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a b s t r a c t

This study assessed the effect of the combined application of essential oils (EOs) from Origanum vulgare L.
e oregano (OVEO) and Rosmarinus of�cinalis L. e rosemary (ROEO), alone or in combination at subin-
hibitory concentrations, against three pathogenic bacteria that are associated with fresh leafy vegetables:
Listeria monocytogenes (L. monocytogenes), Escherichia coli (E. coli) and Salmonella enterica Serovar
Enteritidis (S. Enteritidis). The inhibitory effects were evaluated by determining the minimum inhibitory
concentration (MIC) and the fractional inhibitory concentration index (FICI) and assessing the viable cell
counts in vegetable broth and arti�cially infected vegetables over time. Still, the effects of the EOs on
native spoilage native �ora were assessed. The MIC of OVEO was 0.6 mL/mL against the test strains either
in single and mixed inoculum. The MIC of ROEO was 5 mL/mL against L. monocytogenes and E. coli and
10 mL/mL against S. Enteritidis in single inocula, whereas it was 10 mL/mL against the mixed inoculum.
The FICI of the combined EOs was 0.5 against the mixed bacterial inoculum, which suggested a synergic
interaction. The incorporation of OVEO and ROEO alone (MIC) or combined at different subinhibitory
concentrations in vegetable broth resulted in a decrease in the viable cell counts of all test strains over
24 h. Similarly, the EOs alone or in the tested combinations reduced the viable cell counts of all test
strains in experimentally infected fresh vegetables, besides to decrease the counts of spoiling native �ora
(mesophilic bacteria, enterobacteria and fungi). These �ndings reinforce the rational for the use of OVEO
and ROEO in combination at subinhibitory concentrations to guarantee the safety and extend the shelf
life of fresh vegetables.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Demographic changes related to population aging and new life
style trends have brought an increasing demand for ready-to-eat
(RTE) foods. This demand has changed the status of foodborne
diseases worldwide and had an important economic and social
impact (Oliveira et al., 2015). In recent years, minimally processed
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L. de Souza).
vegetables (MPV) gained signi�cant acceptance by consumers,
which could be attributed to an increased consumer desire for fresh
vegetables with reduced preparation times (Millan-Sango,
McElhatton, & Valdramidis, 2015; Odumeru, Bouter, Knight, Lu, &
Mckellar, 2002; Zhou et al., 2004). Prior to their sale, MPV are
submitted to simple operations such as washing, peeling, slicing,
shredding, sanitization, rinsing, drying and packaging to extend
their shelf life and preserve their nutritive value while retaining the
characteristics of fresh food (FDA, 2008).

Fresh vegetables are no longer considered a low-risk food in
terms of safety. Fruits and vegetables can be contaminated with
pathogens during all stages, from growth until consumption. The
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sources of contamination include the soil, manure (from humans
and other animals), water, insects, post-harvest handling, washing,
cutting and transportation (Beuchat, 2002; Bhagwat & Matthews,
2006). Sanitization is crucial to decrease the occurrence of micro-
bial hazards in MPV because minimal processing is not an end-
point preservation treatment (Sagoo, Little, Ward, Gillespie, &
Mitchell, 2003). The increased association of MPV with foodborne
outbreaks has intensi�ed consumers' concerns regarding the safety
of these products (Sant'ana et al., 2012). Among the classical
pathogens that are considered threats to the safety of MPVs, Sal-
monella spp. and pathogenic Escherichia coli have been particularly
concerning (CDC, 2013); however, emerging pathogens, such as
Listeria monocytogenes, have more recently been linked to out-
breaks associated with the consumption of fresh vegetables
worldwide (Ethelberg et al., 2010; Friesema et al., 2007, 2008;
Johnsen, Lingaas, Torfoss, Strøm, & Nordøy, 2010; Sagoo et al.,
2003). The decontamination methods used for vegetables aim to
reduce the microbial populations of the processing system without
necessarily eliminating them. A variety of disinfectants, including
chlorine, hydrogen peroxide, organic acids and ozone, have been
used to reduce the initial bacterial populations on vegetables
(Beuchat, 1998; Gil, Selma, L�opez-Galvez, & Allende, 2009; Suwa,
Oie, & Furukawa, 2013). Chlorine and chlorine-based compounds,
such as hypochlorite, are probably the most widely used sanitizer
for the treatment of fresh vegetables. However, some studies have
shown that the chlorine concentrations (50e200 ppm) that are
traditionally used for decontamination are not effective in suc-
cessfully reducing pathogen loads on vegetables (Behrsing,
Winkler, Franz, & Premier, 2000; Delaquis, Stewart, Cazaux, &
Toivonen, 2002; Lee & Baek, 2008). Considering that fresh vege-
tables have the potential to harbor pathogenic bacteria, the
development of new and effective sanitizing procedures has
received much attention (Azerêdo et al., 2011; Oliveira et al., 2015;
Sousa et al., 2013).

