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a b s t r a c t

We discuss several methods for real interval matrix multiplication. First, earlier studies of
fast algorithms for interval matrixmultiplication are introduced: naive interval arithmetic,
interval arithmetic by midpoint–radius form by Oishi–Rump and its fast variant by
Ogita–Oishi. Next, three new and fast algorithms are developed. The proposed algorithms
require one, two or three matrix products, respectively. The point is that our algorithms
quickly predict which terms become dominant radii in interval computations. We propose
a hybrid method to predict which algorithm is suitable for optimizing performance and
width of the result. Numerical examples are presented to show the efficiency of the
proposed algorithms.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

This paper is concerned with interval matrix multiplication. Nowadays, interval arithmetic [1] is widely used, for
example, to determine accuracy of numerical computations or in computer-assisted proof [2,3]. There are implementations
of interval arithmetic, for example, INTLAB [4], In4sci [5], C-XSC [6], b4m [7] and so on.

We develop new algorithms for computing the product of intervalmatriceswith floating-point entries. Before explaining
the problem in detail, we discuss representations of an interval. Let R be the set of real numbers; let IR be the set of real
intervals. Then [a] ∈ IR can be represented by the inf–sup form:

[a] = [a, a] = {x ∈ R | a ≤ x ≤ a},

or by the mid–rad form:

[a] = ⟨c, r⟩ = {x ∈ R | c − r ≤ x ≤ c + r}, r ≥ 0.

Interval matrices or vectors can be represented similarly. For example, [C] = [C, C] ∈ IRm×n is defined by

{C ∈ Rm×n
| C ≤ C ≤ C}

provided

c ij ≤ cij ≤ c ij, 1 ≤ i ≤ m, 1 ≤ j ≤ n
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and using entrywise comparison. For [a], [b] ∈ IR, [a] ◦ [b] with ◦ ∈ {+, −, ∗} is defined by

[a] ◦ [b] := ∩{[c] ∈ IR : a ◦ b ∈ [c] for all a ∈ [a], b ∈ [b]}. (1)

One verifies

[a] + [b] = [a + b, a + b],

[a] − [b] = [a − b, a − b],

[a] ∗ [b] = [min(a ∗ b, a ∗ b, a ∗ b, a ∗ b), max(a ∗ b, a ∗ b, a ∗ b, a ∗ b)].

Interval matrix multiplication is defined similar to (1). Oishi and Rump [4,8] developed an algorithm for interval matrix
multiplication by clever use of themidpoint–radius interval. The dominant computations in their algorithmare four floating-
point matrix products. Therefore, the computational performance of their algorithm is high since it receives much benefit
from optimized BLAS. Ogita and Oishi [9] reduced the number of floating-point matrix products to two at the cost of wider
output intervals. Alternative algorithms were developed in [10].

The aimof this paper is to investigate fast algorithmswhich arewell-balanced between tightness of the result interval and
computational performance. We introduce three new algorithms for real interval matrix multiplication. There is a tradeoff
between tightness of the result interval and the number of matrix products. One of the algorithmsmainly requires only one
floating-point matrix product, the others mainly involve two or three matrix products, respectively. Our algorithms quickly
predictwhich terms in the interval computations becomedominant radii. After that, computational efforts aremade in order
to avoid the overestimation of the radius. From numerical examples, the tightness of the result interval by the proposed
algorithms is comparable to that by Oishi–Rump’s algorithm in many cases.

This paper is organized as follows. In the following section, we introduce earlier work of interval arithmetic: rounded
interval arithmetic, naive interval arithmetic, interval matrix multiplication by Oishi and Rump and its fast variant by Ogita
and Oishi. In Section 3, we investigate algorithms to compute interval matrix multiplication with one, two and three matrix
products in turn. In Section 4, we specialize the proposed algorithms into a product of a point matrix and an interval matrix.
Numerical examples are shown in Sections 3 and 4 to illustrate the efficiency of the proposed algorithms. In this paper,
MATLAB-like notation [11] is used for readability. It implies that all expressions are evaluated by floating-point arithmetic.

2. Interval matrix multiplication

In this section, we state earlier work of real interval matrix multiplication. First, we briefly review rounded interval
arithmetic and naive interval arithmetic. Next, an algorithm developed by Oishi and Rump is introduced. Finally, we explain
an algorithm developed by Ogita and Oishi.

2.1. Rounded interval arithmetic and naive interval arithmetic

First of all, we introduce the notation used in this paper. Let F be the set of binary floating-point numbers defined by
the IEEE 754 standard [12]. Let IF be the set of intervals whose end points are floating-point numbers. An inequality for
matrices X < Y , X, Y ∈ Rm×n means that xij < yij is satisfied for all (i, j). Similar notation is used for inequality for vectors.
For x ∈ Rm, |x| denotes a nonnegative vector with |x| = (|x1|, . . . , |xm|)T . For real and floating-point matrices, similar
notation taking absolute values is used. Let fl(· · ·), fl▽(· · ·) and fl△(· · ·) denote that an expression inside the parenthesis is
performed by pure floating-point arithmetic [12,13] with rounding to nearest, rounding downward and rounding upward,
respectively. In algorithms,weuse the following functionwhich switches roundingmodes defined by the IEEE 754 standard:

• setround(−1): rounding downward,
• setround(0): rounding to nearest,
• setround(1): rounding upward.

The above-mentioned function is used in INTLAB [4]. A function infsup(a, a) for a, a ∈ F with a ≤ a indicates an interval
[a] ∈ IF such that

[a] = infsup(a, a) = {x ∈ R | a ≤ x ≤ a}. (2)

For c, r ∈ F with r ≥ 0, a function midrad(c, r) outputs an enclosure of ⟨c, r⟩ by

midrad(c, r) = [fl▽(c − r), fl△(c + r)]. (3)

Note that ⟨c, r⟩ ⊆ midrad(c, r) since the end-points must be represented by floating-point numbers, respectively. The
following algorithm computes a pair ⟨M, R⟩ of a midpoint and a radius from inf–sup form [A, A] by floating-point arithmetic
such that [A, A] ⊆ ⟨M, R⟩.
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Algorithm 1 (Oishi [4]). For [A] ∈ IRm×n, the following algorithm computes a center M and radius R of [A] such that
[A] ⊆ ⟨M, R⟩.

function [M, R] = Is2Mr([A])

setround(1);
M = A + 0.5 ∗ (A − A);

R = M − A;

end

We introduce naive interval arithmetic for real interval matrix multiplication [A][B], where [A] ∈ IFm×n, [B] ∈ IFn×p.
Interval arithmetic can be applied to each scalar operation in matrix multiplication straightforwardly (the strategy is called
naive interval arithmetic). For example, for [a], [b] ∈ IF, [a] + [b] is enclosed by

[a] + [b] ⊆ [fl▽(a + b), fl△(a + b)]. (4)

A product [a] ∗ [b] is enclosed by

[a] ∗ [b] ⊆ [fl▽(min(a ∗ b, a ∗ b, a ∗ b, a ∗ b)), fl△(max(a ∗ b, a ∗ b, a ∗ b, a ∗ b))]. (5)

