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The prime at infinity and the rank of the class group
in global function fields
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Abstract

In this paper we construct, for any integers m and n, and 2�g�m − 1, infinitely many
function fields K of degree m over F(T ) such that the prime at infinity splits into exactly g
primes in K and the ideal class group of K contains a subgroup isomorphic to (Z/nZ)m−g .
This extends previous results of the author and Lee for the cases g = 1 and g = m.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The study of class numbers dates back to Gauss who determined the exact power
of 2 dividing the class number of a quadratic number field. In particular, he proved
that infinitely many quadratic fields have class number divisible by 2. Nagell [5],
Yamamoto [9], and Friesen [2] have shown that there are infinitely many quadratic
fields (imaginary number field, real number field, real function field, respectively) with
class number divisible by an arbitrary integer n. In fact, given any integers m and n,
there are infinitely many number fields and function fields of fixed degree m with class
number divisible by n (see, for example, [1,6] for number fields and [7] for function
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fields). This is a consequence of stronger results about the structure of the class group,
specifically the rank of a subgroup of the class group.

In 1983, Azhuhata and Ichimura [1] constructed infinitely many number fields K
of degree m over Q such that the class group of K contains a subgroup isomorphic
to (Z/nZ)r2 for any integers m and n. Here r2 denotes half the number of complex
embeddings of K into C. Nakano [6] soon improved this result, constructing infinitely
many number fields K of degree m over Q such that the class group of K contains a
subgroup isomorphic to (Z/nZ)r2+1 for any integers m and n. In 1999, Ichimura [3]
gave a partial function field analogue to his and Azuhata’s results in [1] for the special
case that m is prime. In this case, the size of the subgroup constructed depends on the
factorization of Xm − 1 in F[X]. More general function field results have been proven
by the author and Lee. Recall that a function field is said to be real if the prime
at infinity splits completely and imaginary if the prime at infinity is totally ramified
or inert. In [7], the author proved that for any integers m and n, there are infinitely
many real function fields K of degree m over F(T ) whose ideal class group contains
a subgroup isomorphic to Z/nZ. For m and n relatively prime, there are infinitely
many imaginary function fields K of degree m such that the prime at infinity is totally
ramified and the ideal class group of K contains a subgroup isomorphic to (Z/nZ)m−1.
For the case when the infinite prime is inert, subject to a few restrictions on m, Lee
and the author proved in [4] that there are infinitely many function fields K of degree
m whose ideal class groups contain subgroups isomorphic to (Z/nZ)m−1. It should be
noted that the constant field is fixed in each of these extensions.

In all the results mentioned above, we see that the rank of the subgroup of the class
group is closely related to the rank of the unit group; the more units in K, the smaller
the rank of the class group. In a number field of degree m = r1 + 2r2, the rank of the
unit group is r1 + r2 − 1, so Azuhata and Ichimura’s result shows that the rank of the
unit group plus the rank of the subgroup of the class group is r1 + 2r2 − 1 = m − 1.
For function fields, the rank of the unit group is one less than the number of primes
lying above infinity. So for imaginary function fields, the rank of the unit group plus
the rank of the subgroup of the class group is again m− 1, and for real function fields
the sum is m.

In this paper, we extend the results above to show that the rank of the unit group
plus the rank of the subgroup of the class group is at least equal to one less than the
degree of the extension, regardless of the number of primes lying above infinity.

Let q be a power of an odd prime, and let F be the field with q elements. Let k be
the rational function field, and fix a transcendental element T of k so that k = F(T ).
If K is an extension of k, then denote by OK the integral closure of F[T ] in K. We
write ClK to denote the ideal class group of OK . The main result is as follows:

Theorem 1. Let m and n be any positive integers, not both even, not divisible by the
characteristic of F(T ), with m, n > 1. If g is an integer with 2�g�m − 1, then there
are infinitely many function fields K of degree m over k such that

(1) the prime at infinity in k splits into exactly g primes in K, one with ramification
index m − g + 1, the rest unramified, all with relative degree 1, and

(2) ClK contains an abelian subgroup isomorphic to (Z/nZ)m−g .
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As in [7], we construct a polynomial

f (X) =
m−1∏
i=0

(X − Bi) + Dn,

where B0, . . . , Bm−1 and D are certain polynomials in F[T ]. If � is a root of f (X),
then K = k(�) satisfies the conditions of the theorem.