There has been increasing pressure to replace chemically syn-
thesized antimicrobials with natural alternatives in the food in-
dustry (Xu et al., 2007). This pressure has led to a particularly
increased interest in the use of essential oils (EOs) as natural san-
itizers for fresh vegetables. EOs from Origanum vulgare L. e oregano
(OVEO) and Rosmarinus of�cinalis L. e rosemary (ROEO) have been
found to be effective in inhibiting a variety of bacteria, including
those that contaminate RTE vegetables (Azerêdo, Figueiredo, Souza,
& Stamford, 2012; Sousa et al., 2012). Many EOs and their individual
constituents are considered to be ‘Generally Recognized as Safe’
(GRAS) at the doses typically used in foods (Burt, 2004) and have
been approved by the Food and Drug Administration (FDA) for use
in edible products (FDA, 2002). Additionally to improve the mi-
crobial safety, EOs should not negatively impact the sensory aspects
of fresh vegetables in�uencing their acceptance by consumers
(Azerêdo et al., 2012). Sometimes, the required amounts of EOs to
establish the desired antimicrobial effects in foods can result in
odors and �avors that are unpleasant to the consumer (Gutierrez
et al., 2009). The addition of small amounts of EOs in mixtures
may be a way to provide the balance between sensory acceptability
and antimicrobial efficacy because the combined action of these
substances, even in subinhibitory quantities, may potentiate their
antimicrobial ef�cacy (Sousa et al., 2012).

Therefore, this study was performed to assess the inhibitory
effects of OVEO and ROEO alone or in combination against a mixed
culture of bacteria associated with the contamination of fresh leafy
vegetables, namely E. coli, L. monocytogenes and Salmonella enterica
Serovar Enteritidis (Salmonella Enteritidis). The effects were
measured by determining the minimum inhibitory concentration
and fractional inhibitory concentration index and assessing cell
viability in vegetable broth and in arti�cially infected fresh leafy
vegetables over time. Additionally, the effects of the EOs on
spoilage native �ora in fresh leafy vegetables were assessed.

2. Material and methods

2.1. Material

The OVEO (batch ORETU679; density at 20 �C: 0.90; refractive
index at 20 �C: 1.49) and ROEO (batch ROSTUN04; density at 20 �C:
0.94; refractive index at 20 �C: 1.51) were purchased from Laszlo
Aromaterapia Indústria e Com�ercio Ltda. (Minas Gerais, Brasil).
Their quality parameters are described in an accompanying tech-
nical report. This supplier extracts essential oils on an industrial
scale by steam distillation. The EOs were assayed at concentrations
ranging from 80 to 0.03 mL/mL. EO emulsions were prepared in
brain-heart infusion (BHI) broth (Himedia, India) using bacterio-
logical agar (1.5 g/L) as a stabilizing agent (de Souza, Oliveira,
Conceicao, & Barros, 2010).

L. monocytogenes ATCC 7644, E. coli UFEPEDA 224 and Salmonella
Enteritidis UFEPEDA 414 used as test microorganisms were gently
provided by the Microorganism Collection, Department of Antibi-
otics, Federal University of Pernambuco (Recife, Brazil). An inoc-
ulum of each test bacterium was obtained by preparing
suspensions in sterile saline solution (NaCl 0.85% p/v) from over-
night cultures grown in BHI agar at 37 �C. Each strain was grown in
BHI broth at 37 �C for 18 h (late exponential growth phase), har-
vested by centrifugation (4500 g, 15 min, 4 �C), washed twice in
sterile PBS and re-suspended in sterile PBS to obtain standard cell
suspensions, for which the OD reading at 625 nm (OD625) was 0.1, to
provide viable cell counts of approximately 8 log colony forming
unit per milliliters e CFU/mL (McMahon et al., 2008). A mixed
inoculum was obtained by mixing the different bacterial suspen-
sions at a ratio of 1:1:1. This level of inoculum was used because
vegetable decontamination studies require high numbers of cells in
the inoculum to enable the measurement of several log reductions
in colony forming unities per gram e CFU/g (Beuchat et al., 2001).

Time-kill assays were performed using a vegetable broth
composed of iceberg lettuce (Lactuca sativa L.) and chard (Beta
vulgaris L. var. cicla) as the substrates for bacterial cultivation. The
leafy vegetables were purchased from a local wholesale market in
Jo~ao Pessoa (Brazil) on the day of harvest and transported for less
than 30 min under refrigerated conditions. A mixture (1:1) of the
samples containing 60 g of each leafy vegetable was mashed with
400 mL of distilled water using a domestic blender. The mixture
was then vacuum �ltered using Whatman no. 1 �lter paper. The
obtained material was sterilized by �ltration using a Millipore
0.22 mm �lter unit (Azerêdo et al., 2011). The �ltered broth was
stored at �20 �C in 50-mL aliquots, and when required, an aliquot
was thawed under refrigeration (7 ± 1 �C) and used for the assays.

2.2. Identi�cation of the EO constituents

The constituents of OVEO and ROEO were identi�ed by gas
chromatography coupled with mass spectrometry e GCeMS
(CGMS-QP2010 Ultra Shimadzu, Kyoto, Japan). GCeMS analysis was
performed under the following conditions: a RTX-5MS capillary
column (30 m � 0.25 mm � 0.25 mm); temperature programing:
60e240 �C (3 �C/min); injector temperature: 250 �C; detector
temperature: 220 �C; carrier gas: helium adjusted to 0.99 mL/min
speed; ionizing energy: 70 eV; mass range (m/z): 40e500. To
identify the individual EO constituents, the spectra bank of the GC/
MS, NIST/EPA/NIH Mass Spectral Database (Version 1.7) was used.
The quanti�cation of the constituents was obtained by normalizing
the areas of each detected constituent and expressed the result in
terms of the percentage area (%).
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2.3. Determination of the minimum inhibitory concentration (MIC)

The MIC values of OVEO and ROEO against a single and mixed
inoculum of the test strains were determined using macrodilution
in broth (Nostro et al., 2001). Four milliliters of double strength BHI
broth (Himedia, India) was inoculated with 1 mL of bacterial
inoculum (single or mixed), mixed with 5 mL of the solution of
OVEO or ROEO and vigorously mixed for 30 s using a vortex. The
system was statically incubated for 24 h at 37 �C. The MIC was
de�ned as the lowest concentration of each EO required to prevent
visible bacterial growth (Nostro et al., 2001). Control �asks without
the EOs were tested in a similar process.