Therefore, it is possible to obtain the enclosure of [A][B] by using (4) and (5). But O(n3) switches of rounding mode are
necessary. Or, for example, the following procedure based on rank-1 updates introduced in Rump’s paper [4] is applicable
to obtain [A][B] ⊆ [C] with two switches of rounding mode:

C = zeros(m, p);
C = zeros(m, p);
setround(−1);
for i = 1 : n

C = C + min(A(:, i) ∗ B(i, :), A(:, i) ∗ B(i, :),

A(:, i) ∗ B(i, :), A(:, i) ∗ B(i, :));
end
setround(1);
for i = 1 : n

C = C + max(A(:, i) ∗ B(i, :), A(:, i) ∗ B(i, :),

A(:, i) ∗ B(i, :), A(:, i) ∗ B(i, :));
end
[C] = infsup(C, C);

The number of switching rounding modes in the above-mentioned approach is much less than that in naive interval
arithmetic. In particular, this algorithm is fast in terms of interpretation overhead in MATLAB. Naive interval computations
have an advantage of tightness of the interval, compared to midpoint–radius computations introduced later. However, it
takes much computing time compared to pure floating-point matrix multiplication. There are the following two reasons.
First, the algorithm includes many branches for taking the maximum and the minimum. Next reason is that optimized
BLAS (Basic Linear Algebra Subprograms) is usually used for computations of pure floating-point matrix multiplication.
For example, GotoBLAS [14], Intel Math Kernel Library and ATLAS [15] are well-known as optimized BLAS. The routines
of matrix multiplication are highly optimized for various architectures, so that the computational performance is nearly
peak. However, such BLAS-3 routines cannot be applied for these interval computations. This is a principal problem of any
implementation of naive interval arithmetic for interval matrix multiplication.

2.2. Oishi–Rump’s algorithm

Oishi and Rump [16,17,4] promote a fast algorithm for interval matrixmultiplication. Themidpoint–radius form is useful
for interval matrix multiplication since we can exploit fast routines for matrix multiplication, for example, xGEMM in BLAS.
For [A] ∈ IFm×n and [B] ∈ IFn×p, we first execute

[MA, RA] = Is2Mr([A]), [MB, RB] = Is2Mr([B]) (6)

for converting inf–sup form to mid–rad form. Let rC be

rC = fl△(|MA|RB + RA(|MB| + RB)).
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Interval matrix multiplication [A][B] can be enclosed by floating-point arithmetic as follows:

[A][B] ⊆ [MA − RA,MA + RA][MB − RB,MB + RB] (7)
⊆ [fl▽(MAMB − rC), fl△(MAMB + rC)] =: [W ]. (8)

This means that four matrix products

fl▽(MAMB), fl△(MAMB), fl△(|MA|RB), fl△(RA(|MB| + RB)) (9)

suffice for the evaluation of an inclusion of [A][B]. The total computational cost of evaluation (8) is 8mnp+ O(mp) + O(np)
flops.1 The following is an algorithm outputting [W ] in (8).

Algorithm 2 (Oishi–Rump [17,8]). For [A] ∈ IFm×n and [B] ∈ IFn×p, the following algorithm computes an enclosure of [A][B],
i.e., [A][B] ⊆ [C]. It involves four matrix products.

function [C] = midrad_mul([A], [B])
[MA, RA] = Is2Mr([A]);

[MB, RB] = Is2Mr([B]);
setround(1);
R = abs(MA) ∗ RB + RA ∗ (abs(MB) + RB);

C = MA ∗ MB + R;
setround(−1);
C = MA ∗ MB − R;

[C] = infsup(C, C); %[C] = [W ] in (8)
end

Interval matrix multiplication by midpoint–radius representation is well-known; see e.g. [20,21]. However, until
INTLAB [4] it was not used in interval libraries because of fear of overestimation. In [17], Rump showed that the
overestimation is usually small, and that it is globally limited to 50% in theworst case. Therefore, it is used in INTLAB because
the performance compared naive interval arithmetic increases by orders of magnitude.

2.3. Ogita–Oishi’s algorithm

We introduce an algorithm for interval matrix multiplication in [9]. They used the fact that all elements in |MA|, RB, RA
and (|MB| + RB) are nonnegative. Therefore, upper bounds for |MA|RB and RA(|MB| + RB) can be obtained without full matrix
multiplication. For X ∈ Fm×n and Y ∈ Fn×p, they developed a fast algorithm computing an upper bound of |X ||Y |. Let
s, t ∈ Fn denote

sj = max
1≤i≤m

|xij|, ti = max
1≤j≤p

|yij|. (10)

Then,

fl△(|X ||Y |) ≤ fl△

min(e · (sT · |Y |), (|X | · t) · f T )


, (11)

where e = (1, 1, . . . , 1)T ∈ Rm and f = (1, 1, . . . , 1)T ∈ Rp. The computational cost for (10) and (11) is O(mn) + O(np) +

O(mp) flops compared to 2mnp flops for fl△(|X ||Y |). The following implements algorithm (11).

Algorithm 3 (Ogita and Oishi [22]). For floating-point matrices X ∈ Fm×n and Y ∈ Fn×p with X ≥ 0 and Y ≥ 0, the following
algorithm outputs an upper bound U of XY with O(mn) + O(mp) + O(np) flops.

function U = fastNN(X, Y )

n = size(X, 2);
setround(1);
p1 = X ∗ max(Y , [ ], 2); % X ∗ v, v(i, 1) = max

1≤j≤p
Yij

p2 = max(X) ∗ Y ; % w ∗ Y , w(1, j) = max
1≤i≤m

Xij

U = min(repmat(p1, 1, n), repmat(p2, n, 1));
end

1 The notation ‘flops’ means the number of floating-point operations. It is frequently used in [18,19]. Note that it does not mean ‘floating-point number
operations per second’ in this paper.
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All elements in the result by fastNN(X, Y ) bound those of fl△(|X | ∗ |Y |) from above. If the elements in |X | and |Y | are
of similar order of magnitude, then the overestimation of the upper bounds by Algorithm 3 is not so serious. By using
Algorithm 3, the number of matrix products in (9) can be reduced since upper bounds of twomatrix products are computed
by

fl△(|MA|RB) ≤ fastNN(|MA|, RB) := K1,

fl△(RA(|MB| + RB)) ≤ fastNN(RA, fl△(|MB| + RB)) := K2.

Then, [A][B] is enclosed by

[A][B] ⊆ [fl▽(MAMB) − K1 − K2, fl△(MAMB) + K1 + K2].

In total, Ogita–Oishi’s algorithm involves two matrix products for interval matrix multiplication. We write Ogita–Oishi’s
algorithm as follows.

