Type H Type.

Proposition 2. If k A + Type and t M + A(), then [A] : Type and [M] : [A] in D.

Proof. We prove more generally, by simultaneous induction on the definition of the
two relations of type-checking and type inference, that, for any assignment f such that
eval x (f*p) is of type eval x (f*r) in D for all x E dam(r), if p; r k M + u or
p; r k M H u, then eval M (f*p) is of type f u in D.

We illustrate only the abstraction case of the type-checking relation, more delicate
than the other cases. We have to check that, for any suitable assignment f, the value
f ((2xN)p) is of type f v, with f v = eval (y : A)B (f*p’). For this it is enough to
check that eval N ((f*p),x = d) is of type eval B ((f*p’), y = d) for any d E D
which is of type eval A (f*p’).

Let g be the assignment that differs from f only on the variable nk and such that
gvk = d. Because nk does not occur in p,p’, we have eval N ((f*p),x = d) =
eVal N (g*(p,x = vk)) and eval B ((f *p’), y = d) = f?VEd B (g*(p’, y = vk)), and
eval A (f’p’) = eval A (g*p’). Hence the result follows by induction hypothesis.

0

Notice that our algorithm accepts the following judgement:

t 2x2~~ : (x : A)(y : Px)P x,

which is not derivable in Martin-Liif s substitution calculus [161.

3. Extension to let expressions

This treatment extends directly to the addition of let expressions. We add expressions
of the form let x = M : A in N. The meaning of this expression is reflected by the

174 T. CoquandlScience of Computer Programming 26 (1996) 167-177

conversion rule

(let x = A4 :A in N)p =N(p,x =Mp).

The typing rule is that p; r t let x = M : A in N + u iff p; r t A + Type and
p;rtM+Apandp,x=Mp;T,x:AptN+v.

We get a language that is similar to de Bruijn’s Ad [9]. The problem of type-
checking such let expressions is explained and motivated with a concrete example at
the end of the survey article [4].

4. Related works and conclusion

We have presented a simple implementation and correctness proof of a type-checking
algorithm for dependent types, while being explicit about the problem of a-conversion.
This is made possible by the explicit introduction of closures.

Previous attempts of a complete description of a type-checking algorithm for depen-
dent types can be found in [14, 16,9]. In Ref. [l] a complete type-checking algorithm
for second-order kcalculus is presented, that contains most of the difficulties of type-
checking dependent types. This algorithm has been used in the language Quest [5]. As
can be seen by comparing this algorithm with the algorithm we have presented, our
approach is more straightforward. A closer formalism is a predecessor of this work on
explicit substitution, presented in [8], which introduces the idea of explicit closures.

We think that the same method can be used to simplify the presentation of the
semantics of languages with a binding structure, and the meta-mathematical analysis
of languages with dependent types [4].

Acknowledgements

This work owes much to several discussions with Dan Synek. Randy Pollack and
Luca Cardelli made valuable comments on a preliminary version. Thanks to Bernhard
Mijller and to the referee for their comments concerning the presentation of this note.

Appendix A. GoferlHaskell implementation

- the main data types and general functions

type Id = String

data Exp =
Var Id / App Fxp Exp 1 Abs Id Exp 1 Let Id Exp Exp Exp
1 Pi Id Exp Exp / Type

data Val = VGen Int 1 VApp Val Val / VType 1 VClos Em Exp

type Env = [(Id,Val)]

T. CoquandlScience of Computer Programming 26 (1996) 167-177 175

update :: Env -> Id -> Val -> Em
update env x u = (x,u) : env

lookup :: Id -> Env -> Val
lookup x ((y,u) :env) =

if x == y then u
else lookup x en”

lookup x [] = error (“lookup” ++ x)

_ a short way of writing the whnf algorithm

app :: Val -> Val -> Val
eval :: Env -> Exp -> Val

app u ” =
case u of

VClos env (Abs x e) -> eval (update en” x v) e
_ -> VApp u Y

eval en” e =
case e of

Var x -> lookup x env
App el e2 -> app (eval en” el) (eval en” e2)
Let x el _ e3 -> eval (update env x (eval en” el)) e3
Type --z VType
_ -> VCIOS en” e

whnf :: Val -> Val
whnf Y =

case ” of
VApp u w -> app (whnf u) (whnf v)
VClos en” e -> eval en” e
_ -> v

_ the conversion algorithm; the integer is
_ used to represent the introduction of a fresh variable

eqVal :: (Int,Val,Val) -> Bool
eqVal (k,ul,u2) =

case (whnf ul ,whnf ~2) of
(VType,VType) -> True
(VApp tl wl,VApp t2 ~2) ->

eqVal (k,tl,t2) && eqVal (k,wl,w2)
(V&n kl,VGen k2) -> kl == k2
(VClos envl (Abs xl el),VClos env2 (Abs x2 e2)) ->

let v = VGen k
in eqVal (k+l,

VClos (update envl xl v) el,
VClos (update env2 x2 v) e2)

(VClos envl (Pi xl al bl),VClos env2 (Pi x2 a2 b2)) -->
let v = VGen k
in eqVa1 (k,VClos awl al,VClos env2 a2) &&

eqVal (k+ I,

. -> False

VClos (update envl xl v) bl,
VClos (update env2 x2 v) b2)

