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a b s t r a c t

Ball milling the mixture of Mg(NH2)2, LiH and NH3BH3 in a molar ratio of 1:3:1 results in

the direct liberation of 9.6 wt% H2 (11 equiv. H), which is superior to binary systems such as

LiHeAB (6 equiv. H), ABeMg(NH2)2 (No H2 release) and LiHeMg(NH2)2 (4 equiv. H), respec-

tively. The overall dehydrogenation is a three-step process in which LiH firstly reacts with

AB to yield LiNH2BH3 and LiNH2BH3 further reacts with Mg(NH2)2 to form LiMgBN3H3.

LiMgBN3H3 subsequently interacts with additional 2 equivalents of LiH to form Li3BN2 and

MgNH as well as hydrogen.

Copyright ª 2013, The Authors. Published by Elsevier Ltd. Open access under CC BY license.
1. Introduction therefore regarded as a promising candidate for on-board
The combination of Mg(NH2)2 with LiH in themolar ratio of 1:2

was recognized as a thermodynamically benign system [1,2]. It

has an equilibrium hydrogen pressure over 1 bar at ca. 90 �C,
which is close to theworking conditions (both temperature and

pressure) of proton exchange membrane (PEM) fuel cells [3].

Due to its suitable thermodynamic properties, reversibility and

relatively high hydrogen content (5.6 wt%), Mg(NH2)2e2LiH is
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application. However, relatively severe kinetic barrier exists

in the hydrogen desorption process [4]. Over the past years,

introducing catalytic and/or reactive additives appeared to be

effectiveways to improve the dehydrogenation/hydrogenation

kinetics [5e18], however, only limited number of successful

examples were observed [16,17].

NH3BH3 (AB in short) was intensively studied in recent

years because of its extraordinarily high hydrogen capacity,
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i.e., 19.6 wt% [19e21]. The H bonded with N in AB molecule is

positively charged (Hdþ) while H bonded with B is negatively

charged (Hd�) [22]. AB interacts with not only hydrides

but also amides. For example, AB interacts with LiH to pro-

duce LiAB [23], AB reacts with Mg(NH2)2 to form

Mg(NH2BH3)2$2NH3 [24]. Considering that dehydrogenation of

AB, LiAB or Mg

(NH2BH3)2$2NH3 is of exothermic nature [19,23,24], while

Mg(NH2)2e2LiH, on the contrary, undergoes an endothermic

dehydrogenation [3], a compromised thermal effect may be

resulted by forming Mg(NH2)2, LiH and AB composite. In this

work, we prepared the mixture of Mg(NH2)2, LiH and AB in a

molar ratio of 1:3:1 through ball milling. Our results show

that, instead of fine tuned thermal effect, stoichiometric in-

teractions among Mg(NH2)2, LiH and AB leading to the release

of ca. 9.6 wt% hydrogen occur during ball milling. The strong

potential of forming LiAB from LiH and AB, and the subse-

quent reaction between LiAB and Mg(NH2)2 alter the overall

reaction path of the composite.
2. Experimental

2.1. Sample preparation

Mg(NH2)2 was synthesized by reacting metallic Mg power

(99%, Sigma-Adrich) with purified NH3 (about 7 bar) at 300 �C
on a self-made autoclave reactor for 7 days (Its XRD pattern

was shown in Fig. #1). LiH (98%) and NH3BH3 (97%) were pur-

chased from Alfa-Aesar and SigmaeAdrich, respectively. All

chemicals were directly used without further treatment. The

Mg(NH2)2e3LiHeAB sample was prepared by ball milling. Ball

milling is one of the effective methods for conducting solid-

state reactions. During ball milling, most the crystallized

solid reactants become amorphous phases or liquids which

facilitate reactions. On the other hand, high pressure in the

order of GPa is generated in the solid by colliding balls, which

can initialize the reaction [25]. The milling jar was equipped

with a quick-connects (Swagelok), which can be linked to a

pressure gauge (Keller) with an accuracy of 0.1 psi and enable

themeasurement of pressure increase in the jar caused by gas

release during ball milling. The amount of hydrogen was

calculated by means of the equation of state of ideal gas.

