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Abstract

In this communication the case in which an aerodynamic actuator failure occurs to an aircraft while it has to perform
some guidance maneuver is considered. This problem is dealt with the reassignment of remaining operational
actuators in order to perform the required maneuver while maintaining the structural integrity of the aircraft.
Nonlinear Inverse Control technique is used to generate online nominal moments along the three axes of the aircraft.
Taking into account all material and structural constraints as well as the redundant effects from other actuators, a
mathematical programming problem to be solved on-line which related to control reallocation can be formulated.
Solution techniques, based on dynamic neural networks, active set methods and interior point methods are discussed
and the respective performances are compared.
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1. Introduction

In this study we consider a transportation aircraft in the situation in which a main aerodynamic actuator
failure can occurs while it has to perform some guidance maneuver. Here through a nonlinear dynamic
inversion (NLI) of the flight dynamics, the necessary moments to perform a given guidance maneuver are
computed. It is supposed that a fault detection and identification (FDI) module is monitoring on-line the
whole set of control channels and actuators. In this study it is supposed that this FDI module presents high
standards of reliability, accuracy and timeliness, so its design characteristics and operations principles are
not discussed in this paper. References [1-3] present up to date achievements in this area.

So when an actuator failure occurs, is detected and correctly identified, an on-line reassignment and
resetting of the remaining redundant actuators must be performed with the aim of achieving anyway the
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planned maneuvers. The question is tackled here by formulating on-line optimization problem whose
solution will provide continuously new reference values for these actuators, therefore allow performing
the planned maneuver in a nominal or a degraded way. This represents the main difference with other
previous approaches to actuator fault management [4-6].

In this study, is adopted a linear quadratic programming formulation of the optimization problem to be
solved on-line since many optimization methods exist to solve it rather efficiently. Among these methods,
active set methods, interior point methods and neural network dynamic solvers, described in [7-9], have
been considered and compared. The main issue is to check if the performances of these techniques are
compatible with their on-line operation onboard aircraft to deal with the actuator reassignment and
resetting problem under failure.

2. Effectiveness of Aerodynamic Actuators

The effectiveness of the control surfaces appears through the contributions of their angular deflections
to the dimensionless coefficients present in the expressions of aerodynamic forces and torques [10]. These
control surfaces produce a collective external effect over the whole aircraft as well as internal efforts
which should satisfy structural constraints. The global dimensionless coefficients used to express
aerodynamic forces are assumed to be given by:

Ce=Cr+k sz (1)
Cy = Cyﬂﬁ + C}pplA/V + Cyr VZA/VJ’_ gy(%) ,ép + gy&‘ ,é‘ (2)
C=Cop+ Caa+ Casn dlm + gzd‘q ,éq (3)

where k is a positive coefficient and the C; are dimensionless aerodynamic derivatives, V is the
airspeed, Ous is the angular position of the trimmable horizontal stabilizer and /4 is a reference length.
Here p, r are respectively the roll and yaw rates, « is the angle of attack, £ is the side slip angle, Jp, dq, Jr
are respectively the aileron, elevator and rudder deflections.

The dimensionless coefficients of the main axis aecrodynamic torques can in general be expressed such
as:

Con=Cu+Chaa+ CmqqlA/V+ Consins é‘thx + gm()‘q ,éq (2])
Cr=Ci+ Cip S+ Cppls/V + Ci rli/V+ Ci3°8 + Cis- 'S (2.2)
Ci=Cn + Cnﬂﬂ + CnpplA/V + Cor rla/V + gn():p,ép + Qn()‘r,ér (23)

where ¢ is the pitch rate. According to the relationship between aerodynamic derivatives and
aerodynamic torque, the expression of the different aerodynamic torques generated by the control
surfaces can be approximated by an affine form with respect to the corresponding deflections of the
different aerodynamic actuators, so that we get expressions such as:

M, (1) =My (1) + u (1)3, (1) 3

where Mu(?) is the i considered torques (roll, pitch, yaw, bending, flexion), i(?) is the deflection of
the k" aerodynamic actuator (ke K={aileron, flap, right spoilers, left spoilers, elevator, rudder}) and u(?)
is the current effectiveness of actuator k to produce moment i. The current values M;’(f) and ux(¢) depend
on the airspeed V, the flight level and on the values of a, f, p, ¢ and r. Global aerodynamic torques
generated by aircraft aerodynamic actuators can be rewritten in a global affine form as:
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Lity=L" )+ X (@) 6,(t) (4.1)
M@y =M"(1)+ D X" (@) 6,(1) “4.2)
N@)=N"(1)+ D, X" (@) 5,(0) “4.3)

with 7 =7"UI” UI", where I" is the set of actuators generating some roll moment, /¥ is the set of
actuators generating some yaw torque, while /M is the set of actuators generating pitch moments. Figure 1
displays, in the case of a A340 aircraft, the different aerodynamic surfaces of its wing. The current values
of L(t), X (1) ,M°(t), X" (t) ,N°(t) and X (t) depend on the airspeed V, the flight level and a, 3, p,
gandr.

Fig. 1 Example of Wing Actuators (A340)
3. Actuators Constraints and Limitations

The deflection of each aerodynamic surface is subject to minimum and maximum bounds while its
deflection rates are limited by the adopted actuator technology. Also, global physical constraints must be
taken into account to ensure aircraft integrity especially when some actuators fail. These limitations
should be taken explicitly into consideration by the reallocation system.

3.1. Actuators Position and Speed Limitations
With respect to control surfaces, the following bound constraints should be met:
oM< <™ el (5.1)
O™ <o, <O™ el (5.2)

where 8™, 6™, 6™ and 6™ are the bounds and maximum deflection speed values. These
conditions can be considered at sampled instants, it becomes:

max {57, 8, (¢ — At)+ 87" A} < 5,(¢) < min {5, 8, (¢ — At) + 57 At | (6)
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3.2. Global Constraints

Global constraints are in general related with structural considerations. It has been shown that total
wing bending and flexion torques during maneuver can be written in an affine form as [11]:

M, (6)= 4,0+ D Y,.() 5,(t) (7.1)
and
M, =4,00+ X Y,(05) (7.2)

with 7" I is the set of wing actuators contributing to the bending and the flexion torques, where
Ap, Yui, Arand Yz depend on the airspeed V, the flight level and a, S, p, ¢ and r.
Then the global wing bending and flexion constraints can be written as:

4,0+ Y (1) S0 < My 8.1)
iel™s
and
A (0)+ 2 Y, (0)8, (1) < My (8.2)

iel™"8
where M, and M}}’jj are maximum acceptable bending and flexion torques at the wing root. Here it
is supposed that the satisfaction of these global constraints implies the satisfaction of local bending and
flexion torque constraints.
To illustrate the proposed approach, here is considered the case of a pure stabilized roll maneuver
where the following conditions should be met by the body angular rates of the aircraft:

T, P+pP=p, 9.1)
7=0 9.2)
t i+r=(g/V)sing 9.3)

There roll and yaw motions follow first order dynamics while pitch dynamics remains frozen. Here p.
is the desired roll rate, 7, and 7, are time constants. The dynamic constraint relative to the yaw rate is
characteristic of a coordinated turn and its completion should allow avoiding noticeable lateral load
factors during this roll maneuver.

Applying the non linear inverse control approach [12], the necessary on-line values for each
aerodynamic torque are obtained:

M(0) = (4=C) r(t) p(0)+ E(p(t)’ =r(2)’) (10.1)

and

Lp—p)
T

LLQ(Z)}:D; _ﬂ 1 : (10.2)
® —((&/V()sing(t)=r(1))
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The adopted fault tolerant structure (FTC) is displayed in Fig. 2, where @. represents the target from
autopilot or auto-guidance system, @, represents the modified target taking into account the limited
capability after failure, o, represents the current settings for the remaining actuators, resulting from the
on-line solution of the actuator reassignment problem, while é represents the effective settings of the
actuators, the difference between them resulting from the actuators dynamics. The solid line represents
main signal flow, and the dotted line represents the data flow for FDI function.

L. 1

Assignment 3, H
on-line solution = Actuators Aircraft

problem
AJC Flight data

formulation

reference maneuver
{pilot, auto guidance
system)

Fig. 2 Adopted Fault Tolerant Control structure
4. Formulation of Actuator Reallocation Problem

Here we consider the situations where the failure affects some of the commonly used actuators but the
designed actuator redundancy still allows performing some maneuvers.