2. Preliminaries

Let L be the set of all prime divisors of n, and define n0 = ∏
l∈L l. Let m0 be the

least common multiple of the orders of all roots of unity contained in any function
field of degree m. Let E and W denote, respectively, the group of units and the group
of roots of unity in the field K. For an element r in F[T ], let |r| = qdeg(r). Given
polynomials B0, . . . , Bm−1, D ∈ F[T ], define

f (X) =
m−1∏
i=0

(X − Bi) + Dn

and let � be a root. Set K = k(�). The next two lemmas and proposition show that
with an appropriate choice of B0, . . . , Bm−1, and D, the field K satisfies the conditions
of Theorem 1.

Lemma 1. Suppose there exist irreducible polynomials p1, . . . , pm−1 with |pi | ≡ 1
(mod m0n0) and polynomials B0, . . . , Bm−1, and D in F[T ] such that

(2.1) f (0) ≡ 0 (mod p1 · · · pm−1),
(2.2) (f ′(0), p1 · · · pm−1) = 1,

(2.3)
(

Bi

pi

)
l
�= 1,

(
Bi

pj

)
l
= 1 for i �= j , 1� i, j �m − 1.

Then for each l ∈ L, the subgroup of K×/WK×l generated by the classes of � −
B1, � − B2, . . . , � − Bm−1 is an elementary abelian group of rank m − 1.

Proof. The proof is the same as in [7]. �

The following lemma is well known.

Lemma 2. Suppose A is a finite abelian group of exponent n, and dimZ/lZ An/l �r

for all l dividing n. Then A contains a subgroup isomorphic to Z/nZ ⊕ · · · ⊕ Z/nZ of
rank r.
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Proposition 1. Suppose that the polynomials B0, . . . , Bm−1 and D further satisfy the
following two conditions:

(2.4) � − B0, � − B1, . . . , � − Bm−1 are pairwise relatively prime, and
(2.5) the prime at infinity in k splits into exactly g primes in K.

Then ClK contains an abelian subgroup isomorphic to (Z/nZ)m−g .

Proof. Let ClK [n] denote the set of all elements of the class group of OK whose orders
divide n. By the previous lemma, we need only show that ClK [n]n/l has dimension at
least m − g over Z/lZ for all l in L. Consider the following sequence:

(1) → ClK
[n

l

]
i→ ClK [n] h→ K×/EK×l , (1)

where i is just inclusion, and the map h is defined as follows. Let ā denote the class of
the ideal a in ClK [n]. If ā ∈ ClK [n], then an = (�) for some � ∈ OK . Set h(ā) = [�]l ,
where [�]l denotes the class of � in K×/EK×l . One can show that h is a well-defined
homomorphism, and the sequence above is exact.

Let S ⊂ K×/WK×l be the subgroup generated by the classes of � − B1, . . . , � −
Bm−1, and let S′ ⊂ K×/EK×l be the image of S under the natural reduction map from
K×/WK×l to K×/EK×l . The following sequence is also exact:

(1) → S ∩ EK×l/WK×l → S → S′ → (1).

As a result,

dimZ/lZ(S)� dimZ/lZ(E/W) + dimZ/lZ(S′).

By Lemma 1, dimZ/lZ(S) = m − 1, and by condition (2.5), we know that the rank of
the unit group in K is g − 1. Thus

dimZ/lZ(S′) = m − 1 − (g − 1) = m − g.

We claim that S′ is contained in Im(h), from which the proposition follows. If S′ ⊂
Im(h), then Im(h) has dimension at least m − g over Z/lZ. Since the sequence in Eq.
(1) is exact,

Im(h)�ClK [n]/ClK
[n

l

]
�ClK [n]n/l,

and so, ClK [n]n/l has dimension at least m − g over Z/lZ for all primes l dividing n.
Applying Lemma 2 to ClK [n] completes the proof.
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It remains to show that S′ ⊂ Im(h). Recall that

m−1∏
i=0

(� − Bi) = −Dn,

since � is a root of f (X). By condition (2.4) then, each ideal (� − Bi) is an nth
power. Say (� − Bi) = Dn

i for some ideal Di ⊂ OK , 1� i�m − 1. It follows that
h(D̄i) = [� − Bi]l , so S′ ⊂ Im(h). This completes the proof. �

To prove Theorem 1, we will show that it is possible to choose irreducible polyno-
mials p1, . . . , pm−1 and polynomials B0, . . . , Bm−1, and D ∈ F[T ] so that conditions
(2.1)–(2.5) are satisfied, and f (X) is irreducible. Finally, note that the existence of in-
finitely many such fields K is a consequence of the existence of one such field because
of the finiteness of the class number. See [7] for the proof of this assertion.

3. Choosing polynomials

Choose distinct irreducible polynomials pi, s in F[T ], 1� i�m − 1, such that

|pi | ≡ 1 (mod m0n0), 1� i�m − 1, and

|s| ≡ 1 (mod m).