Different batches of the sample were taken out from the ball

milling jar after various ball milling times and were investi-

gated by XRD, FTIR and NMR techniques. In addition, to un-

derstand the most favorable reaction pathways occurring in
Table 1 e The compositions and the preparation conditions of

Samples Initial compositions Pre-milled
time/min pre

S1 Mg(NH2)2e3LiHeNH3BH3 0

S2 3LiHeNH3BH3 140

S3 Mg(NH2)2eNH3BH3 140

S4 LiNH2BH3eMg(NH2)2 0

S5 LiNH2BH3eMg(NH2)2/[LiMgBN3H3] 620

S6 LiNH2BH3e2LiH 0
Mg(NH2)2e3LiHeAB sample (S1), several other samples were

prepared in different methodologies, i.e., 3LiHeAB was pre-

milled for 140 min, followed by adding 1 equiv. of Mg(NH2)2
(S2). Similarly, Mg(NH2)2eAB was pre-milled for 140 min and

3 equiv. of LiH was subsequently added (S3), ball milling of the

equimolar of LiAB and Mg(NH2)2 (S4), the post- milled 620 min

LiABeMg(NH2)2 ([LiMgBN3H3]) added 2 equiv. of LiH (S5) and

LiABe2LiH (S6) were prepared under the same conditions (See

in Table 1).

All the samples were ball-milled at the speed of 200 rpm

on a Retsch planetary ball-mill (PM400) under Ar atmo-

sphere. The ball-to-sample weigh ratio is about 60:1. The

volume of the jar is about 170 ml. To inhibit the powders

conglutination and heat accumulation in the jar, the samples

were milled for 1 min in one direction and halted for 15 s

before it turned to reverse direction. The gaseous products

generated during the ball milling were analyzed by mass

spectrometer (MS), ammonia sensitive reagent (aqueous

Co(NO3)2 solution) and ammonia-selective electrode. All the

samples handlings were conducted in an MBRAUN glove box

filled with purified argon.
2.2. Methods

The gases evolved in the ball milling were analyzed by MS

(Hiden). The quantitative analysis of ammonia gas was

measured on a Thermo Scientific Orion 3 Star Conductivity

Benchtop Meters (USA) equipped with an NH3-selective

electrode. Diluted H2SO4 solution with known conductivity

was used for the calibration. For the determination of NH3

amount, the gaseous products were slowly introduced from

the milling jar to 100 mL of diluted H2SO4 solution. The

variation in conductivity due to the interaction of NH3 and

diluted H2SO4 solution was detected by the NH3-selective

electrode. FTIR measurements were implemented on a Var-

ian 3100 FTIR spectrophotometer (Excalibar Series) in DRIFT

mode (Diffuse Reflectance Infrared Fourier Transform). XRD

measurements were conducted on a PANalytical X’pert

diffractometer (Cu Ka, 40 kV, 40 mA). A self-made sample cell

was used to protect the samples from air contamination

during the XRD test process. Magic-angle spinning (MAS)

solid-state 11B and 7Li NMR experiments were carried out at

room temperature on a Bruker AVANCE 500 MHz NMR

spectrometer (11.7 T), using a 4 mm MAS-NMR probe and 11B

NMR was referenced to BF3$Et2O at 0 ppm, 7Li was referenced

to 1 M aqueous solutions of lithium chloride at 0 ppm,

respectively.
the samples.

The materials added after the
-milling of the initial composition

The milling time after
adding materials/min

e 4050

Mg(NH2)2 4090

3LiH 3900

e 620

2LiH 2430

e 2430
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Fig. 2 e The plots of equiv. hydrogen desorbed against

milling time (S1) Mg(NH2)2e3LiHeAB; (S2) 3LiHeAB was

first ball milled for 140 min followed by adding equiv.

