
Physics Letters B 745 (2015) 64–68

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Testing the consistency between cosmological measurements 

of distance and age

Remya Nair a, Sanjay Jhingan a,∗, Deepak Jain b

a Centre for Theoretical Physics, Jamia Millia Islamia, New Delhi 110025, India
b Deen Dayal Upadhyaya College, University of Delhi, New Delhi 110015, India

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 January 2015
Received in revised form 8 April 2015
Accepted 17 April 2015
Available online 20 April 2015
Editor: M. Trodden

We present a model independent method to test the consistency between cosmological measurements of 
distance and age, assuming the distance duality relation. We use type Ia supernovae, baryon acoustic 
oscillations, and observational Hubble data, to reconstruct the luminosity distance D L(z), the angle-
averaged distance D V (z) and the Hubble rate H(z), using Gaussian processes regression technique. We 
obtain estimate of the distance duality relation in the redshift range 0.1 < z < 0.73 and we find no 
evidence for inconsistency between the data sets used.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

An explanation for the observed accelerated expansion of the 
Universe still eludes cosmologists. The evidence for the existence 
of dark energy (DE), which is believed to source this acceleration 
[1–3], has been continuously piling since the first indications from 
supernovae (SNeIa) observations [4,5]. Thanks to the abundance of 
good quality data cosmology has become a precision science. But 
even in this era of data driven cosmology we know little about 
constituents of our Universe. There are several large cosmologi-
cal surveys that are aiming to answer some of the key question 
in cosmology today, like: what is the source of the acceleration of 
the Universe and what are the properties of this mysterious source. 
Further, there are many ambitious projects that are planned for the 
future [6]. In this scenario it is important to check whether the 
measurements coming from various surveys are consistent with 
each other. This is crucial since multiple probes are often combined 
to put better constraints on cosmological parameters. Considered 
together, one data set resolves the difficulties of the other, allowing 
certain degenerate parameters to be determined with far greater 
precision. A consistency check would also help us to examine dif-
ferent data sets for the presence of systematics.

Knox et al., examined consistency of the different cosmic mi-
crowave background data sets to check whether the data are con-
taminated by some residual non-cosmological signals [7]. Avgous-
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tidis et al., studied the consistency among SNeIa, measurements of 
the Hubble parameter, and the baryon acoustic oscillation scale. 
Regarding the tension between the baryon acoustic oscillation 
scale and SNeIa data in light of possible deviations from trans-
parency, they concluded that the source of the discrepancy may 
most likely be found among systematic effects of the modelling of 
the low redshift data, or it may be a statistical fluke [8]. Shafieloo 
et al., compared two different probes of the expansion history of 
the universe, namely, luminosity distances from SNeIa and angu-
lar diameter distance from galaxy clusters. They proposed a model 
independent method to search for inconsistencies between SNeIa 
and galaxy cluster data sets [9]. More recently, Hazra and Shafieloo 
studied the consistency of the angular power spectrum data from 
WMAP and Planck looking for possible systematics [10]. Cao and 
Zhu used observational data with four angular diameter distance 
measurements and synthetic SNeIa+GRB observations for luminos-
ity distance data, to investigate the tension between these two 
cosmological distances considering three classes of dark energy 
equation of state reconstruction. They found that the angular di-
ameter distance measurements and the luminosity distance data 
are compatible at 1σ level [11]. Ruiz and Huterer tested the con-
sistency of the standard ωCDM model in the framework of General 
Relativity by separating information between the geometry and 
growth of structure. Using data from SNeIa, baryon acoustic os-
cillations, the peak locations in the cosmic microwave background 
angular power spectrum, redshift space distortions, weak gravita-
tional lensing and the abundance of galaxy clusters, and found that 
both geometry and growth separately favour the �CDM cosmol-
ogy [12].
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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In this work we look for consistency in distance and age mea-
surement data sets using the distance duality (DD) relation. We 
use baryon acoustic oscillation (BAO) and SNeIa data for distance 
measurements and observational Hubble data as age measurement. 
The plan of the paper is as follows: we begin with a brief overview 
of DD relation in Section 2, in Section 3 we discuss data sets used 
and a quick overview of Gaussian Processes which is the method-
ology used here, we discuss our results in Section 4.