Algorithm 4 (Ogita and Oishi [9]). For matrices [A] ∈ IFm×n and [B] ∈ IFn×p, the following algorithm returns an enclosure
[C] ∈ IFm×p of [A][B]:

function [C] = fastInReII([A], [B])
[MA, RA] = Is2Mr([A]);

[MB, RB] = Is2Mr([B]);
setround(−1);
T = MA ∗ MB;

setround(1);
T = MA ∗ MB;

M = T + 0.5 ∗ (T − T );

R = M − T + fastNN(abs(MA), RB) + fastNN(RA, abs(MB) + RB);

[C] = midrad(M, R); %[W ] ⊆ [C]

end

3. Proposed algorithms

In this section, we develop three algorithms for computing an interval matrix product. The difference among our
algorithms is the number of matrix products and tightness of the result interval. In Section 3.1, we introduce a technique
which accelerates interval computations for special matrices. In Section 3.2, we develop an algorithm which involves
only one matrix product for interval matrix multiplication. Next, we investigate algorithms which require two or three
matrix products for interval matrix multiplication in turn. Finally, pseudo-codes of the proposed algorithms and numerical
examples are given.

3.1. Acceleration of interval arithmetic

Before proposing our algorithms, we suggest a technique accelerating interval computations for special matrices when
the magnitude of midpoints is much smaller than the radii in many cases. Let us show an example:

M(1)
:=

100 1 1
1 1 100
1 100 1


, R(1)

:=

10 10 10
10 10 10
10 10 10


.

M(2)
:=

2 1 2
1 1 2
1 2 1


, R(2)

:=

0.1 0.1 0.1
0.1 0.1 0.1
0.1 0.1 0.1


.

Then,

⟨M(1), R(1)
⟩ · ⟨M(2), R(2)

⟩ =


[148.8, 255.2] [49.8, 156.2] [139.8, 266.2]
[49.8, 156.2] [148.8, 255.2] [40.8, 167.2]
[49.8, 156.2] [49.8, 156.2] [139.8, 266.2]


. (12)
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We simplify this interval matrix multiplication. If |M(1)
ij | is sufficiently smaller than R(1)

ij , we increase the radius and make
the center zero, namely

if α|M(1)
|ij ≤ R(1)

ij

R(1)′
= R(1)

ij + |M(1)
|ij;

M(1)′
ij = 0;

else
M(1)′

ij = M(1)
ij

R(1)′
ij = R(1)

ij

end

For α ≥ 10, this results in

M(1)′
:=

100 0 0
0 0 100
0 100 0


, R(1)′

:=

10 11 11
11 11 10
11 10 11


.

Therefore, we obtain ⟨M(1), R(1)
⟩ ⊆ ⟨M(1)′ , R(1)′

⟩ and

⟨M(1)′ , R(1)′
⟩ · ⟨M(2), R(2)

⟩ =


[144.8, 255.2] [43.8, 156.2] [133.8, 266.2]
[43.8, 156.2] [144.8, 255.2] [32.8, 167.2]
[43.8, 156.2] [43.8, 156.2] [133.8, 266.2]


. (13)

Note that result (13) is not so overestimated compared to (12). In addition, M(1) becomes a sparse matrix in this case.
Generally, if the number of zero elements is sufficiently large, then it is expected that a calculation of sparse matrix
multiplication is faster than that of densematrix multiplication.We define β such that if the amount of nonzero elements in
amatrix is less than 100∗β percent, the sparse computationswork faster than the dense computations.2 The performance of
interval computations can be accelerated without much overestimation of the width for such special interval matrices. If α
is sufficiently large (at least α should be greater than 10), then the overestimation of the width is not serious (see Theorem 1
in details). We now give the following algorithm based on above-mentioned discussion.

Algorithm 5. If fl△(α|(MA)ij|) ≤ (RA)ij are satisfied in more than β ∗ m ∗ n pairs of (i, j), then we slightly expand the
corresponding radii and adopt a sparse form as a representation ofMA.

function [MA, RA] = SP_check(MA, RA, α, β)

[m, n] = size(MA);

D = abs(MA);

setround(1);
T = (α ∗ D ≤ RA);

if nnz(T ) > β ∗ m ∗ n
RA(T ) = RA(T ) + D(T );

MA(T ) = 0;
MA = sparse(MA);

end
end

If Algorithm 5 changes bothMA andMB into the sparse forms, the intervals become little wider. Therefore, upper bounds of
|MA|RB and RA(|MB| + RB) in Algorithms 2 and 4 are also overestimated. However, this expansion seems to be negligible for
large α. We explain it by the following theorem.

Theorem 1. If we apply

[M ′

A, R
′

A] = SP_check(MA, RA, α, β), [M ′

B, R
′

B] = SP_check(MB, RB, α, β),

2 The constant β depends on computational environments.
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then

R′

A(|M
′

B| + R′

B) ≤


(1 + 2u)


1 +

1
α

2

RA(|MB| + RB),

|M ′

A|R
′

B ≤ (1 + 2u)


1 +

1
α


|MA|RB

are satisfied. Here u denotes the unit roundoff. For the IEEE 754 standard [12,13], u is 2−53 for double precision (binary 64)
floating-point arithmetic. For single precision (binary 32), u is 2−24.

Proof. From Algorithm 5, the following two relations can be obtained:

fl△(α|MA|ij) ≤ (RA)ij H⇒ (R′

A)ij := fl△((RA)ij + |MA|ij)

fl△(α|MA|ij) > (RA)ij H⇒ (R′

A)ij := (RA)ij.

In either case, we obtain

R′

A ≤ fl△


RA +

1
α
RA


, |M ′

A| ≤ |MA|.

Similarly, we have

R′

B ≤ fl△


RB +

1
α
RB


, |M ′

B| ≤ |MB|.

For a, b ∈ F, the definition of floating-point arithmetic by the IEEE 754 standard yields

fl△(a + b) ≤ (1 + 2u)|a + b|.

First, we derive an upper bound of R′

A(|M
′

B| + R′

B):

R′

A(|M
′

B| + R′

B) ≤ fl△


RA +

1
α
RA


|MB| + fl△


RB +

1
α
RB


≤ (1 + 2u)


RA +

1
α
RA


|MB| + (1 + 2u)


RB +

1
α
RB


= (1 + 2u)


1 +

1
α


RA ·


|MB| + (1 + 2u)


1 +

1
α


RB


≤


(1 + 2u)


1 +

1
α

2

RA(|MB| + RB).

Next, we take an upper bound of |M ′

A|R
′

B as follows:

|M ′

A|R
′

B ≤ |MA|fl△


RB +

1
α
RB


≤ (1 + 2u)|MA|


RB +

1
α
RB


≤ (1 + 2u)


1 +

1
α


|MA|RB.

This completes the proof. �

We have shown that the upper bounds of R′

A(|M
′

B| + R′

B) and |M ′

A|R
′

B are not significantly overestimated by Algorithm 5.
We cannot derive

[fl▽(M ′

AM
′

B), fl△(M ′

AM
′

B)] ⊆ [fl▽(MAMB), fl△(MAMB)].

However, if α is large, this is not a serious problem. The reason is as follows. There exist DA ∈ Fm×n and DB ∈ Fn×p which
satisfy

M ′

A = MA + DA, M ′

B = MB + DB, |DA| ≤
1
α
RA, |DB| ≤

1
α
RB.
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Then, |M ′

AM
′

B − MAMB| can be bounded by

|M ′

AM
′

B − MAMB| = |(MA + DA)(MB + DB) − MAMB|

= |MADB + DAMB + DADB|

≤ |MA||DB| + |DA||MB| + |DA||DB|

≤
1
α

|MA|RB +
1
α
RA|MB| +

1
α2

RARB. (14)

We evaluate |MA|RB and RA(|MB| + RB) in (8). Therefore, when α is large, first and second terms in (14) are smaller than
them. Moreover, 1

α2 RARB is negligible.
Now, we consider two forms for the enclosure of [A][B].