Mg(NH2)2; (S3) Mg(NH2)2eAB ball milled for 140 min

followed by adding 3 equiv. LiH.
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3. Results and discussion

3.1. The dehydrogenation performances of
Mg(NH2)2e3LiHeAB sample in the ball milling

As revealed from MS analysis (shown in Fig. 1), hydrogen was

the only gaseous product released from Mg(NH2)2e3LiHeAB

sample during the ball milling. Fig. 2 shows the plots of des-

orbed hydrogen contents as a function of ball milling time.

Obviously, the interaction of the mixture Mg(NH2)2e3LiHeAB

is consisted of at least two steps of dehydrogenation during

the ball milling, releasing 9.6 wt% of hydrogen (10.8 equiv. H

atoms) in total. This result indicates that no compromising

thermal effect has taken place; instead, a different dehydro-

genation pathway has occurred. Due to the high hydrogen

capacity released during the ball milling, it inspires us to

further investigate the reaction pathway of the system.

Hydrogen was liberated rapidly at the initial stage, releasing

ca. 1.1 equiv. H in the first 1 h. However, in the early stage of

the second dehydrogenation step, the pressure increased

gradually with increasing ball milling time. As ball milling

proceeded, hydrogen released more rapidly, approaching

10.8 equiv. H. These results suggest that the interaction

among Mg(NH2)2e3LiHeAB is a stepwise process and the

second step encounters higher barrier than the first one. It is

noteworthy that Mg(NH2)2, LiH and AB alone are stable under

the same ball-milling conditions. Therefore, the hydrogen

must be generated from the interactions among these re-

actants. According to the solidesolid reaction mechanism

[4,26], the three reactants can react with one another. Based

on our earlier investigations, several reactions were antici-

pated to occur amongMg(NH2)2, LiH andAB. LiH interactswith

AB to produce LiAB (Reaction 1) [23],

NH3BH3 þ LiH / LiNH2BH3 þ H2 (1)

while Mg(NH2BH3)2$2NH3 can be synthesized by reacting

Mg(NH2)2 with AB (Reaction 2) [24].
Fig. 1 e The MS signals of the samples S1, S2 and S3 after

ball milling. (m/z [ 1 and 2 correspond to hydrogen,

m/z [ 40 and 20 correspond to background, argon gas).
2NH3BH3 þ Mg(NH2)2 / Mg(AB)2$2NH3 (2)

The combination of Mg(NH2)2 and LiH yields Li2Mg(NH)2
when temperature is around 180 �C. (Reaction 3) [1].

Mg(NH2)2 þ 2LiH 4 Li2Mg(NH)2 þ 2H2 (3)

It is not clear how 11 equiv. H was generated under the ball

milling condition. In order to clarify the mechanism for

hydrogen release from the composite, we prepared the com-

posite by two ways, 1) 3LiHeAB was initially ball milled for

140 min followed by adding equiv. Mg(NH2)2 (S2); 2)

Mg(NH2)2eAB was ball milled for 140 min followed by adding

3 equiv. LiH (S3). The time dependences of hydrogen release

from the samples were plotted in Fig. 2. S2 can release H 1.5

times as much as S1 (equiv. 1.4 H) in the first 1 h. However,

they exhibit a similar H2 release profiles. S3, releasing c.a.