Note that there are infinitely many such primes pi and s since the primes whose norms
are congruent to 1 modulo an integer m are exactly those primes which split completely
in k(�m), where �m is a primitive mth root of unity.

Since |pi | ≡ 1 (mod m0n0), we have l | (|pi | − 1) for all l ∈ L. Let gi , 1� i�m − 1,
be a primitive root mod pi that satisfies the congruence

g2
i + (m − 2)gi + 1 /≡ 0 (mod pi)

for all i, 1� i�m − 1. This is possible since |pi | − 1 > 3. Since m | (|s| − 1), we also
have that

Xm − 1 ≡
m−1∏
i=0

(X − Ci) (mod s),

where the Ci’s are distinct mod s for 1� i�m − 1. Given positive integer parameters
t and v with t, v > m, we choose polynomials B0, . . . , Bm−1, and D so that their
degrees depend on t and v. Choose B0 such that

B0 ≡
{

g−1
i (mod pi) for 1� i�m − 1,

C0 (mod s)
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and deg(B0) = t − m. Choose Bi , 1� i�m − 1, so that

(i) Bi ≡
⎧⎨
⎩

1 (mod pj ) if i �= j,

gi (mod pi),

Ci (mod s),

(ii) deg(Bi) = t − m + i + deg(p1 · · · pm−1s) for 1� i�m − g − 1,
(iii) deg(Bm−g) = t + deg(p1 · · · pm−1s),
(iv) deg(Bm−g+1) = t + v + deg(p1 · · · pm−1s),
(v) deg(Bi) = t + v + i − m + g + deg(p1 · · · pm−1s) for m − g + 2� i�m − 2, and

(vi) deg(Bm−1) = t + v + g − 2 + deg(p1 · · · pm−1s) + X,

where X is an integer, 1�X�n, chosen so that

(g − 1)(g − 2)

2
+ g − 2 + m[t + deg(p1 · · · pm−1s)] + (g − 1)v + X ≡ 0 (mod n). (2)

Note that choosing Bi’s with the desired degrees is possible for sufficiently large t and
v by the strong version of Dirichlet’s Theorem on primes in an arithmetic progression
given below.

Theorem 2 (Dirichlet’s Theorem). Let a and M be relatively prime polynomials in
F[T ] with deg(M) > 0. If Sd is the number of monic irreducibles primes P in F[T ]
with P ≡ a (mod M) and deg(P ) = d , then

#Sd = 1

�(M)

qd

d
+ O

(
q

d
2

d

)
. (3)

Proof. See [8, p. 40]. �

Notice that

deg(B0) < · · · < deg(Bm−1). (4)

Define

d = 1

n

(
(g − 1)(g − 2)

2
+ g − 2 + m[t + deg(p1 · · · pm−1s)] + (g − 1)v + X

)
. (5)

Choose a monic irreducible polynomial D so that

D ≡
{ 1 (mod s),

1 (mod pi) if m and n are odd,
−1 (mod pi) otherwise.

(6)

deg(D) = d.
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We claim that it is possible to choose parameters t and v so that the following condition
is also met:

(vii) (Bi − Bj , D) = 1 for all 0� i, j �m − 1, i �= j.

To show that (vii) can be satisfied, note that since D is irreducible, it is enough to
show that D does not divide the polynomial R, where

R =
∏
i �=j

0 � i<j �m−1

(Bi − Bj ).

But R has at most deg(R) monic irreducible factors, where

deg(R) <

(
m

2

)
deg(Bm−1) = m(m − 1)

2
(t + v + g − 2 + X + deg(p1 · · · pm−1s)).

This upper bound is linear in both t and v. By Dirichlet’s Theorem, however, the
number of irreducible D that satisfy the two conditions in Eq. (6) is

1

�(p1 · · · pm−1s)

qd

d
+ O

(
q

d
2

d

)
,

which is exponential in t and v (see Eq. (5)). For t and v large enough, therefore, there
are more D satisfying the necessary conditions in (6) than there are irreducible factors
of R. Thus it is possible to choose an irreducible polynomial D not dividing R, that
satisfies the conditions in Eq. (6), so (vii) is satisfied.

