
INFORMATION AND CONTROL 60, 1 0 3 - 1 0 8 (1984)

On the Complexity of Concurrency Control
by Locking in Distributed Database Systems

E L J A S S O I S A L O N - S O I N I N E N * A N D P E T E R W I D M A Y E R t

Institut.#fir A ngewandte Informatik und Formale Besehreibungsverfahren,
UniversitEt Karlsruhe, Postfaeh 6380, 7500 Karlsruhe 1, West Germany

Given a pair of locked transactions, accessing a distributed database, the
problem is studied of whether this pair is safe, i.e., guaranteed to produce only
serializable schedules. It is shown that an easy-to-test graph condition, which
characterizes safety for a pair of locked transactions in a centralized database, also
applies when the database has been distributed among at most three sites. © 1984
Academic Press, Inc.

1. INTRODUCTION

Database concurrency control deals with the problems arising when
several transactions access and update a database concurrently. A widely
accepted method for implementing concurrency control is locking (e.g.,
Eswaran et al., 1976). That is, lock and unlock steps exclusively controlling
the access to the shared data are inserted to the transactions. The insertion
should be done so that all incorrect interleavings of transactions a r e
forbidden; then the resulting set of locked transactions is safe.

Theory of locking includes, e.g., the analysis of the amount of parallelism
supported by locking (Papadimitriou, 1982), and the analysis of the
computational complexity of such fundamental questions as the safety and
deadlock-freedom of a given set of locked transactions (Lipski and
Papadimitriou, 1981; Papadimitriou, 1983b; Yannakakis, 1982a, 1982b;
Soisalon-Soininen and Wood, 1984). The theory of database concurrency
control is surveyed in Papadimitriou (1983 a).

The complexity of the safety question when the database has been
distributed among many sites is studied in Kanellakis and Papadimitriou
(1984). In their model transactions are partial orders of actions accessing the

* Present address: Department of Computer Science, University of Helsinki,
Tukholmankatu 2, SF-00250 Helsinki 25, Finland. The work of this author was partly carried
out while visiting the University of Karlsruhe under the support of the Alexander yon
Hulmboldt Foundation.

t The work of this author was supported by a grant from the Deutsche Forschungsgemein-
schaft.

103
0019-9958/84 $3.00

Copyright © 1984 by Academic Press, Inc.
All rights of reproduction in any form reserved.

104 SOISALON-SOININEN AND WIDMAYER

database such that a total order is required within each site. It turned out
that a difference between centralized and distributed locking can be seen
when considering pairs of transactions: the safety problem for transaction
pairs distributed among many sites is coNP-complete, whereas there is a low
polynomial bound in the centralized case.

Further, Kanellakis and Papadimitriou (1984) show that the safety
question for a transaction pair can be tested efficiently when the database
has been distributed among two sites only. In this note we extend this result
to the case in which the distribution of the database has been done among
three sites at most. We show that an easy-to-test graph condition which is
completely independent of the number of sites is enough to characterize
safety up to three sites. This condition has already been shown to be insuf-
ficient for four sites (Kanellakis and Papadimitriou, 1984). The problem of
whether the safety question can be tested in polynomial time for a fixed
number >/4 of sites remains open.

2. THE MODEL

In this section we shortly review the model of Kanellakis and
Papadimitriou (1984) for distributed locking. A distributed database is a
triple D = (E, c, g), where E is a set of entities, e > 0 is the number of sites,
and g: E ~ {1 c} is a mapping assigning a site to each entity.

Let S be a set the elements of which are of the forms LOCK(x) and
UNLOCK(x) (or Lx and Ux, for short), where x is in E, and let < be a
partial order on S. Further, S and < satisfy the following conditions:

(1) < is a total order at each site: < is total when restricted to the set
S(i) containing all elements Lx and Ux of S such that g(x)= i, for all
i = 1,..., e;

(2) if Lx or Ux is in S, then both Lx and Ux are in S and Lx < Ux.

We say that pair T = (S, <) is a locked transaction with respect to the
distributed database D.

Safety of a set of locked transactions is defined here only informally (see
Kanellakis and Papadimitriou, 1984, for details). A set ~ of locked trans-
actions is safe if all legal interleavings of the operations of r (Lx cannot be
followed by another Lx without a preceding Ux) can be "serialized." That is,
the effect of the interleaving, when updates are put between Lx-Ux pairs, is
the same as a serial execution of the transactions.