[A][B] ⊆ [MAMB − |MA|RB − RA(|MB| + RB), MAMB + |MA|RB + RA(|MB| + RB)] (∗)

[A][B] ⊆ [MAMB − RA|MB| − (|MA| + RA)RB, MAMB + RA|MB| + (|MA| + RA)RB]. (∗∗)

Form (∗) has already been introduced in Section 3.2. Based on (∗∗), the similar algorithms can be developed. As a strategy
by Oishi and Rump, if MA is a sparse matrix while MB is not a sparse matrix, then it is better to compute interval matrix
multiplication by (∗) in terms of computing time. IfMB is a sparse matrix whileMA is not a sparse matrix, then it is better to
compute it by (∗∗) in terms of computing time. As for strategy by Ogita and Oishi, there is almost no difference in computing
time between the use of (∗) and (∗∗). Accuracy of a result by using (∗) is almost the same as that by using (∗∗) for both
algorithms. From the next subsection, we develop algorithms based on (∗). Similar discussions apply to (∗∗).

3.2. Algorithm with one matrix product

We suggest an algorithm which involves only one matrix product for interval matrix multiplication. First, we introduce
an a priori error bound for pure floating-point matrix multiplication. For X ∈ Fm×n and Y ∈ Fn×p, if no underflow occurs, it
holds from [19] that

|XY − fl(XY )| ≤ γn|X ||Y |, γn =
nu

1 − nu
, n ∈ N, n < u−1.

Let γ n be fl△(nu/(1 − nu)). It follows that

XY ⊆ ⟨fl(XY ), γn|X ||Y |⟩ ⊆ midrad(fl(XY ), fl△(γ n|X ||Y |)), (15)
XY ⊆ infsup(fl▽(fl(XY ) − fl△(γ n|X ||Y |)), fl△(fl(XY ) + γ n|X ||Y |)).

Let S1, S2 and S3 denote

S1 = rad(infsup(fl▽(MAMB), fl△(MAMB))),

S2 = fl△(|MA|RB),

S3 = fl△(RA(|MB| + RB)).

(16)

Here, rad(. . .) returns a radius of an interval in the parentheses.3 Let T1, T2 and T3 denote

T1 := fl△(γ n ∗ fastNN(|MA|, |MB|)),

T2 := fastNN(|MA|, RB),

T3 := fastNN(RA, fl△(|MB| + RB)).

(17)

Form (7) is enclosed by

⟨MAMB, |MA|RB + RA(|MB| + RB)⟩. (18)

Since (15), |MA|RB ≤ S2 ≤ T2 and RA ∗ (|MB| + RB) ≤ S3 ≤ T3, interval (18) can be enclosed by

midrad(fl(MAMB), fl△(T1 + T2 + T3)) =: [Y ]. (19)

The evaluation of (19) involves only one matrix product fl(MAMB) in rounding to nearest. An algorithm evaluating (19) is
denoted by

[C] = IMM1([A], [B], α, β).

The detail of the function IMM1([A], [B], α, β) is described in Section 3.5. The total computational cost of this algorithm is
2mnp + O(mn) + O(mp) + O(np) flops. Note that the radius of the interval [W ] is nearly S1 + S2 + S3, so that [Y ] in (19) is
a superset of [W ].

3 The result may be larger than the true radius since the true radius is not a floating-point number.
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3.3. Algorithm with two matrix products

Recall that the radius of a result by IMM1([A], [B], α, β) is fl△(T1+T2+T3). First, T1, T2 and T3 in (17) are evaluated. To find
out which becomes a dominant radius in [Y ] in (19) with cheap cost, all elements in T1, T2 and T3 are added in floating-point
arithmetic, respectively, i.e.

m1 = fl


m−
i=1

p−
j=1

(T1)ij


, m2 = fl


m−
i=1

p−
j=1

(T2)ij


, m3 = fl


m−
i=1

p−
j=1

(T3)ij


. (20)

In MATLAB notation, m1 = sum(T1(:)). It is also possible to use other criteria such as the maximum elements in T1, T2
and T3

max(T1(:)), max(T2(:)), max(T3(:)),

or the maximum norm

norm(T1, inf), norm(T2, inf), norm(T3, inf)

as an alternative form1,m2 andm3. Remark that there is no matrix multiplication until now. Ifm1 is the largest of the three,
our algorithm spends a good amount of effort to avoid overestimation of the enclosure ofMAMB. Namely, [A][B] is enclosed
by

[fl▽(MAMB − T2 − T3), fl△(MAMB + T2 + T3)]. (21)

Here, two matrix products fl△(MAMB) and fl▽(MAMB) appear in (21). If m2 is the largest, T2 seems to become the dominant
radius in [Y ]. Let G be fl△(|MA|(γ n|MB| + RB)). Then, we have

γn|MA||MB| + |MA|RB ≤ G.

Therefore, [A][B] is enclosed by ⟨fl(MAMB), fl△(G+T3)⟩. There are twomatrix products: fl(MAMB) and fl△(|MA|(γn|MB|+RB)).
If m3 is the largest, AB is enclosed by using S3 instead of T3:

⟨fl(MA ∗ MB), T1 + T2 + S3⟩ (22)

In (22), there are two matrix products: fl(MAMB) and fl△(RA(|MB| + RB)). In any case, our algorithm involves two matrix
products. This algorithm is denoted by

[C] = IMM2([A], [B], α, β),

and is described in detail in Section 3.5. If one of m2 and m3 is large compared to the other two, it is expected that this
algorithm outputs a tighter interval than Algorithm 4. If the orders of the magnitude inm1,m2 andm3 are almost the same,
this algorithm can hardly improve the tightness of the interval in the sense of average.

Observation 1. For [A] ∈ IRm×n and [B] ∈ IRn×p, two algorithms are executed as follows:

[C3] = fastInReII([A], [B]), [C4] = IMM2([A], [B], α, β).

If m1 is the largest of the three, [C4] = [C3] is satisfied. If m2 is the largest, then we have

rad([C3]) ≈ S1 + T2 + T3, (23)
rad([C4]) ≈ |MA|(γn|MB| + RA) + T3 ≈ γn|MA||MB| + S2 + T3.

Since T2 seems to be a dominant termand S2 ≤ T2 is satisfied,we can expect rad([C3]) > rad([C4]). However, it is not guaranteed
because we may obtain S2 = T2 in the worst case. Then, from S1 ≤ γn|MA||MB|, rad([C3]) < rad([C4]) may be satisfied. If m3
is the largest, then we have

rad([C4]) ≈ γnfastNN(|MA|, |MB|) + T2 + S3.

Since T3 seems to be the dominant radius in this case and S3 ≤ T3, we expect rad([C4]) < rad([C3]). However, if S3 = T3 may
be satisfied, then we may obtain rad([C3]) < rad([C4]).