8.1 wt% of hydrogen in total, presents a thoroughly different

path from those of S1 and S2. Both hydrogen release perfor-

mances and the FTIR information (shown in Fig. #2) suggest

that S1 and S2 proceed in a same reaction pathway (emphasis

on S2 will be shown in the next part). The firstly dehydroge-

nation step is mainly originated from the interaction between

LiH and AB [23]. With increasing amount of LiH in the com-

posite (LiH/AB ¼ 3/1), the dehydrogenation proceeds faster

due to the increased probability of collision between LiH and

AB, thus increase the reaction rate. The second step of dehy-

drogenation fromS1 and S2 experienced an incubation period,

in which only a little hydrogen was evolved. As LiAB was

formed in the first step, the second step of the dehydrogena-

tion should come from the interaction of LiAB, Mg(NH2)2 and

the excessive LiH. As shown in Fig. 2, the dehydrogenation

profile of S3 differs from those of S1 and S2, in which little gas

evolution was observed before the addition of LiH. Our pre-

vious study shows that when Mg(NH2)2 meets with AB, sticky

matter with a composition of Mg(NH2BH3)2$2NH3 will be

formed [24]. After adding 3 equiv. of LiH toMg(NH2BH3)2$2NH3,

http://dx.doi.org/10.1016/j.ijhydene.2013.06.036
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Fig. 4 e 11B MAS spectra of (S2) 3LiHeAB was first ball

milled for 140 min followed by adding equiv. Mg(NH2)2
after ball-milled for (a) 140 min, (b) 250 min, (c) 750 min, (d)

850 min and (e) 2200 min, respectively. # denotes the

spinning sidebands.
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ca. 1.6 equiv. H was generated upon ca. 13 hrs of ball milling

and another ca. w8 equiv. H was evolved after ball milling for

an extended period of time. Obviously, the chemical reactions

that have taken place in the ball milling treatmentwere varied

from S2 to S3. This phenomenon stimulates us to further

characterize the reaction intermediates and products of S2.

Samples of S2 at different milling times were investigated

by FTIR and XRD analyses. The XRD patterns show that LiAB

(symbol J) appears after 140-min ball milling (see Fig. 3(A)).

Adding Mg(NH2)2 to the jar and milling for an additional

110 min leads to significantly weakened diffraction peaks of

LiAB. At the same time, Mg(NH2)2 and LiH can be detected.

After milling for a total time of 750 min, only diffraction peaks

of LiH can be observed. The FTIR spectra of S2 milled for

140 min, 250 min, 750 min, 850 min and 2200 min were shown

in Fig. 3(B). The samplemilled for 140min (with ca. 2.2 equiv. H

released per AB-3LiH) possesses typical NeH vibrations of

LiAB at 3352/3310 cm�1 and BeH vibrationswithin the range of

2000e2700 cm�1. After introducing 1 equiv. of Mg(NH2)2 to the

former mixture and milled for extra 110 min, the sharp vi-

brations of NeH bond at 3352/3310 cm�1 were almost unde-

tectable. Two peaks were gradually evolved at 3327 and

3273 cm�1, which are the typical NeH vibrations of Mg(NH2)2.

After ball milling for 750 min, the peaks intensity of NeH and

BeH vibrations decreased, implying that Mg(NH2)2 and LiAB

have been consumed after their interaction. With increasing

the ball milling time, an imide-like NeH vibration at around

3250 cm�1 was gradually developed. No BeH vibrations can be

detected in the subsequent milling, indicating that LiAB were

thoroughly consumed and the final product should be a BeH

free species. It is noted that the vibration at 2350 cm�1 is likely

belonged to the signal of CO2 which come from the air. In

addition, the NeH vibration at around 3250 cm�1 performed

consistently even after prolonged ball milling, implying a

stable existence of an imide species in the sample.

MAS-NMR was employed to characterize the change of 11B

environment in the sample against the increasing ball milling

time. The post-140 min ball-milled sample which displayed a

symmetric peak at �23 ppm, should belong to the boron

environment of LiAB (shown in Fig. 4). It gradually dis-

appeared with the extension of ball milling time. In contrast,
Fig. 3 e XRD patterns (A) and FTIR (B) of (S2) 3LiHeAB was

first ball milled for 140 min and was followed by adding

equiv. Mg(NH2)2 after ball-milled for (a) 140 min (b) 250 min

(c) 750 min (d) 2200 min, respectively.
the resonance at 25 ppmwhich reflects a sp2 hybridized boron

environment exists at all-time upon addition of Mg(NH2)2.