Finally notice that with the above choices, we have

(m − g + 1) deg(Bm−g) + deg(Bm−g+1) + · · · + deg(Bm−1) < nd, and (7)

nd < (m − g + 2) deg(Bm−g+1) + deg(Bm−g+2) + · · · + deg(Bm−1). (8)

This follows since

(m − g + 1) deg(Bm−g) + deg(Bm−g+1) + · · · + deg(Bm−1)

= m[t + deg(p1 · · · pm−1s)] + g − 2 + (g − 1)v + X + (g − 1)(g − 2)

2
− 1

= nd − 1

< nd
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and

(m − g + 2) deg(Bm−g+1) + deg(Bm−g+2) + · · · + deg(Bm−1)

= m[t + deg(p1 · · · pm−1s)] + mv + g − 2 + X + 1
2 (g − 1)(g − 2) − 1

= nd − 1 + (m − g + 1)v

�nd − 1 + 2

> nd.

4. Verification of divisibility conditions

Lemma 3. With polynomials B0, . . . , Bm−1 and D in F[T ] chosen as above, conditions
(2.1)–(2.3) in Lemma 1 are satisfied.

Proof. The proof is the same as in [7, Lemma 3]. �

Lemma 4. �−B0, �−B1, . . . , �−Bm−1 are pairwise relatively prime, that is, condition
(2.4) in Proposition 1 is satisfied.

Proof. Again, the proof is the same as in [7, Lemma 4]. �

Lemma 5. With B0, . . . , Bm−1, and D chosen as above, f (X) is irreducible.

Proof. We show that f (X) is an Eisenstein polynomial with respect to s. Notice first
that s‖(Dn + (−1)mB0B1 · · · Bm−1), the constant term of f (X):

Dn + (−1)mB0B1 · · · Bm−1 ≡ 1 + (−1)m
m−1∏
i=0

Ci (mod s)

≡ 1 − 1 (mod s)

≡ 0 (mod s).

If s2|(Dn + (−1)mB0B1 · · · Bm−1), then replace B0 by B0 + p1 · · · pm−1s. Both of the
desired congruence conditions for B0 still hold since B0 ≡ B0 + p1 · · · pm−1s modulo
pi and s. By (ii), we also still have that the degrees of the Bi’s are strictly increasing.
But now we have that

Dn + (−1)m(B0 + p1 · · · pm−1s)B1 · · · Bm−1

≡ Dn + (−1)mB0 · · · Bm−1 + (−1)mp1 · · · pm−1sB1 · · · Bm−1 (mod s2)

≡ 0 + (−1)mp1 · · · pm−1sB1 · · · Bm−1 (mod s2)

/≡ 0 (mod s2).
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Because f (X) is monic, we need only show that the remaining coefficients of f are
divisible by s. Since Bi ≡ Ci (mod s) for 0� i�m − 1, we have that

m−1∏
i=0

(X − Bi) ≡ Xm − 1 (mod s).

So all coefficients of
∏m−1

i=0 (X − Bi), excluding the leading and constant terms, are
divisible by s. Since these are exactly the coefficients of f (X) under consideration,
this completes the proof. �

5. The infinite prime

Lemma 6. The prime at infinity splits into g primes in K, one with ramification index
m − g + 1, the rest unramified, all with relative degree 1. That is, condition (2.5) in
Proposition 1 is satisfied.

Proof. We claim that the Newton polygon for f (X) (Fig. 1) with respect to the prime
at infinity consists of g distinct line segments with increasing positive slopes

n deg(D) − deg(Bm−g+1) − · · · − deg(Bm−1)

m − g + 1

< deg(Bm−g+1) < deg(Bm−g+2) < · · · < deg(Bm−1).

The lemma follows from the claim; since the g line segments have distinct slope, there
must be at least g distinct roots of f in k̄∞ and therefore at least g infinite primes in
K. Otherwise, if � and � are roots with �, � /∈ k∞, then there is an isomorphism �
from k∞(�) to k∞(�) which leaves k∞ fixed. It follows that |�| = |�(�)| = |�|, that
is, deg(�) = deg(�), a contradiction. Also notice that the numerator of the first slope
is relatively prime to the denominator since

n deg(D) − deg(Bm−g+1) − · · · − deg(Bm−1)

= nd − 2(t + v + deg(p1 · · · pm−1s)) − (g − 2 + X)

−
m−2∑

i=m−g+2

[t + v + i − m + g + deg(p1 · · · pm−1s)]

= nd − X − (g − 2) − (g − 1)[t + v + deg(p1 · · · pm−1s)] − 1
2 (g − 1)(g − 2) + 1

= (m − g + 1)[t + deg(p1 · · · pm−1s)] + 1.