2.4. Determination of the fractional inhibitory concentration index
(FICI)

The checkerboard method was performed using macrodilution
in broth to obtain the FICI for the combined application of OVEO
and ROEO using a mixed inoculum of the test strains (Oliveira et al.,
2015). The FICI, which is characterized as a simple mathematical
approach to quantitatively describe interactions (Iten, Saller, Abel,
& Reichling, 2009), was calculated as follows:

MIC of OVEO in combination with ROEO
MIC of OVEO alone

þ
MIC of ROEO in combination with OVEO

MIC of ROE alone

The OVEO and ROEO were assayed at the MIC � 2, MIC, 1/2 MIC,
1/4 MIC,1/8 MIC and 1/16 MIC (OVEO: 1.2, 0.6, 0.3, 0.1, 0.05, 0.02 mL/
mL; ROEO: 20, 10, 5, 2.5, 1.2 and 0.6 mL/mL) alone and with different
combinations of each different concentration of each EO. The re-
sults were interpreted as synergy (FIC � 0.5), addition
(0.5 � FIC � 1), indifference (1 � FIC � 4) and antagonism (FIC > 4)
(Gutierrez, Barry-Ryan, & Bourke, 2008; Schelz, Molnar, & Hoh-
mann, 2006).

2.5. Effects of the tested EOs on the survival of bacteria in vegetable
broth

The effect of EOs alone (MIC) and in combination (1/2 MIC
OVEO þ 1/2 MIC ROEO; 1/2 MIC OVEO þ 1/4 MIC ROEO; 1/4 MIC
OVEOþ 1/2 MIC ROEO; 1/4 MIC OVEO þ 1/4 MIC ROEO) (Table 1) on
the survival of bacterial strains in mixed inoculum in vegetable
broth was evaluated using the viable cell count procedure. For this
test, 4 mL of vegetable broth was inoculated with 1 mL of the
bacterial inoculum. Then, 5 mL of the single or combined EO so-
lutions was added to the system and gently shaken for 30 s to
produce a �nal viable cell count of each bacteria of approx. 7 log
CFU/mL. The system was incubated at 7 �C. At different time in-
tervals (2, 4, 8, 12 and 24 h), 1 mL of the suspension was serially
Table 1
Different concentrations of the essential oils from O. vulgare L. (OVEO) and
R. of�cinalis L. (ROEO) used alone and/or in combination in assays of microbial
survival in vegetable broth and/or in leafy fresh vegetables.

Tested concentrations

OVEO Alone or combined with ROEO

MIC: 0.6 mL/mL alone e
e alone MIC: 10 mL/mL
1/2 MIC: 0.3 mL/mL combined with 1/2 MIC: 5 mL/mL
1/2 MIC: 0.3 mL/mL combined with 1/4 MIC: 2.5 mL/mL
1/4 MIC: 0.15 mL/mL combined with 1/2 MIC: 5 mL/mL
1/4 MIC: 0.15 mL/mL combined with 1/4 MIC: 2.5 mL/mL

MIC: Minimum Inhibitory Concentration; (�): not tested.
diluted (10�1 e 10�5) in a sterile saline solution (NaCl 0.85 g/
100 mL) and inoculated onto media selective for each bacteria. The
selective media were Listeria selective agar þ Listeria Selective
Supplement II (Himedia, India) for L. monocytogenes, Eosyne-
Metilen-Blue (EMB) agar (Himedia, India) for E. coli and Salmo-
nella e Shigella agar (Himedia, India) for S. Enteritidis for 24e48 h at
37 �C (Azêredo et al., 2011; Sousa et al., 2012). Control �asks
without the EOs were similarly tested. The plates inoculated with
aliquots collected from broth containing the EOs were always
incubated for 24 h longer at adequate temperature than were those
collected from the control systems. The results were expressed as
the reduction in bacterial counts (log CFU/mL reduction cycles) in
relation to the initial bacterial population e CFU/mL at time zero
(log N0eN; where N0 was the initial count at time zero and N was
the count after incubation for each indicated time at 37 �C).

2.6. Effects of the EOs on bacterial survival in fresh vegetables

The effect of the EOs alone (MIC) or in combination (1/2 MIC
OVEO þ 1/2 MIC ROEO; 1/2 MIC OVEO þ 1/4 MIC ROEO) (Table 1) on
the survival of the bacterial strains in the mixed inoculum on fresh
vegetables was evaluated using the viable cells count procedure.
For this procedure, portions (90 g) of a pool of iceberg lettuce and
chard (at a rate of 1:1) that were previously washed with sterile
distilled water were shredded aseptically and inoculated with the
bacteria according to the following procedure: the vegetable sam-
ple were submerged in 900 mL of mixed inoculum, gently rotated
with a sterile glass stem for 5 min to ensure effective inoculation
and air-dried for 1 h in a bio-safety cabinet. Subsequently, the
vegetables were submerged in 250 mL of OVEO or ROEO solutions
either alone or in combination for 5 or 10 min at 25 �C. Then, a 25-g
sample of the vegetables was aseptically obtained, transferred into
a sterile stomacher bag containing 225 mL of sterile saline solution
(0.85 g/100 mL) and homogenized for 60 s. Subsequently, a decimal
dilution was made in the same diluent, and bacterial counting was
performed by spread-plating 0.1 mL of the appropriate sample
dilution on sterile selective agar (Listeria selective agar þ Listeria
Selective Supplement II (Himedia, India) for L. monocytogenes, EMB
agar for E. coli (Himedia, India) and Salmonella e Shigella agar
(Himedia, India) for S. Enteritidis (Azêredo et al., 2011; Sousa et al.,
2012) for 24e48 h at 37 �C. Control �asks containing sterile distilled
water were tested in the same way. Plates inoculated with aliquots
collected from systems containing the tested EOs were always
incubated for 24 h longer at adequate temperatures than were
those collected from control systems. The results were expressed as
the reduction in bacterial counts (log CFU/mL reduction cycles) in
relation to the initial bacterial population e CFU/mL at time zero
(log N0eN; where N0 was the initial count at time zero and N was
the count after incubation for each indicated time at 37 �C).