This signal may be attributed to the presence of BN3 or N2BH

species. At the end of the ball milling, only two resonances at

25 ppm and 8 ppm can be detected. By means of the results

from FTIR and NMR characterizations, we deduced that a new

quaternary imide was formed [LiMgBN3H3]. The resonance at

w8 ppm belongs to BeO band [27], which probably resulted

from the air contamination during the samples collection.

One of the issues that should be avoided in amide-hydride

system is the byproduct of ammonia, which not only damages

the membrane in a fuel cell, but also leads to the cyclic

instability of the material due to the loss of nitrogen [28]. In

this work, NH3-selective electrode was used to detect NH3

concentration in the gaseous product. For S2, the NH3 con-

centration in the milling jar was detected as 327.4 ppm after

ball milling for 10 h. It was gradually reduced to 272.4 ppm

after ball milling for 40 h. It is reasonable that large amount of

amide has been converted into imide in the terminative stage

of ball milling, which accounts for the substantial reduction in

the NH3 amount [29].

3.2. The interaction between LiAB and Mg(NH2)2 in the
ball milling process

As shown above, S2 contains LiAB, Mg(NH2)2 and excess of

2 equiv. LiH before the second step dehydrogenation. There-

fore, It is interesting to investigate the interactions of LiAB vs.

Mg(NH2)2 and LiAB vs. LiH. The mixture of LiAB-Mg(NH2)2
was milled under the sample conditions as that of

Mg(NH2)2e3LiHeAB sample. In addition, the mixture of LiAB-

2LiH was also milled for comparison. Fig. 5 exhibits the time

dependence of hydrogen release from LiAB-Mg(NH2)2 and

LiAB-2LiH. For LiAB-Mg(NH2)2, slight pressure increase can be

detected within the initial 120 min of ball milling. After

http://dx.doi.org/10.1016/j.ijhydene.2013.06.036
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Fig. 5 e Hydrogen release with ball-milling time from (S4)

LiAB-Mg(NH2)2 (A) and (S6) LiAB-2LiH (B).

Fig. 7 e 7Li MAS spectra (A) and 11B MAS spectra (B) of (S4)

LiAB-Mg(NH2)2 after ball-milled of (a) 140 min, (b) 470 min,

(c) 770 min and (d) is the 11B MAS spectra of (S6) LiAB-2LiH

ball-milled for 3400 min # denotes the spinning sidebands.
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180 min of ball-milling, hydrogen was released rapidly. After

nearly 600 min of ball milling, ca. equiv. 5.5 H per LiAB-

Mg(NH2)2 can be achieved (shown in Fig. 5(A)). Different from

LiAB-Mg(NH2)2, the hydrogen generated from LiAB-2LiH sys-

tem increased synchronously with the milling time, releasing

more than 3.7 H atoms after 3400 min (shown in Fig. 5(B)).

The LiAB-Mg(NH2)2 samples milled at different time were

collected for the XRD and FTIR analyses. Unfortunately, the

samples become amorphous after milling for 470 min (shown

in Fig. 6(A)). FTIR characterization revealed that the vibrations

of Mg(NH2)2 (3273 cm�1) and LiAB were (3352/3310/3295 cm�1)

gradually broadened during the ball milling. A broad NeH

stretch centered at ca. 3250 cm�1 was developed, which is

likely corresponded to the formation of an imide with the

composition of [LiMgBN3H3] (shown in Fig. 6(B)). This result

matches well with earlier observation in Fig. 3(B).