Depending on the remaining degree of redundancy between elementary actuators, it may be possible to
find a solution matching exactly the following moment constraints:

2 X050 =Ln-L() (11.1)
2 XM 5,0 =M@H-M"(1) (11.2)
2 X0 5,(0)=Nw)-N°(0) (11.3)

iel™

In this case the maneuver will be performed still in a standard way, otherwise, an approximate
maneuver will be performed. In order to get a feasible reassignment which avoids too fast or too large
solicitations of the actuators which could activate some structural modes of the aircraft, solutions as close
as possible to the solution adopted at the previous control period will be privileged. Also, it is admitted
that when the standard maneuver can no more be performed, a close maneuver, in fact a slightly degraded
maneuver, will be retained as a running solution. So, instead of considering the pure satisfaction of the
moment constraints (11.1), (11.2) and (11.3), a measure m(5,L, M, N) of the degree of satisfaction of
these constraints is introduced. In this study the following measure of satisfaction of the constraints has
been adopted:

m(8,L,M,N)=w, (3. X} (1) 5,()- L)+ L' (1))’
+w, (X XM (1) 6,(t) - M(t)+ M (1))’ (12)

+w, (Y. X (0) 6,(H) - N(1)+ N° (1))’

iel



Lunlong Zhong and Félix Mora-Camino / Procedia Engineering 80 (2014) 638 — 655 643

where wr, wyr and wy are positive weights. Then we formulate a linear quadratic optimization problem
to be solved on-line. This problem considers the following objective function to be minimized:

J(©O)=Y. 7, (5,(t)-5,(t— A1) +y-m(5,L,M,N) (13)

iel

where the 7, iel and y are positive weights.
The complete definition of this optimization problem is such as:

min J(5) (14)

with the following structural constraints:

4,0+ Y Y0 (1)< My, (15.1)

ie]"ing

A0+ D Y, (0 6,0 < M (15.2)

ie]"ine

and with the box constraints:

max {67, 5,(t - At)+ 57" At} < 5,(1) < min {5, 5, (t - Aty + 57 At i e, (16.1)

max {5, 8, (t = At)+ 87" At} < 8,(t) < min {57, 5,(t— Aty + 5" At} e, (16.2)

max {5“ ,0.(t — A+ ci‘“*“At} <5< min{ci.‘““" ,O.(1—AD) + ci‘“""‘At} i€l (16.3)
with

6, =0 ifi el je{p.q.rths) (17.1)

5',./ =6, if i, €ly, je{p.q.rths) (17.2)

where 7. is the set of fully operational actuators, Iz, Irs are respectively the set of actuators whose
angular positions, angular speed are subject to additional limitations, /r is the set of actuators which are
not subject to a torque from their servo-control and with a zero deflection, Irp is the set of actuators which
are stuck at a known angular position. The positive parameters wz, war and wy are chosen in the case of a
roll maneuver such as:

w, >>w,, and w, >>w, (18)

The above mathematical programming problem can be solved using standard programming techniques.
Using the previous period value of the deflections of the actuators as initial values of current period, then
in a few iterations the solution of this small size linear quadratic problem should be obtained.

5. Numerical Solvers Applied to Linear Quadratic Optimization Problems

Problem (14-17) can be rewritten as a general quadratic programming problem as follows:
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min £(8)=0"05+ '8 (19
s.t. g(8)=456-b<0 (20.1)
F<o<s (20.2)

where § e R™ is the actuator deflections vector in our case and matrix Q € R™” is assumed to be
symmetric positive definite, 4 € R™", be R™" . This problem, as a convex mathematical programming
problem can be solved by many different iterative algorithms [13,14]. Recently, classical methods such as
active set and interior point methods have been applied to the actuator allocation problem [15,16] and to
fault tolerant control [8,9]. Also, dynamic solvers based on neural network have been proposed to solve
the considered problem in the context of fault tolerant control [7].