2.7. Effect of EOs on survival of spoilage native �ora in fresh
vegetables

Portions of 90 g of iceberg lettuce and chard (in a rate of 1:1)
were shredded by glove-covered hands and immediately sub-
merged in 250 mL of the solutions of OVEO and ROEO alone (MIC)
or in mixture (1/2 MIC OVEO þ 1/2 MIC ROEO, 1/2 MIC OVEO þ 1/4
MIC ROEO) (Table 1) and softly rotated for 5 min or 10 min at 28 �C
using a sterile glass stem to ensure complete coverage and contact
of surfaces with the EOs solutions. Subsequently, a 25 g sample of
the vegetables was aseptically taken, transferred into a sterile
stomacher bag containing 225 mL of sterile peptone water (1 g/L),
and homogenized for 60 s. Then, a decimal dilution series (10�2 e
10�5) was made in the same diluent, and count of the native
spoilage �ora was performed by pour-plating 1 mL of the
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appropriate sample dilutions on Plate Count Agar (Himedia, India)
at 37 �C (24e48 h) for total mesophilic bacteria and at 6 �C (7 d) for
psychotrophic bacteria, and by spread-plating 0.1 mL onto Eosyne-
Metilen-Blue agar (Himedia, India) at 37 �C (24 h) for Enter-
obacteriaceae and Potato Dextrose agar (Himedia, India) with pH
adjusted to 3.5 using tartaric acid (1%) at 28 �C (48e72 h) for fungi.
The results were expressed in the log of cfu/mL (Sousa et al., 2012).
Control �asks containing sterile distilled water were tested in the
same way. Plates inoculated with aliquots collected from systems
containing the tested EOs were always incubated for 24 h longer at
adequate temperatures than were those collected from control
systems. The results were expressed as the reduction in microbial
counts (log CFU/mL reduction cycles) (log Nc e Nt; where Nc was
the count found in non-treated (control) leafy vegetables and Nt
was the count found in leafy vegetables treated with the EOs alone
or in combinations for each indicated exposure times at appro-
priate temperature).

The detection limit of the viable cell detection was 2 log cfu/mL
for all experiments.

2.8. Reproducibility and statistics

All assays were performed in triplicate in three independent
experiments, and the results were expressed as an average of the
assays. Statistical analysis was performed to determine signi�cant
differences (p < 0.05) using ANOVA followed by a post hoc Tukey
test in the Sigma Stat 3.5 software (Jandel Scienti�c Software, San
Jose, California).

3. Results

3.1. Identi�cation of the EO constituents

As shown in Table 2, the GCeMS analysis identi�ed six com-
pounds at amounts greater than 1% in both OVEO and ROEO
(Table 2). Thymol (69.3%) was the most prevalent compound in
OVEO, followed by p-cymene (13.1%) and g-terpinene (6.01%). The
compounds myrcene (1.1%), linalool (2.71%) and a-pinene (1.6%)
were found in minor amounts. For ROEO, the compounds detected
at higher amounts were eucalyptol (35.75%), camphor (28.7%) and
limonene (24.88%). Other compounds (viz. a-pinene, p-cymene and
g-terpinene) were found in the range of 1.29e1.97 % in ROEO.

3.2. MIC and FICI values

The MIC value obtained for OVEO was 0.6 mL/mL against
L. monocytogenes ATCC 7644 (L. monocytogenes), E. coli UFEPEDA
Table 2
GCeMS analysis of the essential oils from Origanum vulgare L. (OVEO) and
Rosmarinus of�cinalis L. (ROEO).

Constituentsa Percent of essential oil total mass

OVEO
thymol 69.30
p-cymene 13.10
g-terpinene 6.01
myrcene 1.10
linalool 2.71
a-pinene 1.60

ROEO
eucalyptol 35.75
camphor 28.7
limonene 24.88
a-pinene 1.97
p-cymene 1.67
g-terpinene 1.29

a Constituents detected in amounts >1%.
224 (E. coli) and S. Enteritidis UFEPEDA 414 (S. Enteritidis) either in
the single or mixed inoculum (Table 3). The MIC value of ROEO was
5 mL/mL against L. monocytogenes and E. coli and 10 mL/mL against S.
Enteritidis in single inoculum. The MIC value of ROEO was 10 mL/mL
against the mixed inoculum. The FICI for the combined application
of OVEO and ROEO against the mixed inoculum was 0.5, which
suggested a synergistic interaction. The OVEO and ROEO inhibited
the bacterial growth when tested up to a combination of 1/4
MIC þ1/4 MIC, respectively. The test strains had the ability to grow
at the tested subinhibitory concentrations of both OVEO and ROEO
when applied alone (data not shown).