2. Distance duality relation

In 1933 Etherington proved the reciprocity relation in area 
distances, between a source and an observer in relative motion 
with each other [13]. This relation is valid for any curved space-
time, and even basic symmetry assumptions like homogeneity and 
isotropy are not required. The relation holds as long as gravity is 
described by a metric theory, photons travel on null geodesics and 
the geodesic deviation equation is valid [14,15]. If photon number 
is conserved this further reduces to a relation between the angular 
diameter distance and the luminosity distance [16]:

D L = D A(1 + z)2. (1)

This is termed as the DD relation and plays an important role 
in galaxy cluster observations and lensing studies [17]. Since DD 
is crucial to cosmological studies and plays a key role in how 
galaxy observations are analysed, it is important to check its valid-
ity. Since both the distances in the duality relation are observable 
quantities it is possible to test this relation. Now, there are many 
ways in which cosmic distances are measured. One can look for 
sources that can be used as standard candles for deriving lumi-
nosity distance, and standard rulers can be used to derive angular 
diameter distance. SNeIa can be used as standard candles since 
they have a peak luminosity that is tightly correlated with the 
shape of their light curves and hence they can be calibrated. On 
the other hand, combined measurements of the Sunyaev–Zeldovich 
effect and X-ray analysis (SZE/X-ray) provides a measure of the an-
gular diameter distance to a cluster. The Baryon acoustic feature 
in the matter clustering is another independent distance indica-
tor and can be used as a standard ruler. As observed in previous 
works [18,19], the constraints on the DD obtained from galaxy 
cluster measurements, depend on the assumptions of cluster ge-
ometry (spherical or elliptical). Hence assuming DD to be true, one 
can use it as a probe of cluster geometry. DD has also been used 
to constrain the cosmic opacity between different redshifts.

One of the assumptions in DD, is the conservation of pho-
ton number. Hence, the temperature redshift relation, relating the 
observed and emitted temperature of the cosmic microwave back-
ground photons, which derives from DD, also assumes photon con-
servation. The relation will be modified if this assumption was 
violated. There are many mechanisms that have been proposed 
in literature which give rise to such a violation, for example de-
caying vacuum cosmology, photon axion coupling, etc. In this re-
gard, there have been several attempts to measure the cosmic mi-
crowave background temperature at different redshifts, using, for 
example, quasar absorption line spectra and this can be used to 
test the validity of the temperature shift relation. But since the 
uncertainties are large, more data is required to put robust con-
straints. Testing the DD offers another way to confirm photon con-
servation. Assuming there are some unclustered sources of photon 
attenuation in the Universe, one can use DD to put constraints on 
the difference in opacity between two redshifts. Refer to [8,20,21]
for details of such studies.
3. Methodology and data sets used

3.1. Methodology

As mentioned earlier, we use SNeIa, BAO and observational 
Hubble data to constrain DD (details of the data sets given in 3.2). 
Since SNeIa are expected to form from standard explosion of a 
white dwarf, they are assumed to have homogeneous light curve 
and uniform luminosity. Although there is an intrinsic scatter in 
the peak luminosities of SNeIa, an empirical correlation exists be-
tween the shape of the SNeIa light curve and the SNeIa luminosity. 
Hence these candles can be standardised, and are used as standard 
candles for estimating luminosity distances.

Observational Hubble data is obtained from the measurement 
of the relative ages of passively evolving galaxies. The Hubble rate 
depends on the differential age of the Universe as:

H(z) = − 1

1 + z

dz

dt
, (2)

and hence the determination of dz/dt gives an estimate of H(z). 
For this one has to look for the variation of ages, �t , with red-
shift �z. Collection of galaxy samples of passively evolving galaxies 
with high quality spectroscopy, are used and differential ages for 
the samples are computed. These are then used as estimates of 
dz/dt which eventually gives an estimate of H(z).