CONCURRENCY CONTROL BY LOCKING 105

3. SAFETY IN THE CASE OF THREE SITES

The following definition is from Kanellakis and Papadimitriou (1984).

DEFINITION. Let T 1 = ($1, <1) and T 2 = ($2, <2) be two locked t r ans -
actions. D(T1, T2) is defined as the directed graph (V, A), where

(1) V = { x l L x , U x C S I ~ S 2 } ,

(2) (x, y) is in A, i f L x <1 Uy and L~ <2 Ux.

PROPOSITION 1 (Kanellakis and Papadimitriou, 1984). Let T 1 and T 2 be
locked transactions. I f D(T 1 , Tz) is strongly connected, then {T 1 , T2} is safe.
On the other hand, if T 1 and T 2 are distributed among two sites only, then
the safety of {T 1 , T2} implies that D(T 1 , T2) is strongly connected.

In the following we prove that also when three sites are involved
Proposition 1 provides a characterization of safety.

THEOREM 2. Let r = { T 1 , Tz}, where T 1=($1 ,<1) and T 2 = ($ 2 , < 2)
are distributed among at most three sites. I f z is safe, then D(T1, T2) is
strongly connected.

Proof In the case of two sites Kanellakis and Papadimitriou (1984)
prove that if r is safe, then D(T 1, T2) is strongly connected. They prove a
central lemma (Lemma 3 in Kanellakis and Papadimitriou, 1984) which
allows the derivation of an unsafe situation whenever D(T1, T2) is not
strongly connected. We shall prove the corresponding lemma in the case of
three sites. We assume that D(T1, T2) is not strongly connected and obtain a
contradiction to the safety of r.

Let X be a dominator of D(T 1, T2), i.e., a subset of the set V of nodes of
D(T 1, T2) such that there is no arc from a node in ~ to a node in X.
Because D(T1, Tz) is not strongly connected, we know that both X and V~X
must be nonempty. If for all x, y in X and z in ~ satisfying the conditions
Lz <1 Ux and Ly <2Uz, conditions x4= y, Uy <1 Ux, and Ly <2Lx hold,
then r can easily been shown to be unsafe (see Kanellakis and
Papadimitriou, 1984). However, we can deduce from L z < 1 Ux and
L y <2 Uz only that x 4: y, Ux +.1 Uy, and Lx +. 2 L y (+. denotes the negation
of <). It is sufficient to show that adding the precedences Uy <1 Ux and
Ly <2Lx for all x, y, and z as above leads to a transaction pair which is safe
if r is safe and for which X is still a dominator. To be precise, let us define
this (new) transaction pair r ' = {T' 1, T~} as follows:

T"l = (S'1, <~) = ($1, (<1 ~) {(ey, Ux)lx, y ~ X, Lz <1 Ux, Ly <2 Uz

for some z E V~X})*),

T; = (S;, < ;) = (S 2 , (<2 kA {(Ly, Lx) lx , y C X, Lz <1 Ux, Ly <2 Uz

for some z C V~X})*).

106 SOISALON-SOININEN AND WIDMAYER

(By R* we mean the reflexive transitive closure of R.) Clearly, <~ and <~
are partial orders, and if r ' is unsafe then so is r. It remains to show that X
is a dominator of D(T~, T~):

Claim. X is a dominator of D(T~, T6).

Proof of Claim. Assume for the contrary that x ' E X and z ' E V~X are
entities for which Lz' <~ Ux' and Lx' <~ Uz'. Because X is a dominator of
D(T 1, T2), this can only be the case if at least one of the conditions
Lz' <~ Ux' and Lx' <~ Uz' holds because of the newly added precedences.
Let us now distinguish various cases, according to the distribution of the
entities among the sites.

(1) x and y are stored at the same site. In this case < 1 = <~ and
< 2 = < ~ , because Lx, Ux, Ly, and Uy are totally ordered. Hence the
existence of z ' and x ' such that (z ' ,x ') CD(T~, T~) implies (z ' , x ') E
D(T 1, T2), which contradicts the fact that X is a dominator of D(T 1, T2).