3.3. Effects on survival of bacteria in vegetable broth

The effects of OVEO and ROEO alone at the MIC or in different
combinations of 1/4 MIC and 1/2 MIC on the survival of a mixed
population of L. monocytogenes, E. coli and S. Enteritidis cultivated
in vegetable broth were assessed over 24 h. A sharp drop (p < 0.05)
in the viable cell counts of all tested strains was observed over the
assessed time intervals when either OVEO or ROEO was incorpo-
rated into the vegetable broth, with the exception of S. Enteritidis
exposed to ROEO at its MIC (Fig. 1A e 1C). The detection of �3 log
CFU/mL cycles (�3 log cycles) e decrease (>99.99% reduction) in
the initial viable cell counts of L. monocytogenes and E. coli exposed
to OVEO at MIC occurred as early as 2 and 4 h of exposure,
respectively. When ROEO was assayed at its MIC, a decrease of �3
log cycles in the viable counts of L. monocytogenes and E. coli was
observed after 4 and 8 h, respectively (Fig. 1AeB). For S. Enteritidis,
a �3 log cycles e decrease in the viable cell counts was observed
after 8 h in the OVEO-treated cells. Cells of S. Enteritidis treated
with ROEO at MIC were found to have a smaller decrease (up to 1.7
log cycles; > 90% reduction) in the viable counts early in the
assessed time intervals (after 1e4 h of exposure). However, a slight
and linear recovery was in the cell counts was observed later during
the assessed time intervals (Fig. 1C).

The incorporation of OVEO and ROEO in vegetable broth in
combinations of 1/2 MIC OVEO þ1/2 MIC ROEO,1/2 MIC OVEO þ1/4
MIC ROEO and 1/4 MIC OVEO þ1/2 MIC ROEO resulted in a �3 log
cycles e decrease in the initial viable counts of L. monocytogenes
and E. coli, although the time required to establish this decrease
varied according to the target strain and the amount of combined
EOs. The combination of 1/2 MIC OVEO þ1/2 MIC ROEO caused
similar reductions in the L. monocytogenes and E. coli viable counts
after 4 and 8 h of exposure, respectively. For the combination of 1/4
MIC OVEO þ1/2 MIC ROEO, this reduction was noted after 24 h in
both strains. The decrease in the viable counts of E. coli and
L. monocytogenes treated with 1/4 MIC OVEO þ1/4 MIC ROEO were
near to 2.5 log cycles (>99.9% reduction) after 24 h of exposure.
Only the combination of 1/2 MIC OVEO þ1/2 MIC ROEO could cause
a �3 log cycles e decrease in the S. Enteritidis counts. The other
tested combinations caused decreases in the range of 1.5e2.7 log
Table 3
Minimum inhibitory concentration (MIC) of the essential oils from O. vulgare L.
(OVEO) and R. of�cinalis L. (ROEO) against L. monocytogenes, E. coli and S. Enteritidis
in single and mixed inoculum.

Strains MIC values (mL/mL)

OVEO ROEO

Single inoculum
L. monocytogenes ATCC 7644 0.6 5
E. coli UFEPEDA 224 0.6 5
S. Enteritidis UFEPEDA 414 0.6 10
Mixed inoculum 0.6 10



Fig. 1. Reduction cycles (Log10 CFU/mL) of the initial viable cell counts of
L. monocytogenes ATCC 7644 (A), E. coli UFEPEDA 224 (B) and S. Enteritidis UFEPEDA
414 (C) in vegetable broth (7 �C) as a function of different concentrations of the
essential oils from Origanum vulgare L. (OVEO) and Rosmarinus of�cinalis L. over 24 h
(ROEO) alone or in combination. (þ) Control; (C) MIC OVEO: 0.6 mL/mL; (-): MIC
ROEO: 10 mL/mL; (B): 1/2 MIC OVEO: 0.3 mL/mL þ 1/2 MIC ROEO 5 mL/mL; (�): 1/2 MIC
OVEO: 0.3 mL/mL þ 1/4 MIC ROEO: 2.5 mL/mL; (�): 1/4 MIC OVEO: 0.15 mL/mL þ 1/2
MIC ROEO: 5 ml/mL; (*): 1/4 MIC OVEO: 0.15 mL/mL þ 1/4 MIC ROEO: 2.5 mL/mL.
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cycles (>90% to > 99.9% reduction) at the end of the assessed
exposure time. Over the evaluated time interval, the systems con-
taining OVEO and/or ROEO showed lower (p < 0.05) viable cell
counts than the control systems.
3.4. Effects on the survival of bacteria on arti�cially infected fresh
leafy vegetables

Regarding the results obtained in the vegetable broth, the
combinations of 1/4 MIC OVEO þ1/2 MIC ROEO and 1/4 MIC
OVEO þ1/4 MIC ROEO were not assayed in fresh leafy vegetables
because they did not cause a �3 log cycles-decrease in the viable
cell counts over the assessed time period or because the time pe-
riods required to establish this effect were longer than those
observed for the other combinations tested.

The application of OVEO and ROEO to arti�cially infected
fresh leafy vegetables, either alone or in combination at different
subinhibitory concentrations, caused a reduction (p < 0.05) in
the initial viable cell counts of all assayed strains in mixed
inoculum (Fig. 2AeF). After a 5-min treatment, only OVEO at its
MIC caused a �3 log cycles-decrease in the initial counts of all
strains. The reductions caused by the other treatments were in a
range of 1.5e2.8 log cycles (>90% to > 99.9%). After 10 min of
treatment, either OVEO or ROEO at their respective MICs or the
combination 1/2 MIC OVEO þ1/2 MIC ROEO caused a similar
decrease in the viable cell counts of L. monocytogenes and E. coli
(Fig. 2C and E). The decrease in the viable counts of S. Enteritidis
exposed to ROEO alone or to the tested combinations was in the
range of 1.5e2.5 log cycles (Fig. 2E and F). Overall, the exposure
of the EOs for 10 min caused a greater decrease (p < 0.05) in the
viable cell counts in comparison to 5 min. Viable cell counts in
the control systems (5 min and 10 min) were always close to 7
log CFU/mL, and these counts were higher (p < 0.05) than those
found when the strains were treated with OVEO and/or ROEO.