In order to obtain more information on the dehydrogena-

tion process of LiAB-Mg(NH2)2,
7Li and 11B MAS-NMR mea-

surements were employed. 7Li MAS-NMR spectra (shown in

Fig. 7(A)) exhibited a resonance centered at 0.2 ppm in the

post-140 min milled sample. This resonance can be ascribed

to the chemical shift of Li in LiAB. Asmilling proceeded, the 7Li
Fig. 6 e XRD patterns (A) and FTIR (B) of (S4) LiAB-Mg(NH2)2
after ball-milled for (a) 20 min (b) 140 min (c) 470 min (d)

770 min.
resonance shifted downfield, centering at 1.5 ppm at the end

of ball milling. A similar 7Li resonance was observed in LiMgN,

implying an identical Li environment in the post milled

sample. The 11B MAS-NMR spectra also (Fig. 7(B)) revealed a

sp2 hybridized B environment, similar with that observed in

S2 (Fig. 4). These results agree well with the earlier hypothesis

on the formation of [LiMgBN3H3] (Reaction 4).

LiNH2BH3 þ Mg(NH2)2 / [LiMgBN3H3] þ 3H2 (4)

The 11B MAS spectra was also employed to characterize the

post milled LiAB-2LiH sample (shown in Fig. 7(B) d). According

to the detected BeN species in the spectra and the achieved

amount of ca. 3.7 equiv. H in the ball milling process, it is

reasonable to describe the interaction of LiAB-2LiH by

Reaction 5.

2LiNH2BH3 þ 2LiH / Li3BN2 þ LiBH4 þ 4H2 (5)
Fig. 8 e The relationship between hydrogen release

amount with ball-milling time from (S5) [LiMgBN3H3]-2LiH

(A). The 11B NMR of the post-milled (S5) [LiMgBN3H3]-2LiH

sample (B). The FTIR spectra of the post-milled (S5)

[LiMgBN3H3]-2LiH sample (C).
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LiH

NH3BH3

Mg(NH2)2

LiNH2BH3

2LiH

LiMgBN3H3 Li3BN2+MgNH
1 2 3

Scheme 1 e Proposed pathway of Mg(NH2)2e3LiHeNH3BH3

including three steps: (1) LiH reacts with NH3BH3 to form

LiNH2BH3 and releases H2; (2) LiNH2BH3 reacts with

Mg(NH2)2 to form LiMgBN3H3 and H2; (3) LiH reacts with

LiMgBN3H3 to form Li3BN2, MgNH and H2.
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3.3. The reaction of [LiMgBN3H3] and LiH in the ball
milling process

[LiMgBN3H3] yielded from ball milling LiAB-Mg(NH2)2 can

further react with 2 equiv. of LiH and release additional

2.5 equiv. H when ball milling time was prolonged to 2450min

(shown in Fig. 8(A)). The finally products are composed of

Li3BN2 and MgNH which have been characterized by 11B NMR

and FTIR (shown in Fig. 8(B) and (C)).

On the basis of above discussions, the interaction of

[LiMgBN3H3]-2LiH can be described by Reaction 6.

[LiMgBN3H3] þ 2LiH / Li3BN2 þ MgNH þ 2H2 (6)

In general, the mechanochemical reaction of

Mg(NH2)2e3LiHeAB can be elucidated by Reaction 7. Approx-

imately 11 equiv. H atom (9.6 wt%) can be released during the

ball milling, agreeing well with the theoretical value of 12 H

atoms (pairing Hþ with H� in the materials).

Mg(NH2)2 þ 3LiH þ NH3BH3 / Li3BN2 þ MgNH þ 6H2 (7)

On the basis of above discussions, the reaction pathways

are proposed and illustrated in Scheme 1.
4. Conclusions

The dehydrogenation of the composite of magnesium amide

(Mg(NH2)2), lithium hydride (LiH) and ammonia borane (AB) in

the molar ratio of 1:3:1 is via three steps during ball milling, i.

e., LiH firstly reacts with AB to yield LiNH2BH3. The produced

LiNH2BH3 further reacts with Mg(NH2)2 to form [LiMgBN3H3].

[LiMgBN3H3] subsequently interacts with 2 equiv. of LiH to

form Li3BN2 and MgNH. This stepwise reaction results in a

total release of ca. 11 equiv. H atoms (9.6 wt%) at ambient

temperature.
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