(2) x and y are stored at different sites and z is stored at the site of x.
In this case, LZ<lUX implies Uz<2Lx because otherwise (z ,x)C
D(TI, T2). Ly <~Lx cannot contribute because Ly <2 Uz and Uz <2Lx
already hold. Hence, Lx' <2 Uz' must hold. For Uy <~ Ux to contribute,
L z ' < l U y and Ux<lUx ' must hold. LZ<lUX and UX<lUX' imply
Lz <1 Ux'. Let us now further distinguish.

(2.1) x ' is stored at the site o fx . As (z,x') q~ D(T 1, T2), Lz <1 Ux'
implies Uz <2Lx '. Ly <2 Uz, Uz <2Lx ', and Lx' <2 Uz' imply Ly <2 Uz'.
With Lz' <1 Uy this yields (z', y) @ D(T1, T2), a contradiction.

(2.2) x ' is stored at the site of y. As Lz <1 Ux' ,Ly <zLx' must
hold, because L x ' < 2 L y would imply LX'(zUz and hence (z , x ')~
D(T1, T2). Ly <zLx' and Lx' <2 Uz' imply, however, Ly <2 Uz', which
together with Lz' <1 Uy implies (z', y) ~ D(T 1 , T2), a contradiction.

(2.3) x ' is stored at the third site. Let us further distinguish.

(2.3.1) z ' is stored at the site ofx . As Lz <1 Ux' and Lx' <z Uz',
Uz <2 Uz' must hold, because otherwise (z, x') C D(T 1, T2). But this implies
Ly <z Uz', hence with Lz' <1 Uy we conclude (z', y) ~ D(T 1, T2), a con-
tradiction.

(2.3.2) z ' is stored at the site ofy. As Lz <1 Ux' and Lx' <2 Uz',
Ly <2 Uz' must hold, because otherwise (z, x') E D(T1, Tz). But this implies,
together with Lz' <1 Uy, that (z', y) E D(T1, T2), a contradiction.

(2.3.3) z ' is stored at the site of x ' . Trivial: Lx', Ux' ,Lz ' , and
Uz' are totally ordered in T 1 and T 2 (see (1)).

(3) x and y are stored at different sites, and z is stored at the site ofy.
Symmetric with case (2) in the following sense:

C O N C U R R E N C Y C O N T R O L BY L O C K I N G 107

(a) exchange x with y;

(b) exchange U with L;

(c) exchange T a with T2;

(d) invert all precedences.

The corresponding arguments from (2) establish that also in (3) X is a
dominator of D(T~, T;).

(4) x, y, and z are all stored at different sites. Let us distinguish
according to the site of x' , then according to the site of z' .

(4.1) x ' is stored at the site o fx .

(4.1.1) z ' is stored at the site o fx . Analogous to (2.3.3).

(4.1.2) z' is stored at the site of y. In T; ,Ly<~Lx cannot
contribute to Lx'<~Uz' , because Lx '<2Ly implies L x ' < 2 L x and
Lx <2 Uz' leads to Lx' <2 Uz'. For Uy <~ Ux to contribute, Lx' <2 Uz' and
Lz' <1 Uy and Ux <1 Ux' must hold. Hence, Uz' <2Ly must hold, otherwise
(z', y) ~ D(T 1, T2). From Lz <1 Ux and Ux <1 Ux',Lz <1 Ux' holds. From
Lx' <2 Uz', Uz' <2Ly, and Ly <2 Uz we conclude Lx' <2 Uz, which means
(z, x') C D(T 1, T2), a contradiction.

(4.1.3) z ' is stored at the site of z. As in (4.1.2), Lx' <2 Uz',
Lz' < 1 Uy, and Ux < 1 Ux' must hold. Thus, Lz' <lLz implies (z ' , x ') ~
D(T 1, T:), and Lz <1Lz' implies (z, y) C D(T 1 , T2), a contradiction.

(4.2) x ' is stored at the site ofy .

(4.2.1) z ' is stored at the site of x. Uy <~ Ux cannot contribute to
Lz' <~ Ux'. Hence Lz' <1 Ux' must hold. For Ly<~Lx to contribute,
Lx' <2LY and Lx <2 Uz' must hold. This implies that Ux <lLz' , because
otherwise (z ' , x)~D(T1 , Tz). With Lz <1 Ux and Lz' <1 Ux' this yields
Lz <~ Ux', implying (z,x') ~ D(T 1, T2), a contradiction (Lx' <2 Uz,
because Lx' <zLy <2 Uz).

(4.2.2) z ' is stored at the site ofy . Analogous to (2.3.3).