Based on duality theory of Mathematical Programming and Lagrangian function, a lower bound can be
found for the performance of the solution of the optimization problem (19, 20). Assume that the set of
constraints (20) is not empty, otherwise there will be no possibility to perform the proposed maneuver.
Then based on the first order derivative of the Lagrangian function, the complementary conditions and
constraints, necessary and sufficient Karush-Kuhn-Tucker (KKT) conditions [17] can be deduced for the
optimal solution of problem (19, 20) [13,14]. Then, by finding a solution satisfying the KKT conditions,
the optimal solution of the original problem is obtained. Many numerical solvers such as active set,
interior point and neural network are based on this idea. For convenience, we list only the basic ideas
while the details of the corresponding algorithms can be found in [13,14,18].

The two main characteristics which are expected from the considered methods in this real time context
are a very short computation time with respect to the response time of the actuators (a ratio around one to
ten) and the feasibility of the solution even in a time-out situation in which the optimization process is
interrupted.

5.1. Active Set Methods

Active set is a name for a family of methods used to solve optimization problems with a relatively
large number of interval constraints. The idea underlying active set methods is to generate successive
partitions of the inequality constraints set into two groups: one where the constraints are to be treated as
active constraints and one where the constraints are to be treated as inactive constraints (and be ignored
someway at a given stage of the solution process). At each iteration, active inequality constraints will be
treated as equality ones and constitute the working set. Through the partitions of the inequality constraints
set, the method reduces the constrained problem to a sequence of equality constrained sub-problems
where the inactive ones are temporarily ignored, while an updating process modify the working set along
the search process towards the solution.

Problem (19, 20) can be written as:

8'05+c's (21
st. g(8)=46-b<0 (22)

where A= [AT 17 —IdTT , b= [QT e g Tand I is an identity matrix of size nxn.

At each iteration, the active set method solves a sub-problem (equality constrained QP) written as:
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min f,(8)=-0"05+c'd 23)

st A5-5 =0 (24)

The subscript w denotes the working set index. The solution at the A iteration is written &. Let pr+1 be
the solution of problem (23, 24) at iteration k. Then we have:

. 1
min £, (1) =5 2400+ 24 (03, +¢) =

s.1. ,le_]_),(+l =0 (26)

Consider the KKT conditions of problem (25, 26).

{~Q ;q {gkﬂ}: {—(Qék +9)} (27)
Aw 0 ﬁ’kﬂ Q

As long as /le is full row-rank, and since Q is here a positive definite matrix, the coefficient matrix in
(27) termed as KKT matrix is nonsingular [14]. Then Solving (27) is straightforward and we obtain a new
search direction pi+1 and the associated Lagrange multipliers Aw+1. According to their values, the current
solution may be an optimum or else it should be updated.

When the current solution needs to be updated, the corresponding step length can be derived from a
line search process:

Ot = 0p + Qi P 28

To make sure that i+ is feasible, it is only necessary to consider the constraints that are not in the
working set and such as 4,p,,, >0, while «,,, must be as large as possible within [0,1]. So e, is

given by:

. [ b,-49,
@,,, =min<l, min |-—=~ (29)
€Wy s A Py >0 Aipk+l

Based on the above considerations, an algorithm can be derived. For the details of the algorithm, see
[8]. If there are only bound constraints and no other inequality constraints, problem (25, 26) can be
reformulated as an unconstrained least square problem like in [15] and the computation of its solution will
be easier. In the present case, with the presence of structural integrity constraints, the method based on the
KKT matrix should be used.

It has been already proved that the active set method solves problems such as (19, 20) after a rather
small number of iterations [13].

5.2. Interior Point Methods
The idea of interior point methods is to approach the solution of the KKT equations by successive

descent steps. Each descent step is a Newton-like step and is obtained by solving a system of linear
equations. The main advantage of interior point methods over active set method is their scalability [16,19].

645



646 Lunlong Zhong and Félix Mora-Camino / Procedia Engineering 80 (2014) 638 — 655
To turn problem (19, 20) into a standard form for interior point methods, let
S=x+& (30)

Substituting (30) into (19) and (20), and omitting the constant term in the objective function which will
not impact the final solution, the original problem is equivalent to the following problem:

min f(x)= 3" Qx 2" (1)
st g(x)=Ax+b<0 (32.1)
0<x<x' (32.2)

where =08 +¢, b=A¢ ~band x* =& ¢
Adding slack variables y, z to turn inequalities into equalities, we get the following formulation:

min %XTQ£+1T§ (33)
s.t. A£+Q~+X:Q, x+z=x" (34.1)
£20,920,220 (34.2)