- type-checking and ?vpe inference

checkExp : : (Int, Env, Env) -> Exp --> Val -> Boo1
inferExp : : (Int,Env,Env) --> Exp -> Val
checkType : : (Int, Env, Env) -> Exp -> Boo1

checkType (k, rho, gamma) e = checkExp (k, rho, gamma) e VType

checkExp (k,rho,gamma) e v =
case e of

Abs x n ->
case whnf v of

176 T. CoquandlScience of Computer Programming 26 (1996) 167-177

VClos env (Pi y a b) -->
let v = VGen k
in checkExp (kfl,

update rho x v,
update gamma x (VClos env a))

n (VClos (update en” y v) b)
_ -> error“expected Pi”

Pi x a b -->
case whnf v of

VType -> checkType (k,rho,gamma) a &&
checkType (k+ 1,

update rho x (VGen k),
update gamma x (VClos rho a))
b

_ -> errof’expected Type”
Let x el e2 e3 ->

checkType (k, rho, gamma) e2 &&
checkExp (k,

update rho x (eval rho el),
update gamma x (eval rho e2))

e3 Y
_ --> eqVal (k, inferExp (k, rho, gamma) e,v)

inferExp (k, rho, gamma) e =
case e of

Var id -> lookup id gamma
App el e2 -->

case whnf (inferExp (k,rho,gamma) ei) of
VClos env (Pi x a b) -->

if checkExp (k,rho, gamma) e2 (VClos env a)
then VClos (update env x (VClos rho e2)) b

else error“application error”
_ -> error“application, expected Pi”

Type -> VType
_ --> error%mnot infer type”

typecheck :: Exp --> Exp -> Boo1

typecheck m a =
checkType (O,[],[]) a &&
checkExp (O,[],[]) m (VClos [] a)

test :: Boo1
test =

typecheck (Abs “A” (Abs “x” (Var “x”)))
(Pi “A” Type (Pi “x” (Var “A”) (Var “A”)))

References

[l] M. Abadi, L. Cardelli, P.L. Curien and J.J. Levy, Explicit substitutions, J. Funct. Programming 1 (4)
(1991) 375-416.

[2] H. Abelson and Ci. Sussman, Structure and Interpretation of Computer Programs (MIT Press,
Cambridge, MA, 1986).

[3] L. Augustsson, Haskell B. User’s manual available over WWW from hhtp://www.cs.chalmers.
se:80/pub/haskell/chalmers.

[4] H. Barendregt, Lambda calculi with types, in: S. Abramski, D.M. Gabbai and T.S.E. Maibaum, eds.,
Handbook of Logic in Computer Science, Vol. II (Oxford University Press, Oxford, 1992).

[5] L. Cardelli, Typeful programming, in: E.J. Neuhold, Paul eds., Formal Description of Programming
Concepts (Springer, Berlin, 1991).

[6] Th. Coquand and H. Herbelin, A-translation and looping combinators in pure type system, J. Funct.
Programming 4 (1994) 77-88.

[7] Th. Coquand and Cl. Huet, The calculus of constructions, Inform. and Comput. 76 (1988) 95-120.

T CoquandlScience of Computer Programming 26 (1996) 167-l 77 111

[8] P.L. Curien, An abstract framework for environment machines, Theoret. Comput. Sci. 82 (1991)
389-402.

[9] N.G. de Bruijn, A plea for weaker frameworks, in: G. Huet and G. Plotkin eds., Logical Framework
(Cambridge University Press, Cambridge, 1991) 40-68.

[lo] M.J. Gordon, A.J. Milner and C.P. Wadsworth, Edinburgh LCF- a Mechanised Logic of Computation,
Lecture Notes in Computer Science, Vol. 78 (Springer, New York, 1979).

[1 l] K. Hanna and N. Daeche, Purely Functional Implementation of a Logic, Lecture Notes in Computer
Science, Vol. 230 (Springer, New York, 1986) 598-607.

[12] L. Henkin, Completeness in the theory of types, J. Symbolic Logic 15 (1950) 81-91.
[131 J.R. Hindley and J. Seldin, Introduction to Combinators and I-calculus, London Mathematical Society

Student Texts, Vol. 1 (Cambridge University Press, Cambridge, 1986).
[14] G. Huet, The Constructive Engine, in: R. Narasimhan, ed., A Perspective in Theoretical Computer

Science (World Scientific, Singapore, 1989).
[151 L. Paulson, Isabelle: The Next 700 Theorem Provers, in: P. Odifreddi, ed., Logic and Computer

Science, The APICS studies in Data Processing Vol. 31 (Academic Press, 1990) 361-386.
[16] R. Pollack, Closure under Alpha Conversion, in: H. Barendregt and T. Nipkow eds., Types for Proofs

and Programs, Lecture Notes in Computer Science, Vol. 806 (Springer, New York, 1993) 313-332.
[17] A. Stoughton, Substitution revisited, Theoret. Comput. Sci. 59 (1988) 317-325.
[181 J. Stoy, Denotational Semantics (MIT Press, Cambridge, 1977).
[191 A. Tatsitro, Formulation of Martin-LBf s Theory of Types with Explicit Substitution, Licentiate Thesis,

Chalmers University, 1993.