(4.2.3) z ' is stored at the site ofz . Uy <~ Ux cannot contribute to
Lz' <~ Ux'. Hence Lz' <1 Ux' must hold. Ly <;Lx can only contribute if
Lx' <2LY and Lx <z Uz'. Lx' <2LY and Ly <2 Uz imply Lz ~,~ Ux',
because otherwise (z, x') ~ D(T 1, T2). Lz' <l Ux' implies that Lz' <i Lz,
because otherwise Lz <1 Ux' would hold. Lz' < l Lz, Lz < l Ux, and
Lx <2 Uz' imply (z', x) C D(T~, T2), a contradiction.

(4.3) x ' is stored at the site of z.

(4.3.1) z ' is stored at the site ofx . Uy <~ Ux cannot contribute to
Lz' <~ Ux'. Hence Lz' <1 Ux' must hold. Ly <;Lx can only contribute if
Lx' <2Ly and Lx <2 Uz'. Lx <2 Uz' implies that Ux <lLz' , and as
Lz <1 Ux and Lz' <1 Ux' hold, Lz <1 Ux' holds. Hence Uz <2Lx' must

108 SOISALON-SOININEN AND WIDMAYER

hold, because otherwise (z , x ') E D(T 1, T2). This, however, would imply a
cycle of Uz, Lx ' , and Ly in T2, a contradict ion.

(4.3.2) z ' is stored at the site o f y . Ly <~Lx cannot contr ibute to
Lx ' <~ Uz'. Hence Lx ' <2 Uz' must hold. Fo r Uy <'l Ux to contr ibute to
Lz ' <~ Ux, Lz ' <1 Uy and Ux <1 Ux' must hold. As Lz <1 Ux holds,
Lz <1 Ux' holds, implying that Uz <2Lx' must hold, because otherwise
(z ,x ') C D(Ta, TE). As Lz ' <1 Uy, and (z', y)q~ D(T 1, T2), Uz' <2Ly must
hold. Hence Uz < 2 L x ' , L x ' <2 Uz', Uz' <ELY, and Ly <2 Uz yield a cycle
in T2, a contradict ion.

(4.3.3) z ' is stored at the site of z. Analogous to (2.3.3).

This completes the proof of the claim, and hence the proof of our theorem
is complete. |

By Proposi t ion 1 and Theorem 2 we get

COROLLARY 3. A transaction pair {T 1, T2} distributed among at most
three sites is safe if and only if D(T 1 , TE) is strongly connected.

If S 1 in T 1 = (S 1, < l) and $2 in T z -- (Sz, <2) have n elements altogether,
we have

COROLLARY 4. A transaction pair {T 1, T2} distributed among at most
three sites can be tested for safety in O(n 2) time.

RECEIVED: February 28, 1983; ACCEPTED: January 27, 1984

REFERENCES

ESWARAN, K. P., GRAY, J. N., LORIE, R. A., AND TRAIGER, I. L. (1976), The notions of
consistency and predicate locks in a database system, Comm. ACM 19, 624-633.

KANELLAKIS, P. C. AND PAPADIMITRIOU, C. H. (1984), Is distributed locking harder?, J.
Comput. System Sci. 28, 103-120.

LIPSKI, W. AND PAPADIMITRIOU, C. U. (1981), A fast algorithm for testing for safety and
detecting deadlocks in locked transaction systems, J. Algorithms 2, 2i 1-226.

PAPADIMITRIOU, C. H. (1982), A theorem in database concurrency control, J. Assoc. Comput.
Mach. 29, 998-1006.

PAPADIMITRIOU, C. H. (1983a), Theory of concurrency control, in "Theoretical Computer
Science, 6th GI-Conference, January 1983," Lecture Notes in Computer Science No. 145,
pp. 35-47, Springer-Verlag, Berlin/Heidelberg/New York.

PAPADIMITRIOU, C. H. (1983b), Concurrency control by locking, SIAM J. Comput. 12,
215-226.

SOISALON-SOININEN, E. AND WOOD, D. (1984), An optimal algorithm to compute the closure
of a set of iso-rectangles, J. Algorithms 5, 199-214.

YANNAKAKIS, M. (1982a), A theory of safe locking policies in database systems, J. Assoc.
Comput. Mach. 29, 718-740.

YANNAKAKIS, M. (1982b), Freedom from deadlock of safe locking policies, SIAM J. Comput.
11, 391408.