One of the basic ideas behind the interior point methods is to use barrier functions to satisfy the bound
constraints. Then a modified Lagrangian for problem (33, 34) expressed as:

1 n m
L= Sx'Ox+x'é-7) log(x,) -7 log(,)
. i=l1 i=1 (3 5 )
_erog(zi)+/_f (A§+QN+X)+(£T (£+g—£+)
i=1
is introduced, where 7 >0 is the barrier parameter and is used to guide the solution along a trajectory
called the central path. Equation (35) approximates the Lagrangian of problem (33, 34) more and more
closely as 7 goes to zero [13,14]. Here u, ¢ are the dual variables associated to the equality constraints
(34.1). Adopting the modified Lagrangian function (35), the necessary and sufficient conditions for the
global minimum of convex problem (35) i.e. the KKT conditions, can be derived as:

V,L=0x+E-A+A u+9=0 (36.1)
V,L=Yu-te=0 (36.2)
V.L=Zp-1¢=0 (36.3)
Xi-1e=0 (36.4)
V,L=Ax+b+y=0 (36.5)

VIL=x+z-x" =0 (36.6)
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x>0,y>0,2>0,A>0,u4>0,0>0 (36.7)

where X, Y, and Z are diagonal matrices whose diagonal elements are x, y, z respectively. Here 4 is
another dual variable. The quantity x’ A+ y" 1+ z" ¢ is termed as duality gap [13,14].

Applying Newton’s method to the above system of equations (36), we obtain the linear system to be
solved:

Q 0 0 -1, A" 1I,||M 4
0 M 0 0 Y O0|4A& I
0 0 ® 0 0 Z||Az| |z 7
A0 0 X 0 0/[lad )
A I, 0 0 0 0]Au r,
I, 0 I, 0 0 0]lAp I,

where A, M and ® are diagonal matrices whose diagonal elements are 1, 4 and @, respectively. The /a
matrices are identity matrices with appropriate dimensions. The residuals 7. are defined as:

e T e e (38)

Equation (38) can be solved progressively as:

Ax=—H 5, Ay ==(1, + AAx), Az = (1, +Ax),

Ad==X"'(r+AAx), Au=-Y"(r, +May), (39.1)
Ap=-Z"(r, +®Az)

where
H=0+X"'A+A"Y'MA+Z'® (39.2)
L=r—-AY"'r,-Z"r+X"'r,+ A Y 'Mr, +Z" 0y, (39.3)

Since Q is positive definite, 4 is full row rank and during iteration, x, y, z, 4, 4, ¢ remain greater than
zero, H is an invertible matrix.

Various algorithms can be derived depending on whether solving the primal or the dual variables and
on the choice of the initial point x°. Following [16], the values of x7, 2%, A%, u’, ¢ can be chosen such that
=0 and r,~0. In the present case, x’ may be chosen as the vector of the mean values of the upper and
lower bounds or the values at the previous instant. Then, the values of 2%, A%, u’, ¢’ are chosen based on
the values of x’. Moreover, under normal situation, (34.1) can be strictly satisfied with a positive vector 3’
and 2.

Based on (38, 39), a feasible-initialization primal-dual path-following algorithm has been be proposed
in [9] where the detailed description and setting of the method are available. It appeared there that interior
point methods can handle the considered failure situation satisfactory even if some realistic factors such
as the dynamics of the actuators and dynamic inversion controller time lags have not been considered in
the problem formulation.
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5.3. Neural Network Method

The basic idea for solving an optimization problem using a tailored neural network is to make sure that
the neural network will converge asymptotically and that the equilibrium point of the neural network will
correspond to the optimal solution of the optimization problem. Motived by the online solution of linear
and quadratic programs, a primal-dual neural network scheme based on linear variational inequalities
(LVI) has been proposed by Zhang which has proven its global convergence [18] Based on the KKT
conditions of problem (19, 20), the original problem can be turned equivalent to the following set of
linear variational inequalities:

(5—5*)T(N5*+1_7)20 s e (40)

with the primal-dual variables s=[ 67 |7, u is the dual variable vector corresponding to inequality
constraint (20.1). Then the problem is to find a solution vector s* where its feasible region Q and its
lower/ upper limits are given by:

Q={s|g<s<s}s=[¢ 0] g =[¢ o] 1)

Here " is considered with the appropriate dimension and each of its entries is sufficiently large to
replace numerically +oo . The coefficients are defined as:

AT
=[c" "] N= © 42
ple ¥T = Z 2
Then the neural network model which solves problem (19, 20) is given by:

ds _ T

~ =t N ){Pa (s—(Ns+p)) 3] (43)

where 77 is a positive learning parameter which can be used to adjust the convergence speed of the
network, 7,,1is an identity matrix, P, [-] is a piecewise-linear function defined as:

g, ifs, <g/
Byls.]=1¢’, ifs, 2¢/ (44)
s,, otherwise

Numerical application of this neural network approach have shown its feasibility [7].
6. Comparative Application of the Three Solvers to the Actuators Reassignment Problem

Here we consider a large transport aircraft with 120 tons, flight speed 120m/s, initial angle of attack is
4°, the desired maneuver is a coordinated turn expressed in (9). This aircraft has four ailerons, four
elevators, and two rudders whose position and slew rate limits are given in Table 1. All these actuators
follow first-order dynamics and their time constants are also shown in Table 1. The time constant in (9)
are all chosen as 1/3s. The adopted control scheme is illustrated as Fig. 2. Here mainly give the simulation
results of the optimized based control allocation problem (19), (20). Due to the lack of modeling
parameters, structural constraints are not considered. Actually, with the command governor, it will not
affect the demonstration because there always exists solutions to the problem.
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Table 1. Parameters of actuators under nominal condition

Actuator No. of actuators Position limits Slew rate limits Time constant
aileron 4 -25°~25° -25%s ~25°s 0.15s

elevator 4 -25°~10° -15%s ~ 15%s 0.15s

rudder 2 -30°~30° -25%s ~25°s 0.3s

To check the feasibility and performances of three solvers for on-line flight fault tolerant control, two
fault scenarios have been considered: a soft one where only a deflection rate is affected by a fault and a
hard one where a main actuator remains stuck. The command and desired coordinated maneuver to be
performed is illustrated in Fig. 3 where only roll rate is illustrated and pitch must maintained equal to zero,
and yaw rate will change according to equation (9.3). We hope the final maneuver will be as closely as
possible to the desired maneuver. From Fig. 3 to Fig. 13, the star symbol denotes the failure instant.

In the numerical application, the sampling time adopted by the digital control system of the different
actuators is taken equal to 0.05s. The weights of the optimality criterion (13) are chosen as, y = 10, the
weighting parameters for various angle rates and actuators are all equal to one. The parameters for the
neural network are chosen as 10'° to replace numerically +oo in (41) and 7= 10".

6.1. Soft Fault Scenario

In this case it is assumed that all actuators are fault free except for the rate limits of the right outer
aileron which changes to =+ 35 deg/s at 1s.

The time evolution of ailerons command is shown in Fig. 4 where smooth evolutions can be observed
and the trajectory are only small different for three solvers. From Fig. 5 (a) and (b), active set method
appears to need much less iterations than the programmed interior point method because of the small size
of the problem (the computation time is not accurate because it changes a lot between different run). Also,
the whole convergence trajectory of the built neural network for different instant is shown in Fig. 6 (a),
which seems like a staircase because of the fast convergence at each instant and it takes about 0.01ms to
convergent as shown in Fig. 6 (b). Under these three methods, desired maneuver will be almost obtained
from Fig. 7 (a) to (c), the differences between real and desired maneuver mainly from the actuator
dynamics. Fig. 8 (a), (b) and (c) display the speed of the failed actuator which reaches at different stages
its speed limit when using active set and neural network and the trajectory look the same under these two
solvers, however, it never reaches speed limit when using interior point due to the contour of objective
function become very smooth and not enough iteration has been done for interior point. From them, it
seems that the performance of active set method is the best because it will find the exact optimum at a fast
speed, and the performance of neural network is almost the same as active set. It appears that these three
methods can handle the soft failure situation satisfactory even if many realistic factors such as time lags
caused by FDI and NLI are not considered.