In both assays using vegetable broth and fresh vegetables,
L. monocytogenes was found to be most sensitive to the EOs alone or
in combination, whereas S. Enteritidis was found to be the least
sensitive. Furthermore, the inhibitory effects of the EOs occurred in
a time-dependent manner.
3.5. Effects on survival of spoiling native �ora on fresh leafy
vegetables

The application of OVEO and ROEO to fresh leafy vegetables,
either alone or in combination at different subinhibitory con-
centrations, caused a reduction (p < 0.05) in viable counts of
native spoilage �ora in comparison to the control assay
(Fig. 3AeF). After a 5-min treatment, the OVEO and ROEO at their
respective MICs and the combination 1/2 MIC OVEO þ1/2 MIC
ROEO caused the greatest (p < 0.05) decreases in the counts of
mesophilic bacteria (1.6e2.5 log cycles) and enterobacteria
(1.7e2.7 log cycles). The decrease in mold counts (1.9e2.2 log
cycles) were similar (p > 0.05) in leafy vegetables treated with
either each EO alone at its MIC or in combination of 1/2 MIC
OVEO þ 1/2 MIC ROEO or 1/4 MIC OVEO þ 1/2 MIC ROEO. After a
10-min treatment, the OVEO and ROEO, either alone or in com-
bination at different subinhibitory concentrations, caused similar
decrease (p > 0.05) in the counts of all assessed groups (or family)
of spoilage microorganisms. The decrease in counts of mesophilic
bacteria, enterobacteria and fungi was always close to 3.0, 2.5 and
3.1 log cycles, respectively. Overall, the exposure of the EOs for
10 min caused a greater decrease (p < 0.05) in spoilage native �ora
counts in comparison to 5 min.

The counts of mesophilic bacteria, enterobacteria and fungi in
control leafy vegetables after a 5- and 10-min treatment were 5.6
and 5.9 CFU/g, 5 and 4.8 CFU/g and 5.2 and 5.3 CFU/g, respectively.
No counts of psychotrophic bacteria were found in both control and
treated leafy vegetables (data not show).



Fig. 2. Reduction cycles (Log10 CFU/mL) of the initial viable cell counts of L. monocytogenes ATCC 7644 (AeB), E. coli UFEPEDA 224 (CeD) and S. Enteritidis UFEPEDA 414 (EeF) in
fresh leafy vegetables (28 �C) as a function of different concentrations of the essential oils from Origanum vulgare L. (OVEO) and Rosmarinus of�cinalis L. (ROEO) alone or in
combination, after a 5-min (A, C, E) and 10-min (B, D, F) treatment (white bars: reduction caused by OVEO at its MIC: 0.6 mL/mL; grey bars: reduction caused by ROEO at its MIC:
10 mL/mL; diagonal dashed bars: reduction caused by 1/2 MIC OVEO: 0.3 mL/mL þ 1/2 MIC ROEO: 5 mL/mL; vertical dashed bars: reduction caused by at 1/2 MIC OVEO: 0.3 mL/mL þ 1/
4 ROEO: 2.5 mL/mL); black bars: reductions observed in control assays: OVEO: 0 mL/mL þ ROEO: 0 mL/mL.
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4. Discussion

This study showed the inhibitory effects of OVEO and ROEO
alone at MIC or in combination at different subinhibitory concen-
trations on the survival of L. monocytogenes, E. coli and S. Enteritidis
in single or mixed inocula. These results are interesting because
studies testing the effects of EOs (or their individual constituents)
on pathogenic or spoiling bacteria in mixed culture are still scarce.
The low available number of studies with candidate compounds for
use as antimicrobials in foods using mixed populations of target
bacteria is somewhat con�icting because the use of multispecies
inocula (or even multi-strain inocula) has been recommended in
studies that have used speci�cally de�ned conditions that limit the
growth or survival of the bacterial species (Romero, Pinto, Patriarca,
& Vaamonde, 2010). Some researchers have stated that the
response of mixed cultures of bacteria to challenge with EOs or
their individual constituents could provide more realistic infor-
mation regarding the antimicrobial ef�cacy of these compounds on
food substrates (Kurekci et al., 2013; Oliveira et al., 2015).
OVEO showed stronger inhibitory effects against all test bacteria
in both single and mixed inocula than did ROEO, based on their
respective MIC values (the MIC of OVEO was 16-fold lower than that
of ROEO). S. Enteritidis was most tolerant to ROEO, and the MIC
value against this bacterium was one-fold greater than the MIC
values against the other test bacteria. Still, this greater tolerance of
S. Enteritidis may have had some in�uence on the higher MIC value
(a one-fold increase) observed in ROEO against the bacterial strains
in the mixed inoculum. The low observed MIC value of OVEO
against the test strains (<1 mg/mL or mL/mL, Van Vuuren, 2008)
reinforced the noteworthy antibacterial effects of this EO, in
contrast to the high MIC value showed by ROEO. The difference in
the inhibitory effects of OVEO and ROEO (considering their often-
detected MIC values) has been related to their particular pro�le
of major constituents (Carovi�c-Stanko et al., 2010). An approximate
general ranking of the individual constituents of the EOs possessing
the highest antimicrobial effects is as follows:
phenols > aldehydes > ketones > alcohols > ethers > hydrocarbons
(Ballester-Costa, Sendra, Fern�andez-L�opez, P�erez-�Alvarez, & Viuda-