BAO refers to a length scale in the distribution of the photons 
and baryons. This scale is imprinted in the matter distribution due 
to the stalling of sound waves in the plasma of the early Uni-
verse, and hence they can be treated as cosmological standard 
rulers. Enough BAO data has not been accumulated to separately 
measure the tangential and radial components of the signal, and 
hence the two distances. But it is possible to constrain an angle-
averaged clustering measurement, obtained from the combination 
of two spatial dimensions orthogonal to the line of sight and one 
dimension along the direction of sight, as defined below [22]:

D3
V = D2

Acz(1 + z)2

H(z)
, (3)

where, D A is the angular diameter distance, z is the redshift and 
H is the Hubble rate.

If the DD relation holds, then we know that the luminosity 
distance and the angular diameter distance are related as D L =
D A(1 + z)2. Let us assume

η = D L

D A(1 + z)2
, (4)

where η = 1 if the DD relation holds. Using this we can rewrite (3)
as

η = D L(cz)1/2

(1 + z)H1/2 D3/2
V

. (5)

Now, if the distance measurements and the age measurements are 
consistent with each other, and the DD holds then η in (5) should 
be equal to 1. A deviation from 1 may imply the breakdown of 
one or more of the assumptions mentioned earlier or it may indi-
cate the presence of some systematic in the data sets used. Many 
authors have studied the DD relation using various data sets [23]. 
Constraints obtained from using cluster data for the angular di-
ameter distance estimate depends on the galaxy cluster model 
assumed. Since we are using BAO data for the angular diameter 
distance estimate our constraints does not contain such biases. An-
other source of error in the analysis of DD is that it is not always 
possible to obtain a luminosity distance estimate and an angular 
diameter distance estimate at the same redshift, and some kind 
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of redshift-matching criteria is adopted. In this work we recon-
struct all the observable quantities (H(z), D V (z) and D L(z)) in the 
redshift range of interest using a non-parametric method called 
Gaussian Processes and then estimate η using these quantities.

As mentioned earlier we take D V (z) measurements from BAO 
data, D L(z) measurements from SNeIa data, and H(z) measure-
ments from the observational Hubble data obtained from differen-
tial ages of passively evolving galaxies, to check the above relation. 
The details of the data sets are given in the next section.

3.2. Data

• To estimate the luminosity distance D L(z) at various red-
shifts we use the distance modulus measurements from SNeIa 
Union2.1 sample, as given in [24]. This sample contains 580
supernovae and spans 0.015 < z < 1.414. In the data set, the 
distance modulus is given in terms of the redshift, and this is 
used to estimate the luminosity distance. The relation between 
the distance modulus μ and the luminosity distance D L is:

μB(z) = mB − MB = 5 log10

(
D L(z)

1 Mpc

)
+ 25, (6)

where MB is the absolute magnitude of the source and mB is 
the apparent magnitude (B is for B-band).

• We use eight measurements from BAO data compiled from dif-
ferent groups in the redshift range 0.106 < z < 0.73. We use 
data from SDSS (z = 0.2, 0.35 and 0.15), 6dFGS (z = 0.106), 
WiggleZ (z = 0.44, 0.6, 0.73) and BOSS (z = 0.57) for estimat-
ing the distance [25–29].

• We also use the observational Hubble data as compiled in [30]. 
Note here that we only use those data points which are ob-
tained from the analysis of differential ages of galaxies.