Thus, the slope of the first line segment, in reduced form, contains m − g + 1 in the
denominator, so the primes in k̄∞ corresponding to this segment have ramification index
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Pm-g+1

P0

Pm-g+2

Pm-g+3

Pm

L1

L2

L3

Lg

Fig. 1. Newton polygon for f (X).

at least m−g + 1. We have shown then that the prime at infinity in k decomposes into
at least g primes in K, one of which has ramification index at least m − g + 1. If ei

and fi denote the ramification indices and relative degrees, respectively, of the infinite
primes in K, then

m =
∑

i

eifi �(m − g + 1)(1) + (g − 1)(1)(1) = m,

so the infinite prime must split into exactly g primes in K, one with ramification index
m − g + 1, the rest unramified, all with relative degree 1.

To prove the claim, first notice that by Eqs. (4) and (7), deg((−1)mB0 · · · Bm−1 +
Dn) = n deg(D). From this, we see that the points to consider for the Newton polygon
are the following:

P0 = (0, −n deg(D)),

Pi = (i, − deg(Bi) − · · · − deg(Bm−1)) for 1� i�m − 1,

Pm = (m, 0).

Let Mi be the slope of the line segment from P0 to Pi for 1� i�m, that is,

Mi = n deg(D) − deg(Bi) − · · · − deg(Bm−1)

i
.



A.M. Pacelli / Journal of Number Theory 116 (2006) 311–323 321

We will show that M = Mm−g+1 < Mi for all i �= m−g+1, from which it follows that
the line segment L1 from P0 to Pm−g+1 is part of the edge of the Newton polygon.
Note that the slope of L1 is 1

m−g+1 (n deg(D) − deg(Bm−g+1) − · · · − deg(Bm−1)), as
desired.

If i < m − g + 1, then M < Mi if and only if

(m − g + 1)[n deg(D) − deg(Bi) − · · · − deg(Bm−1)]
> i[n deg(D) − deg(Bm−g+1) − · · · − deg(Bm−1)],

that is, if and only if

n deg(D) > deg(Bm−g+1) + · · · + deg(Bm−1) + m − g + 1

m − g + 1 − i

×[deg(Bi) + · · · + deg(Bm−g)].

But for i < m − g + 1, the sum on the right is strictly less than

deg(Bm−g+1) + · · · + deg(Bm−1) + (m − g + 1) deg(Bm−g) < n deg(D)

by Eq. (7). Thus M < Mi for i < m − g + 1.
If m > i > m − g + 1, then M < Mi if and only if

(m − g + 1)[n deg(D) − deg(Bi) − · · · − deg(Bm−1)]
> i[n deg(D) − deg(Bm−g+1) − · · · − deg(Bm−1)],

that is, if and only if

(i + g − m − 1)n deg(D) < i[deg(Bm−g+1) + · · · + deg(Bi−1)]
+ (i + g − m − 1)[deg(Bi) + · · · + deg(Bm−1)],

that is,

n deg(D) < deg(Bi) + · · · + deg(Bm−1) + i

i + g − m − 1

×[deg(Bm−g+1) + · · · + deg(Bi−1)].

Since i > i + g − m − 1, the sum on the right is smallest when i = m − g + 2. So it
is enough that

deg(Bm−g+2) + · · · + deg(Bm−1) + (m − g + 2) deg(Bm−g+1) > n deg(D)

which holds by Eq. (8). Thus M < Mi for m > i > m − g + 1.
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Finally, M > Mm if and only if

m[n deg(D) − deg(Bm−g+1) − · · · − deg(Bm−1)] < (m − g + 1)n deg(D),

that is, if and only if

(g − 1)n deg(D) < m[deg(Bm−g+1) + · · · + deg(Bm−1)]. (9)

Notice that Eq. (9) holds if and only if

0 < m[deg(Bm−g+1) + · · · + deg(Bm−1)] − (g − 1)n deg(D)

= m[g − 2 + X + (g − 1)(t + v + deg(p1 · · · pm−1))

+ 1
2 (g − 1)(g − 2) − 1] − (g − 1)nd

= (m − g + 1)[g − 2 + X + 1
2 (g − 1)(g − 2)] + m(g − 1)v

− m − (g − 1)2v. (10)

The first term in the last sum is non-negative since 2�g�m − 1. The remaining sum
is positive since v > m:

m(g − 1)v − m − (g − 1)2v � (g + 1)(g − 1)v − v − (g − 1)2

= v(2g − 3)

> 0. (11)

Thus M > Mm, so the line segment L1 connecting P0 and Pm−g+1 is part of the
Newton polygon for f.

Next, let Li be the line segment from Pm−g+i−1 to Pm−g+i for 2� i�g. Notice
that the slope of Li is deg(Bm−g+i ), so the slopes of the Li’s are strictly increasing.
It follows that these g − 1 line segments, L2, . . . , Lg constitute the rest of the Newton
polygon for f. �
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