command and desired roll angular rate
= \

"
/ \ N
\ [—Peom

Y
‘ Pges

\

amplitude(’/s)
g

Fig. 3 Time evolution of command and desired maneuver (only display roll angular rate, pitch and yaw rates remain at zeros)
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Fig. 4 Evolution of ailerons commands under soft fault scenario
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history of aileron commands history of aileron, command
| —ail, o
/ ‘\ ——ail,
. T —ail, N
k1 I N ——ail, % 88
3 s |
%_ | é 87
Q
: = e
85
| 84
| — 83
=
‘50 1 2 3 4 5 6 7 8 9 10 520 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
time(s) time(ms)
(a) Evolution of network outputs during (b) zoomed picture to show the
the whole time-span; convergence speed of network

Fig. 6 Convergent behavior of the neural network solver (0.01ms)
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Fig. 8 Command rates for the right outer aileron under soft fault scenario

6.2. Hard Fault Scenario

(c) Result of neural network

A more serious failure case occurs when an actuator remains stuck. Here, while the configuration of
the neural network remains the same, since a box constraint is considered by the interior point algorithm
and for the simplicity of the problem, the column corresponding to the stuck actuator must be deleted
from the control effectiveness matrix and the virtual control input and limits should be changed
accordingly under interior point and active set methods.
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We simulate the case where the right outer aileron is stuck at its current position at 1s. Simulation
parameters are the same as before. The corresponding results are displayed from Fig. 9 to Fig. 13.

Here again since angular dynamics, actuator deflections and speed are small different with the three
techniques, they are displayed in Fig. 9, Fig. 10 and Fig. 13. From Fig. 9 and Fig.13, it can be concluded
that in the considered case, the three methods achieve to deal effectively with the faulty actuator stuck at a
fixed position.

From Fig. 10 (a) and (b), it also appears that the active set method needs less iterations than the interior
point method may be because of the small size of the problem. It is maybe due to the same reason when
compare Fig. 5 (b) and Fig. 10(b). Here also, the neural network converges to the solution in 0.01 ms as
shown in Fig. 12. From Fig. 13 (a), (b) and (c), we notice that for three methods, a downgraded maneuver
is obtained. There is a constant deviation for roll rate as shown in Fig. 10, it is because the actuator
command consider in the optimal problem is different from the actual actuator position and cause a
constant deviation in the final angular rate. This deviation also exists in yaw rate but it is less the
deviation in pitch angular rate.
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Fig. 13 Command rates for the right outer aileron under hard fault scenario

From the simulation results above, it appears that the three considered methods are able, for the two
failure scenarios, to provide the optimal solution with an acceptable response time. The neural network
method presents by far the best performance with respect to computation time (at most 0.01 ms to
compare with a common actuator sampling time of 0.05s) but feasibility of the solution is only guaranteed
at convergence. The computation time performance of the active set method is a little bit better than the
one of the interior point method, both being acceptable. Also these two methods provide at each step a
feasible solution which can be adopted in the case of time-outs. The interior point method reaches the
solution after a larger number of iterations than the active set method but it copes with a problem of larger
dimensions (more variables and more constraints). From the point of view of algorithmic complexity, the
active set method presents the lower complexity and when an actuator failure is detected and identified,
the setting of the resulting optimization problem and solver appears easier than for the interior point
method. In the case of the neural network solver, its structure is already fixed and some parameters will
be changed according to the result of the FDI process.

7. Conclusion

In this study the control surface reassignment and resetting when a transport aircraft encounter one
major actuator failure has been considered. The main objective is here to guarantee the flight safety
through the consideration of the remaining maneuverability of the faulty aircraft and maintaining as much
as possible the capability of the aircraft to achieve in a nominal way the necessary maneuvers to follow a
flight plan. Structural constraints are also taken into account. So, it has been shown how to obtain the
desired maneuver on the basis of a perfect non linear inversion of the flight dynamics.

Numerical methods such as the active set method, the interior point method and a solver based on
dynamic neural networks techniques, have been analyzed and applied to this optimization problem. In
both considered actuator failure scenarios (soft and hard actuator failure), the three solution approaches
have demonstrated interesting performances with some preference for the active set method. Anyway, the
results obtained from the application of these solution methods demonstrate clearly the feasibility of the
proposed approach characterized by the on-line resolution of an optimization problem.
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