3.4. Algorithm with three matrix products

Next, we develop an algorithmwhich involves threematrix products for intervalmatrixmultiplication. First, we compute
T1, T2 and T3 in (17) andm1,m2 andm3 in (20). Our algorithm predicts which is the minimum of the three (m1,m2 andm3).
If m1 is the smallest, the resultant interval is obtained by ⟨fl(MAMB), fl△(G + S3)⟩. If m2 is the smallest, then a result is
obtained by

[fl▽(MAMB − T2 − S3), fl△(MAMB + T2 + S3)].
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Otherwise (m3 is the smallest), our algorithm outputs

[fl▽(MAMB − S2 − T3), fl△(MAMB + S2 + T3)].

In any case, the proposed algorithm involves three matrix products. This algorithm is denoted by

[C] = IMM3([A], [B], α, β).

If one of m1,m2 and m3 is small compared to others, this algorithm may output tighter intervals than Algorithm 4 and the
algorithms proposed in Sections 3.2 and 3.3. If the orders of magnitude ofm1,m2 andm3 are almost the same, this algorithm
cannot efficiently improve the tightness of the interval.

Observation 2. For [A] ∈ IRm×n and [B] ∈ IRn×p, two algorithms are executed as follows:

[C3] = fastInReII([A], [B]), [C4] = IMM3([A], [B], α, β).

If m2 is the smallest, then the radius of [C4] is approximately

rad([C4]) ≈ S1 + T2 + S3.

If m3 is the smallest, then the radius of [C3] is nearly

rad([C4]) ≈ S1 + S2 + T3.

From little considerations, rad([C4]) ≤ rad([C3]) is satisfied when m2 or m3 is the smallest. If m1 is the smallest, then it holds
that

rad([C4]) ≈ |MA|(γnMB + RB) + S3 ≈ γn|MA||MB| + S2 + S3.

Therefore, we can expect rad([C4]) ≤ rad([C3]). In the worst case, there exist cases: T2 = S2 and T3 = S3. If S1 ≤ γn|MA||MB|

is satisfied, then rad([C3]) ≤ rad([C4]) may be satisfied.

3.5. Pseudo-codes

We give pseudo-codes of algorithms developed in Sections 3.2–3.4. All pseudo-codes work in INTLAB [4] almost as is. We
explain arguments of the functions. Let [A] ∈ Fm×n and [B] ∈ Fn×p. Two constants α and β are arguments for Algorithm 5.
We define a function gamma(n) which computes an upper bound of γn. First, we give an algorithm calculating common
factors in the proposed algorithms.

Algorithm 6. The following algorithm outputs common elements used in proposed algorithms.

function [MA, RA,MB, RB, T ] = Common([A], [B], α, β)

[MA, RA] = Is2Mr([A]);

[MB, RB] = Is2Mr([B]);
[MA, RA] = SP_check(MA, RA, α, β);

[MB, RB] = SP_check(MB, RB, α, β);

n = size(A, 2);
setround(1);
T {1} = gamma(n) ∗ fastNN(abs(MA), abs(MB));

if issparse(MB) == 1
T {2} = fastNN(RA, abs(MB));

T {3} = fastNN(abs(MA) + RA, RB);

else
T {2} = fastNN(abs(MA), RB);

T {3} = fastNN(RA, abs(MB) + RB);

end
end

Next, we show the source code of algorithms discussed in Sections 3.2–3.4.
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Algorithm 7. For matrices [A] ∈ IFm×n and [B] ∈ IFn×p, the following algorithm returns an enclosure [C] ∈ IRm×p of [A][B]
with one matrix product:

function [C] = IMM1([A], [B], α, β)

[MA, RA,MB, RB, T ] = Common([A], [B], α, β);

setround(0);
M = MA ∗ MB;

setround(1);
[C] = midrad(M, T {1} + T {2} + T {3});

end

Algorithm 8. For matrices [A] ∈ IFm×n and [B] ∈ IFn×p, the following algorithm returns an enclosure [C] ∈ IRm×p of [A][B]
with two matrix products:

function [C] = IMM2([A], [B], α, β)

[MA, RA,MB, RB, T ] = Common([A], [B], α, β);

me(1) = sum(sum(T {1}));
me(2) = sum(sum(T {2}));
me(3) = sum(sum(T {3}));
[temp, i] = max(me);
if i == 1

setround(−1);
Qd = MA ∗ MB − T {2} − T {3};
setround(1);
Qu = MA ∗ MB + T {2} + T {3};
[C] = infsup(Qd,Qu);

else
setround(0);
M = MA ∗ MB;

setround(1);
if issparse(MB) == 1

if i == 2
T {2} = abs(MA) ∗ (gamma(n) ∗ abs(MB) + RB);

[C] = midrad(M, T {2} + T {3});
else

T {3} = RA ∗ (abs(MB) + RB);

[C] = midrad(M, T {1} + T {2} + T {3});
end

else
if i == 2

T {2} = RA ∗ abs(MB);

[C] = midrad(M, T {1} + T {2} + T {3});
else

T {3} = (gamma(n) ∗ abs(MA) + RA) ∗ RB;

[C] = midrad(M, T {2} + T {3});
end

end
end

end
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Algorithm 9. For matrices [A] ∈ IFm×n and [B] ∈ IFn×p, the following algorithm returns an enclosure [C] ∈ IRm×p of [A][B]
with three matrix products:

function [C] = IMM3([A], [B], α, β)

[MA, RA,MB, RB, T ] = Common([A], [B], α, β);

me(1) = sum(sum(T {1}));
me(2) = sum(sum(T {2}));
me(3) = sum(sum(T {3}));
[temp, i] = min(me);
if issparse(MB) == 1

if i == 1
M = MA ∗ MB;

setround(1);
T {2} = abs(MA) ∗ (gamma(n) ∗ abs(MB) + RB);

T {3} = RA ∗ (abs(MB) + RB);

[C] = midrad(M, T {2} + T {3});
else

setround(−1);
Qd = MA ∗ MB;

setround(1);
Qu = MA ∗ MB;

[Q ] = infsup(Qd,Qu);
if i == 2

T {3} = RA ∗ (abs(MB) + RB);

[C] = midrad(mid([Q ]), rad([Q ]) + T {2} + T {3});
else

T {2} = abs(MA) ∗ RB;

[C] = midrad(mid([Q ]), rad([Q ]) + T {2} + T {3});
end

else
if i == 1

M = MA ∗ MB;

setround(1);
T {2} = RA ∗ abs(MB);

T {3} = (gamma(n) ∗ abs(MA) + RA) ∗ RB;

[C] = midrad(M, T {2} + T {3});
else

setround(−1);
Qd = MA ∗ MB;

setround(1);
Qu = MA ∗ MB;

[Q ] = infsup(Qd,Qu);
if i == 2

setround(1);
T {3} = (abs(MA) + RA) ∗ RB;

[C] = midrad(mid([Q ]), rad([Q ]) + T {2} + T {3});
else

T {2} = RA ∗ abs(MB);
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[C] = midrad(mid([Q ]), rad([Q ]) + T {2} + T {3});
end

end
end

3.6. Numerical experiments

We present numerical examples to illustrate the efficiency of the proposed algorithms. First, we generate two point
matrices P and Q by