3.3. Gaussian Processes

A Gaussian Process (GP) is a collection of random variables, any 
finite number of which have a joint Gaussian distribution [31]. Just 
like a Gaussian distribution is a distribution of a random variable 
(characterised by a mean and a covariance), a GP is a distribution 
over functions. It is characterised by a mean function and a covari-
ance matrix. In a regression analysis the aim is to infer the relation 
between independent and dependent variables, given some set of 
observations. In parametric regression we assume some functional 
relation between the output and the input f (x, θ), where θ repre-
sents the set of model parameters, and regression requires finding 
the values of θ which best describe the data. Usually, the chi-
squared merit function is minimised to obtain the best fit param-
eters. Similarly in GP regression, the function f (x) is represented 
as

f (x) ∼ GP(μ(x),k(x, x′)), (7)

which means that the value of f (x) at any point x, is a Gaussian 
random variable with mean μ(x) and covariance k(x, x′):

μ(x) = E( f (x)), (8)

k(x, x′) = E(( f (x) − μ(x))( f (x′) − μ(x′))). (9)

There are many choices for the covariance functions: squared ex-
ponential, spline, polynomial, etc. Here we chose the commonly 
used squared exponential function for its simplicity. The squared 
exponential covariance function is expressed as:

k(x, x′) = σ 2
f exp

(
− (x − x′)2

2

)
. (10)
2l
This covariance functions is parameterised by the two parameters, 
σ f and l (known as hyperparameters), which represent the length 
scales in the GP. σ f controls the variation in f (x) relative to the 
mean and l corresponds to the correlation length along which the 
successive f (x) values are correlated. As desired, the covariance 
is maximum for variables whose inputs are very close which is 
expected for smooth functions. The matrix elements of the covari-
ance matrix for the GP: K (X,X), are given by

[K(X,X)]i, j = k(xi, x j). (11)

Similar to the function f (x), the data y can also be represented 
using GP:

y ∼ GP(μ(x),k(x, x′)). (12)

Now, given a set of inputs X (also called training vectors), out-
puts y (the data set, also called target), and the covariance matrix 
K(X,X), our aim is to make inference about the function f (x) at 
some other points X̂. The joint probability distribution for the data 
y and the reconstructed function f̂ is given by(

y
f̂

)
∼ N

([
μ
μ̂

]
,

[
K(X,X) + C K(X, X̂)

K(X̂,X) K(X̂, X̂)

])
,

where μ and μ̂ are the assumed means (initial guesses) and C is 
the covariance matrix of the data, which is diagonal if the data 
points are uncorrelated. After some matrix algebra one can rewrite 
the joint probability distribution as (please see [31] or [32] for 
more details of the calculations)

P (y, f̂) = 1

(2π)p/2|�11|1/2
exp[−1

2
(y − μ)T �−1

11 (y − μ)]

× 1

(2π)q/2|A|1/2
exp[−1

2
(f̂ − a)T A−1(f̂ − a)],

where

a = μ̂ + K(X, X̂)T (K(X,X) + C)−1(y − μ), (13)

A = K(X̂, X̂) − K(X, X̂)T (K(X,X) + C)−1K(X, X̂) (14)

and

�11 = K(X,X) + C. (15)

Here p and q are the number of points in X and X̂ respectively. 
The marginal distribution of y is given by

P (y) =
∫

P (y, f̂)df̂

= 1

(2π)p/2|�11|1/2
exp[−1

2
(y − μ)T �−1

11 (y − μ)], (16)

and the conditional distribution P (f̂|y) is

P (f̂|y) = P (y, f̂)

P (y)
= 1

(2π)q/2|A|1/2
exp[−1

2
(f̂ − a)T A−1(f̂ − a)],

which implies that the reconstructed function f̂(X̂) has a Gaussian 
normal distribution given by

f̂ ∼ GP(a,A). (17)

Here σ f and l are unknown parameters of the GP and training of a 
GP involves selecting appropriate values for these parameters. This 
is usually done by maximising the marginal log-likelihood proba-
bility ln P (y) (from (16))
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Fig. 1. Reconstructed η (solid blue curve) as function of z. The dashed, dotted and 
dot-dashed black curve represent 1, 2 and 3σ confidence levels respectively. Solid 
red line represents η = 1. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

ln P (y) = −1

2
(y − μ)T [K(X,X) + C]−1(y − μ)