Fig. 3. Reduction cycles (Log10 CFU/mL) of the viable cell counts of aerobic mesophilic bacteria (AeB), fungi (CeD) and enterobacteria (EeF) in fresh leafy vegetables (28 �C) as a
function of different concentrations of the essential oils from Origanum vulgare L. (OVEO) and Rosmarinus of�cinalis L. (ROEO) alone or in combination, after a 5-min (A, C, E) and 10-
min (B, D, F) treatment (white bars: reduction caused by OVEO at its MIC: 0.6 mL/mL; grey bars: reduction caused by ROEO at its MIC: 10 mL/mL; diagonal dashed bars: reduction
caused by 1/2 MIC OVEO: 0.3 mL/mL þ 1/2 MIC ROEO: 5 mL/mL; vertical dashed bars: reduction caused by at 1/2 MIC OVEO: 0.3 mL/mL þ 1/4 ROEO: 2.5 mL/mL.
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Martos, 2013). This �nding reinforced the consistency of the low
MIC values found for OVEO, as thymol (phenolic) was found to be its
major constituent, whereas eucalyptol (1,8 e cineole) (terpene
hydrocarbon) was found to be the major constituent of ROEO. On
the basis of the detected major constituents, the tested OVEO and
ROEO were characterized as belonging to the thymol- and 1,8-
cineol-chemotype, respectively (Jordan, Lax, Rota, Lor�an, &
Sotomayor, 2013; Russo, Galletti, Bocchini, & Carnacini, 1998).
Generally, chemotype is a different chemical type of the same
botanical species with a speci�c and genetically codi�ed enzymatic
equipment that directs its biosynthesis to the preferential forma-
tion of a de�nite compound (De Martino, Formisano, Mignola, &
Senatore, 2009).

Although ROEO has often been found to have high MIC values
against food-related bacteria, this EO is still considered a potential
substance for antimicrobial use in foods, particularly vegetable
products, given its bene�cial impact on sensory aspects, primarily
when applied in combination with EOs that could adversely affect
the sensory acceptance of foods (Azerêdo et al., 2011; de Sousa
et al., 2013). Though OVEO (which often has high amounts of
thymol and/or carvacrol) has been reported to produce a change-
able “warmly pungent �avor” in food during storage, ROEO (which
often contains high amounts of eucalyptol) produces a changeable
“distinctive but pleasant mint-like �avor” in the amounts that are
usually proposed for use in foods. The combined application of
OVEO and ROEO in vegetables could exploit a possible synergistic
interaction and produce desirable antibacterial effects without
causing noticeable undesirable changes to the food �avor and/or
aroma. Consistent with this rationale, a previous study noted that
the combination of OVEO and ROEO at subinhibtiory concentra-
tions (1/4 MIC: 0.6 mL/mL and 1/4 MIC: 5 mL/mL, respectively) did
not negatively impact the sensory attributes (appearance, texture,
taste, odor, general perception and overall browning) and purchase
intention of mix of fresh leafy vegetables (iceberg lettuce e L. sativa
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L., beet e B. vulgaris L. var. cicla and rocket e Eruca sativa L.) over
72 h of refrigerated storage.

The FICI for the combined application of OVEO and ROEO was
0.5 against the mixed inoculum of L. monocytogenes, E. coli and S.
Enteritidis, thus demonstrating a synergic interaction of these EOs.
A synergistic interaction occurs when the combination of antimi-
crobials at subinhibitory concentrations (�1/4 MIC) produces a
greater inhibitory effect against the target organisms when
compared to the inhibition caused by these antimicrobials when
tested individually or at higher concentrations (Oliveira, Stamford,
Gomes Neto, & de Souza, 2010). Regarding the general interpreta-
tion of the FICI assays, synergy could occur at a FICI �1 (combina-
tion of �1/2 MIC); however, because the dilution method can
present a ±1 error, the dilution convention suggests that synergy
is � 0.5. However, a minor synergy (i.e., up to an FICI 1) may still be
of practical importance (Gould et al., 1991). This was considered
when choosing the subinhibitory concentrations of OVEO and
ROEO (1/2 MIC and 1/4 MIC of each EO in different combinations) to
use in assays of bacterial survival over time.

A previous study noted the same FICI (0.5) for the combined
application of OVEO and ROEO against Aeromonas hydrophila,
L. monocytogenes and Pseudomonas �uorescens in single pop-
ulations (Azerêdo et al., 2011), whereas the combination of carva-
crol and 1,8-cineol showed a FICI of 0.25 against the same bacteria
in a mixed population (Oliveira et al., 2015). The authors stated that
the enhanced inhibitory effects observed for OVEO and ROEO in
combination could be partially explained by differences in the
chemical structures of their major constituents (carvacrol/thymol
and eucalyptol, respectively). These differences were predicted to
result in distinct interactions with the target cell structures, which
are primarily related to the antimicrobial activity of the tested EOs
(Azerêdo et al., 2012; Sousa, Oliveira, Figueiredo, & Souza, 2015).