P = randn(n), Q = randn(n), (24)

where the randn(n) function generates an n-by-n floating-pointmatrix whose elements are taken from normal distribution
with mean 0 and variance 1. Next, interval matrices [A] and [B] are generated by

[A] = [fl(P − c|P|), fl(P + c|P|)], [B] = [fl(Q − d|Q |), fl(Q + d|Q |)], (25)

where both c and d are positive constants. We compare computational performance and tightness of resultant intervals by
the following five algorithms:

• M1: Algorithm 2 ([C1] = midrad_mul([A], [B])), (4 matrix products)
• M2: Algorithm 7 ([C2] = IMM1([A], [B], 100, 0.1)), (1 matrix product, the proposed algorithm)
• M3: Algorithm 4 ([C3] = fastInReII([A], [B])), (2 matrix products)
• M4: Algorithm 8 ([C4] = IMM2([A], [B], 100, 0.1)), (2 matrix products, the proposed algorithm)
• M5: Algorithm 9 ([C5] = IMM3([A], [B], 100, 0.1)), (3 matrix products, the proposed algorithm).

All examples in this subsection are tested on Intel Xeon X5550 2.67 GHz, MATLAB 2010a and INTLAB version 6. Let lk,mk
and sk denote

lk = max(max(rad([Ck])./rad([C1]))),

mk = mean(mean(rad([Ck])./rad([C1]))).

Each item in Tables 1, 3 and 5 shows l2, l3, l4 and l5 in turn with various c and d. Tables 2, 4 and 6 displays m2, . . . ,m5 in
each item, respectively.4 We generatematrices with dimension 1000, 5000 and 10000 by n in (24) for these examples. From
Tables 1–6, it can be confirmed that there is a tradeoff between the number of matrix products and tightness of the interval.
M1 outputs the tightest interval of all. While both M3 and M4 require two matrix products, the result interval by M4 is
narrower than that by M3 in these examples. Although the number of matrix products in M4 and M5 are less than that of
M1, M4 and M5 can work as well as M1 in terms of the accuracy in many cases. From Tables 1–6, the result by M2 is not
significantly overestimated except c = d = 10−15.

Next, we compare the computing times for each algorithm. We generate [A] and [B] in (25) with c = d = 10−15. If we
take another values for c and d, the computing times are not significantly different. The ratio of elapsed times compared to
M1 are shown in Table 7 for various values n. When n is small, we can see thatM5works aswell asM1 in terms of computing
time although the number of matrix products in M5 is less than that in M1. In these cases, the computations with O(n2)
flops were not negligible. In addition, MATLAB’s interpretation overhead slows down the performance. It is also confirmed
that the computing time of M4 is almost the same as M3. From the tables, if n is larger than 2000, computing times of each
algorithm are almost proportional to the number of matrix products (Tables 8 and 9).

Remark 1. It is difficult to clarify when the computing times are related to the number of matrix products. In MATLAB,
the problem is sometimes the interpretation overhead. On a multi-core architecture, it may happen that a routine for
matrix–vector product is not performed by multi-threads although a routine for matrix–matrix product is computed in
parallel. In addition, sparse routines are not performed in parallel in MATLAB (at least until 2010a). The ratio of computing
times depends on the computational environment.

4. Product of point matrix and interval matrix

We specialize the algorithms proposed in Section 3 into a product of a point and an interval matrix. Let A ∈ Fm×n

and [B] ∈ IFn×p, the purpose is to obtain an enclosure of A[B].5 As for a practical example, A is an approximate inverse

4 1.00 in tables is larger than 1, so that the results by our algorithms are a little overestimated.
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Table 1
The maximum ratio of radii (n = 1000).

c \ d 10−15 10−10 10−5 100 105

10−15

l2 215 4.79 4.99 4.85 4.82
l3 3.99 4.78 4.80 4.85 4.82
l4 3.99 1.00 1.00 1.00 1.00
l5 2.49 1.00 1.00 1.00 1.00

10−10

l2 4.79 4.79 4.88 4.81 4.87
l3 4.79 4.79 4.88 4.81 4.87
l4 1.01 2.90 1.00 1.00 1.00
l5 1.00 1.00 1.00 1.00 1.00

10−5

l2 4.83 4.84 4.82 4.88 4.80
l3 4.83 4.84 4.82 4.88 4.80
l4 1.00 1.00 2.91 1.00 1.00
l5 1.00 1.00 1.00 1.00 1.00

100

l2 4.84 4.83 4.88 4.83 4.86
l3 4.84 4.83 4.88 4.83 4.86
l4 1.00 1.00 1.00 2.27 1.00
l5 1.00 1.00 1.00 1.00 1.00

105

l2 4.83 4.83 4.82 4.88 4.76
l3 4.83 4.83 4.82 4.88 4.76
l4 1.00 1.00 1.00 2.94 1.00
l5 1.00 1.00 1.00 1.00 1.00

Table 2
The mean ratio of radii (n = 1000).

c \ d 10−15 10−10 10−5 100 105

10−15

m2 156 4.26 4.24 4.27 4.27
m3 3.13 4.25 4.24 4.27 4.27
m4 3.13 1.00 1.00 1.00 1.00
m5 2.06 1.00 1.00 1.00 1.00

10−10

m2 4.24 4.26 4.26 4.24 4.24
m3 4.24 4.26 4.26 4.24 4.24
m4 1.00 2.63 1.00 1.00 1.00
m5 1.00 1.00 1.00 1.00 1.00

10−5

m2 4.26 4.24 4.24 4.24 4.25
m3 4.26 4.24 4.24 4.24 4.25
m4 1.00 1.00 2.62 2.62 1.00
m5 1.00 1.00 1.00 1.00 1.00

100

m2 4.25 4.26 4.26 4.25 4.25
m3 4.25 4.26 4.26 4.25 4.25
m4 1.00 1.00 1.00 2.08 1.00
m5 1.00 1.00 1.00 1.00 1.00

105

m2 4.25 4.25 4.26 4.25 4.24
m3 4.25 4.25 4.26 4.25 4.24
m4 1.00 1.00 1.00 2.62 1.00
m5 1.00 1.00 1.00 1.00 1.00

matrix of the midpoint of B. This occurs frequently in the solution of linear or nonlinear equations, differential equations
and so on.

4.1. Previous research

First, we introduce two algorithms for the purpose. After executing [MB, RB] = Is2Mr([B]), an enclosure of A[B] is
obtained as follows:

A[B] ⊆ [AMB − |A|RB, AMB + |A|RB] = ⟨AMB, |A|RB⟩.

Oishi–Rump’s algorithm outputs the interval result as

[fl▽(AMB − Rc), fl△(AMB + Rc)], (26)

where Rc = fl△(|A|RB). Evaluation (26) involves three matrix products: fl▽(AMB), fl△(AMB) and fl△(|A|RB). The following is
an algorithm evaluating (26).