− 1

2
ln |K(X,X) + C| − p

2
ln 2π. (18)

Further, to do the analysis one needs to specify an input mean 
function. We chose the initial mean function for all quantities 
to correspond to a flat �CDM model with �m = 0.3, and H0 =
70 km s−1 Mpc−1. The means are adjusted during the analysis 
and replaced by posterior means suggested by preliminary runs. 
Our redshift range of interest is 0.1 < z < 0.73 (governed by the 
BAO data range). We divide this redshift range into intervals of 
�z = 0.001. This gives us 631 target points (z values at which 
the functions are reconstructed). We then reconstruct H(z), D L(z)
and D V (z) at these points using GP regression. This implies that 
for each z target point we have a mean and a variance of the 
reconstructed functions given by (13) and (14) respectively. Note 
that maximising (18) is an approximation, and can be used if 
the posterior for θ , is fairly well peaked. Since this is not always 
guaranteed, in our analysis, we sample the hyperparameter space 
and the probability distributions of the reconstructed function are 
weighted by the posterior distributions of the hyperparameters (in 
effect we marginalise over the hyperparameters). Samples from 
these weighted distributions of H(z), D L(z) and D V (z) are used 
to eventually construct η(z) as given in (5). Note here that η(z) is 
not directly reconstructed through GP methodology. It is derived 
using (5) and the errors on η(z) are obtained using error propaga-
tion (including covariances at different redshifts).

4. Results and discussion

In this paper we have used DD relation as a check for consis-
tency between different data sets. The main result of the paper is 
summarised in Fig. 1, where we plot the variation of η with red-
shift, as estimated from the GP reconstruction of the luminosity 
distance, angle-averaged distance and the Hubble rate. The solid 
blue line is the best fit curve and the black curves around it repre-
sent the confidence intervals. The red horizontal line is the value 
of η when DD holds (and all the data sets are consistent with each 
other). Note that the error bars in this plot should be understood 
as point by point along the redshift. The estimates of the three re-
constructed quantities (H(z), D L(z) and D V (z)) have correlations 
at different redshifts and so will the estimates of η(z), but these 
correlations are not visible in this plot.
We observe that the DD holds within 3σ confidence level. 
These model independent constraints are better than our previous 
constraints on η [21], where we took some simple parametrisa-
tion for η and fixed H(z) assuming �CDM cosmology. Further the 
mean value of η is slightly less than unity. This is similar to re-
sults obtained in earlier works in this direction. Uzan et al. [15], 
found a best fit value for η which was slightly less than one and 
related this trend to the systematics in the SZE/X-ray analysis of 
galaxy clusters, assuming �CDM cosmology. Bassett and Kunz [14], 
in their three parameter model of DD violation, also found that 
the SNeIa sample they used were brighter relative to their dA data.
Gravitational lensing of the high-z supernovae was suggested as a 
possible explanation. Nesseris and Garcia-Bellido recently used Ge-
netic Algorithm approach to extract model independent and bias-
free reconstruction information from SNeIa, BAO and the growth 
rate of matter perturbations [33]. Our result is moderately consis-
tent with their analysis, but we do not recover the dip in η in the 
range 0.3 < z < 0.7, that they obtain in their reconstruction. η can 
also be assumed to be a constant (other than unity) and the value 
of the constant can be estimated from observations, see for exam-
ple one of our previous works [21], Uzan et al. [15] or Bernadis et 
al. [34].

Our model independent method can also be used to test DD re-
lation if the data sets are known to be consistent with each other. 
If this relation is found to be inconsistent with observations, it 
would be a major problem for observational cosmology, since the 
optical theorem that relates surface brightness of an object at the 
source and observer, and the temperature shift relation of the cos-
mic microwave background are derived from this relation [17]. In 
the event that the DD relation is not valid, these key relations in 
cosmology would have to be modified. Future surveys (especially 
the increase in BAO data points) would better constrain η and this 
method can be used to look for the presence of systematics within 
the data sets.
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