Ultrastructural studies of bacterial cells treated with carvacrol
and eucalyptol have suggested that the oxygenated groups present
in eucalyptol disturb the bacterial membrane structures, even
when eucalyptol is present in the growth media at subinhibitory
concentrations; therefore, eucalyptol could allow carvacrol to be
more easily transported into the bacterial cells, where it can
interact with different intracellular targets (de Sousa et al., 2013;
Sousa et al., 2015). Overall, the presence of eucalyptol in the
growth media was found to decrease the required amount of
carvacrol needed to promote antimicrobial effects. Carvacrol is a
thymol-isomer presenting structural differences due to the position
of its hydroxyl group (OH group); however, carvacrol and thymol
have similar mechanisms of action against bacterial cells (Lambert,
Skandamis, Coote, & Nychas, 2001).

The FICI assay was used in combination with the time-kill
studies given the availability of information about the kinetic of
microbial inactivation, resulting in a dynamic picture of the anti-
microbial interactions (Mackay, Milne, & Gould, 2000). The time-
kill curves of bacteria exposed to OVEO and ROEO alone or in
combination at the selected subinhibitory concentrations in vege-
table broth revealed a signi�cant decrease (>99% to � 99.999%) in
the viable counts over time, with a distinct behavior of S. Enteritidis
challenged with ROEO at MIC. However, for most of the in-
teractions, the highest reductions (>3 log cycles; 99.99%) were
found in OVEO and ROEO at MIC and at the combinations 1/2 MIC
OVEO þ 1/2 MIC ROEO and 1/2 MIC OVEO þ 1/4 MIC ROEO.

The OVEO and ROEO, alone or in combination at the selected
subinhibitory concentrations, effectively decreased the counts of
L. monocytogenes, E. coli and S. Enteritidis in arti�cially infected
fresh leafy vegetables, as well as the counts of spoilage native �ora
(mesophilic bacteria, enterobacteria and fungi), after a 5- or 10-
min treatment, although the effects were more pronounced as
the exposure time increased. The inhibitory effects of the EOs
alone or in combination against L. monocytogenes, E. coli and S.
Enteritidis were lower in the fresh leafy vegetables than in the
vegetable broth. This lower level of bacterial inactivation observed
on the leafy vegetables following treatment with the EOs could be
because the bacteria attach or in�ltrate into the protective
structures of the vegetables (lenticels, cuticle cells, broken tri-
chomes and bruises), thereby impairing the contact with the in-
dividual constituents of the EOs (Azêredo et al., 2011; Burnett &
Beuchat, 2001). Overall, the type of chemical agent, contact
time, temperature, microbial load and chemical and physical
properties of the vegetable surface could all have an in�uence on
the bacterial response to sanitizers (Behrsing et al., 2000; Delaquis
et al., 2002; Lee & Baek, 2008).

Given the data of bacterial survival obtained in this study, the
following ranking of bacterial tolerance to the EOs tested was S.
Enteritidis > E. coli > L. monocytogenes. This is not surprising
because Gram-negative bacteria are generally less sensitive to EOs
than Gram-positive bacteria (Hyldgaard, Mygind, & Meyer, 2012;
Mazzarrino et al., 2015). In Gram-negative bacteria (such as S.
Enteritidis and E. coli), this greater tolerance is due to the presence
of the outer membrane, which limits the diffusion of hydrophobic
compounds (such as the individual constituents of EOs) through
lipopolysaccharide coverage (Vaara, 1992). Thus, the EO concen-
trations must be suf�cient to allow diffusion through the external
membrane and the lipid bilayer to reach the bacterial membrane
for antibacterial effects to be established (de Oliveira, de Araújo
Soares & Piccoli et al., 2013).

It is noteworthy that to successfully demonstrate sanitizing ef-
�cacy of any product intended for the treatment of food-contact
surfaces, the product must demonstrate a 99.999% reduction (5
log cycles reduction) in the pathogen viable counts in suspension
following a 30-s exposure to a pre-selected concentration (AOAC,
2013). However, to the best of our knowledge, no criteria
regarding the inactivation level are currently available to substan-
tiate the ef�cacy of sanitizers in vegetables and fruits. The treat-
ment of raw vegetables in water containing chlorine (traditionally
used as a sanitizer of fruits and vegetables) at concentrations of
50e250 ppm and with exposure times of 1e10 min can effectively
decrease the population of pathogenic bacteria (including
L. monocytogenes, E. coli and Salmonella spp.), aerobic microorgan-
isms, psychrotrophic microorganisms, yeast and molds by
90e99.9% (1e3 log cycles) (FAO/WHO, 2008). Based on the avail-
able studies, the combinations of OVEO and ROEO at the selected
subinhibitory concentrations were predicted to sanitize fresh veg-
etables infected with L. monocytogenes, E. coli and S. Enteritidis
because they could reduce the initial population by 99e99.99%
(2e3 log cycles) after 10 min of exposure. These results are also
promising because products capable of establishing a �99.99%
killing effect (�3 log cycles reductions) are considered to possess
bactericidal effects (LaPlante, 2007).

5. Conclusions

The results obtained revealed a synergistic interaction be-
tween OVEO and ROEO, as the combination of these EOs at sub-
inhibitory concentrations (1/2 MIC OVEO þ 1/2 ROEO and 1/2 MIC
OVEO þ 1/4 ROEO) against the pathogens associated with fresh
leafy vegetable L. monocytogenes, E. coli and S. Enteritidis. The
essential oils combined at subinhibitory concentrations were
effective in decreasing the counts of these pathogenic bacteria in
vegetable broth and in fresh leafy vegetables, as of the spoilage
native �ora in fresh leafy vegetables. Overall, these �ndings sup-
port the use of OVEO and ROEO at subinhibitory concentrations as
alternatives to guarantee the safety and extend the shelf-life of
fresh leafy vegetables.
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