5 Similar arguments for [B]A can be done.
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Table 3
The maximum ratio of radii (n = 5000).

c \ d 10−15 10−10 10−5 100 105

10−15

l2 1025 5.14 5.12 5.12 5.12
l3 4.06 5.11 5.12 5.12 5.12
l4 4.06 1.00 1.00 1.00 1.00
l5 2.53 1.00 1.00 1.00 1.00

10−10

l2 5.15 5.13 5.13 5.12 5.11
l3 5.12 5.13 5.13 5.12 5.11
l4 1.02 1.00 1.00 1.00 1.00
l5 1.00 1.00 1.00 1.00 1.00

10−5

l2 5.15 5.11 5.12 5.12 5.11
l3 5.15 5.11 5.12 5.12 5.11
l4 1.00 1.00 1.00 1.00 1.00
l5 1.00 1.00 1.00 1.00 1.00

100

l2 5.13 5.12 5.12 5.11 5.11
l3 5.13 5.12 5.12 5.11 5.11
l4 1.00 1.00 1.00 2.37 1.00
l5 1.00 1.00 1.00 1.00 1.00

105

l2 5.13 5.10 5.11 5.10 5.11
l3 5.13 5.10 5.11 5.10 5.11
l4 1.00 1.00 1.00 1.00 1.00
l5 1.00 1.00 1.00 1.00 1.00

Table 4
The mean ratio of radii (n = 5000).

c \ d 10−15 10−10 10−5 100 105

10−15

m2 830 4.82 4.79 4.80 4.80
m3 3.49 4.80 4.79 4.80 4.80
m4 3.49 1.00 1.00 1.00 1.00
m5 2.24 1.00 1.00 1.00 1.00

10−10

m2 4.82 4.81 4.79 4.79 4.79
m3 4.79 4.80 4.79 4.79 4.79
m4 1.02 2.91 1.00 1.00 1.00
m5 1.00 1.00 1.00 1.00 1.00

10−5

m2 4.80 4.80 4.79 4.80 4.79
m3 4.80 4.80 4.79 4.80 4.79
m4 1.00 1.00 2.89 1.00 1.00
m5 1.00 1.00 1.00 1.00 1.00

100

m2 4.80 4.80 4.80 4.79 4.79
m3 4.80 4.80 4.80 4.79 4.79
m4 1.00 1.00 1.00 2.26 1.00
m5 1.00 1.00 1.00 1.00 1.00

105

m2 4.79 4.79 4.79 4.79 4.79
m3 4.79 4.79 4.79 4.79 4.79
m4 1.00 1.00 1.00 1.00 1.00
m5 1.00 1.00 1.00 1.00 1.00

Algorithm 10 (Oishi–Rump [17,8]). For A ∈ Fm×n and [B] ∈ IFn×p, the following algorithm computes an enclosure of A[B],
i.e., A[B] ⊆ [C]. It involves three matrix products.

function [C] = midrad_PI(A, [B])
[MB, RB] = Is2Mr([B]);
setround(1);
R1 = abs(A) ∗ RB;

C = A ∗ MB + R1;

setround(−1);
C = A ∗ MB − R1;

[C] = infsup(C, C);

end
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Table 5
The maximum ratio of radii (n = 10 000).

c \ d 10−15 10−10 10−5 100 105

10−15

l2 2040 5.30 5.27 5.24 5.24
l3 4.09 5.25 5.27 5.24 5.24
l4 4.09 1.01 1.00 1.00 1.00
l5 2.55 1.00 1.00 1.00 1.00

10−10

l2 5.30 5.29 5.27 5.25 5.27
l3 5.24 5.26 5.27 5.25 5.27
l4 1.05 3.14 1.00 1.00 1.00
l5 1.00 1.00 1.00 1.00 1.00

10−5

l2 5.25 5.24 5.25 5.26 5.27
l3 5.25 5.24 5.25 5.26 5.27
l4 1.00 1.00 3.12 1.00 1.00
l5 1.00 1.00 1.00 1.00 1.00

100

l2 5.26 5.25 5.26 5.23 5.25
l3 5.26 5.25 5.26 5.23 5.25
l4 1.00 1.00 1.00 2.41 1.00
l5 1.00 1.00 1.00 1.00 1.00

105

l2 5.25 5.26 5.25 5.25 5.25
l3 5.25 5.26 5.25 5.25 5.25
l4 1.00 1.00 1.00 1.00 1.00
l5 1.00 1.00 1.00 1.00 1.00

Table 6
The mean ratio of radii (n = 10 000).

c \ d 10−15 10−10 10−5 100 105

10−15

m2 1725 5.06 5.01 5.01 5.01
m3 3.63 5.01 5.01 5.01 5.01
m4 3.63 1.01 1.00 1.00 1.00
m5 2.31 1.00 1.00 1.00 1.00

10−10

m2 5.07 5.04 5.01 5.01 5.01
m3 5.01 5.01 5.01 5.01 5.01
m4 1.05 3.01 1.00 1.00 1.00
m5 1.00 1.00 1.00 1.00 1.00

10−5

m2 5.01 5.01 5.01 5.01 5.01
m3 5.01 5.01 5.01 5.01 5.01
m4 1.00 1.00 3.00 1.00 1.00
m5 1.00 1.00 1.00 1.00 1.00

100

m2 5.01 5.01 5.01 5.01 5.01
m3 5.01 5.01 5.01 5.01 5.01
m4 1.00 1.00 1.00 2.33 1.00
m5 1.00 1.00 1.00 1.00 1.00

105

m2 5.01 5.01 5.01 5.01 5.01
m3 5.01 5.01 5.01 5.01 5.01
m4 1.00 1.00 1.00 1.00 1.00
m5 1.00 1.00 1.00 1.00 1.00

Table 7
The ratio of computing times (c = 10−15, d = 10−15).

Method \ Dimension 500 1000 2000 4000 6000 12000 24000

M1 1.0 1.0 1.0 1.0 1.0 1.0 1.0
M2 0.7 0.49 0.36 0.30 0.29 0.27 0.26
M3 0.6 0.64 0.56 0.53 0.52 0.51 0.50
M4 0.8 0.71 0.60 0.55 0.53 0.52 0.51
M5 1.0 0.98 0.84 0.79 0.79 0.76 0.77

Next, Ogita–Oishi’s algorithm is introduced. Let Q be

Q := fastNN(|A|, RB).

Ogita–Oishi’s algorithm outputs an enclosure of A[B] as

A[B] ⊆ [fl▽(AMB − Q ), fl△(AMB + Q )]. (27)

Evaluation (27) involves two matrix products: fl▽(AMB) and fl△(AMB).
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Table 8
The ratio of computing times (c = 10−15, d = 105).

Method \ Dimension 500 1000 2000 4000 6000 12000 24000

M1 1.0 1.0 1.0 1.0 1.0 1.0 1.0
M2 0.44 0.26 0.13 0.07 0.05 0.02 0.01
M3 0.73 0.63 0.57 0.53 0.52 0.51 0.50
M4 0.70 0.51 0.37 0.31 0.29 0.27 0.26
M5 0.76 0.53 0.39 0.32 0.30 0.30 0.26

Table 9
The ratio of computing times (c = 105, d = 105).

Method \ Dimension 500 1000 2000 4000 6000 12000 24000

M1 1.0 1.0 1.0 1.0 1.0 1.0 1.0
M2 0.44 0.27 0.13 0.07 0.05 0.02 0.01
M3 0.75 0.66 0.57 0.53 0.52 0.51 0.50
M4 0.77 0.54 0.40 0.33 0.30 0.28 0.26
M5 0.97 0.77 0.63 0.57 0.55 0.53 0.52

Algorithm 11 (Ogita and Oishi [22]). For matrices A ∈ Fm×n and [B] ∈ IFn×p, the following algorithm returns an enclosure
[C] ∈ IRm×p of A[B]:

function [C] = fastInRePI(A, [B])
[MB, RB] = Is2Mr([B]);
setround(1);
Q = fastNN(abs(A), RB);

T = A ∗ MB + Q ;

setround(−1);
T = A ∗ MB − Q ;

[C] = infsup(T , T );

end

4.2. Proposed algorithms

We propose two algorithms to compute an enclosure of A[B]. One algorithm requires only one matrix product. The other
requires two matrix products. Define

P := fl△(γ nfastNN(|A|, |MB|)).

Then, A[B] can be enclosed as follows:

A[B] ⊆ ⟨fl(AMB), fl△(P + Q )⟩. (28)

It involves only one matrix product fl(MAMB). We denote an algorithm computing (28) by PIM1(A, [B], α, β).

Algorithm 12. For matrices A ∈ Fm×n and [B] ∈ IFn×p, the following algorithm returns an enclosure [C] ∈ IFm×p of A[B].
The constants α and β are arguments of Algorithm 5.

function [C] = PIM1(A, [B], α, β)

[MB, RB] = Is2Mr([B]);
[MB, RB] = SP_check(MB, RB, α, β);

setround(0);
T = A ∗ MB;

setround(1);
P = gamma(n) ∗ fastNN(abs(A), abs(MB));

Q = fastNN(abs(A), RB);

[C] = midrad(T , P + Q );

end
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Next, we introduce an algorithm with two matrix products. Let q1, q2 be

q1 = fl


m−
i=1

p−
j=1

Pij


, q2 = fl


m−
i=1

p−
j=1

Qij


.

If q1 is larger than q2, then our algorithm computes the enclosure of A[B] by computing (27). Otherwise, our algorithm
outputs the enclosure as

A[B] ⊆ ⟨fl(AMB), fl△(|A|(γ n|MB| + RB))⟩. (29)

Evaluation (29) involves two matrix products: fl(AMB) and fl△(|A|(γn|MB| + RB)). We denote an algorithm computing (28)
by PIM2(A, [B], α, β).

Algorithm 13. For matrices A ∈ Fm×n and [B] ∈ IFn×p, the following algorithm returns an enclosure [C] ∈ IFm×p of A[B]:

function [C] = PIM2(A, [B], α, β)

[MB, RB] = Is2Mr([B]);
[MB, RB] = SP_check(MB, RB, α, β);

setround(1);
P = gamma(n) ∗ fastNN(A, abs(MB));

Q = fastNN(abs(A), RB);

if q1 > q2
T = A ∗ MB + Q ;

setround(−1);
T = A ∗ MB − Q ;

[C] = infsup(T , T );

else
setround(0);
T = A ∗ MB;

setround(1);
R = abs(A) ∗ (gamma(n) ∗ abs(MB) + RB);

[C] = midrad(T , R);
end

end

4.3. Numerical examples

We generate B ∈ IFn×n as

H = gallery(′randsvd′, n, cnd, 3, n, n, 1), B = midrad(H, c ∗ abs(H)),

where c is a small and positive constant. The matrix H is one of Higham’s randsvd test matrices [19] which is supported
in MATLAB.6The argument cnd is the 2-norm condition number of the matrix. Let A be an approximate inverse matrix of H
computed by MATLAB built-in function inv(H). We compare upper bounds for the norms of

• M6: [C6] = I − midrad_PI(A, [B]), using Algorithm 10,
• M7: [C7] = I − fastInRePI(A, [B]), using Algorithm 11,
• M8: [C8] = I − PIM1(A, [B], 0.01, n), using Algorithm 12,
• M9: [C9] = I − PIM2(A, [B], 0.01, n), using Algorithm 13,

where I denotes the identity matrix. The upper bounds are computed by sup(norm([C6], int)) on INTLAB. If the upper
bound of the norm is less than 1, then it is guaranteed that [B] is nonsingular. We set the dimension n as 5000. All examples
in this subsection are tested on Intel Xeon X5550 2.67 GHz, MATLAB 2010a and INTLAB version 6. Each item in Tables 10–12
shows the upper bounds of each norm with various cnd and c.

6 See the detail by typing ‘help private/randsvd’ on MATLAB. Before generating a matrix, we execute randn(′state′, 0), and rand(′state′, 0).
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Table 10
Comparison of the upper bounds of ‖I − A[B]‖∞ (cnd = 104).

c M6 M7 M8 M9

10−8 0.019 0.084 0.084 0.019
10−7 0.189 0.84 0.84 0.189
5 · 10−7 0.946 4.17 4.17 0.946
10−6 1.89 8.35 8.35 1.89

Table 11
Comparison of the upper bounds of ‖I − A[B]‖∞ (cnd = 108).

c M6 M7 M8 M9

10−12 0.010 0.042 0.065 0.016
10−11 0.101 0.418 0.441 0.107
5 · 10−11 0.506 2.08 2.11 0.512
10−10 1.01 4.17 4.20 1.01

Table 12
Comparison of the upper bounds of ‖I − A[B]‖∞ (cnd = 1012).

c M6 M7 M8 M9

10−16 9.25 · 10−1 9.58 · 10−1 1.55 · 102 9.58 · 10−1

10−15 9.84 · 10−1 1.20 · 100 1.55 · 102 1.20 · 100

Table 13
Comparison of the ratio of computing times (cnd = 104, c = 10−15).

Method \ Dimension 500 1000 2000 4000 6000 12000 24000

M6 1.0 1.0 1.0 1.0 1.0 1.0 1.0
M7 0.81 0.74 0.71 0.69 0.68 0.69 0.67
M8 0.65 0.50 0.42 0.38 0.36 0.35 0.34
M9 0.94 0.83 0.75 0.71 0.70 0.68 0.68

It is confirmed by Tables 10–12 that [C6] is the tightest interval of all. The result by PIM1 is comparable to others in these
examples. In addition, it is confirmed that the accuracy of the result by PIM2 is better than that by fastInRePI.7However,
even if we set c = 0 for the matrix with cnd = 1012, the approach M8 cannot verify the non-singularity of the matrix.

Table 13 shows the ratio of computing times with cnd = 104, c = 10−15 for each algorithm with various n (if we
set another cnd and c , the result is not so different). The displayed number in Table 13 excludes time for computing the
approximate inverse. The result shows that our algorithms are efficient for large matrices.

5. Conclusion

In this paper, we have developed new algorithms for computing interval matrix products. Our algorithms first predict
which terms become dominant radii of the resultant intervals. Based on that, we choose an appropriate method to avoid the
overestimation of the interval. As a result, our algorithms are sometimes comparable to Oishi–Rump’s algorithm in terms
of accuracy although our algorithms work faster when the inner dimension of the matrices is large.
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