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On the Complexity of Concurrency Control 
by Locking in Distributed Database Systems 
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Given a pair of locked transactions, accessing a distributed database, the 
problem is studied of whether this pair is safe, i.e., guaranteed to produce only 
serializable schedules. It is shown that an easy-to-test graph condition, which 
characterizes safety for a pair of locked transactions in a centralized database, also 
applies when the database has been distributed among at most three sites. © 1984 
Academic Press, Inc. 

1. INTRODUCTION 

Database concurrency control deals with the problems arising when 
several transactions access and update a database concurrently. A widely 
accepted method for implementing concurrency control is locking (e.g., 
Eswaran et al., 1976). That is, lock and unlock steps exclusively controlling 
the access to the shared data are inserted to the transactions. The insertion 
should be done so that all incorrect interleavings of  transactions a r e  
forbidden; then the resulting set of  locked transactions is safe. 

Theory of  locking includes, e.g., the analysis of  the amount  of  parallelism 
supported by locking (Papadimitriou, 1982), and the analysis of  the 
computational  complexity of  such fundamental questions as the safety and 
deadlock-freedom of a given set of  locked transactions (Lipski and 
Papadimitriou, 1981; Papadimitriou, 1983b; Yannakakis,  1982a, 1982b; 
Soisalon-Soininen and Wood,  1984). The theory of  database concurrency 
control is surveyed in Papadimitriou (1983 a). 

The complexity of  the safety question when the database has been 
distributed among many sites is studied in Kanellakis and Papadimitriou 
(1984). In their model transactions are partial orders of  actions accessing the 
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database such that a total order is required within each site. It turned out 
that a difference between centralized and distributed locking can be seen 
when considering pairs of transactions: the safety problem for transaction 
pairs distributed among many sites is coNP-complete, whereas there is a low 
polynomial bound in the centralized case. 

Further, Kanellakis and Papadimitriou (1984) show that the safety 
question for a transaction pair can be tested efficiently when the database 
has been distributed among two sites only. In this note we extend this result 
to the case in which the distribution of the database has been done among 
three sites at most. We show that an easy-to-test graph condition which is 
completely independent of the number of sites is enough to characterize 
safety up to three sites. This condition has already been shown to be insuf- 
ficient for four sites (Kanellakis and Papadimitriou, 1984). The problem of 
whether the safety question can be tested in polynomial time for a fixed 
number >/4 of sites remains open. 

2. THE MODEL 

In this section we shortly review the model of Kanellakis and 
Papadimitriou (1984) for distributed locking. A distributed database is a 
triple D = (E, c, g), where E is a set of entities, e > 0 is the number of sites, 
and g: E ~  {1 ..... c} is a mapping assigning a site to each entity. 

Let S be a set the elements of which are of the forms LOCK(x)  and 
UNLOCK(x)  (or Lx  and Ux, for short), where x is in E, and let < be a 
partial order on S. Further, S and < satisfy the following conditions: 

(1) < is a total order at each site: < is total when restricted to the set 
S(i) containing all elements Lx  and Ux of S such that g(x)= i, for all 
i = 1,..., e; 

(2) if Lx  or Ux is in S, then both Lx  and Ux are in S and Lx  < Ux. 

We say that pair T =  (S, <) is a locked transaction with respect to the 
distributed database D. 

Safety of a set of locked transactions is defined here only informally (see 
Kanellakis and Papadimitriou, 1984, for details). A set ~ of locked trans- 
actions is safe if all legal interleavings of the operations of r (Lx cannot be 
followed by another Lx  without a preceding Ux) can be "serialized." That is, 
the effect of the interleaving, when updates are put between Lx-Ux  pairs, is 
the same as a serial execution of the transactions. 



CONCURRENCY CONTROL BY LOCKING 105 

3. SAFETY IN THE CASE OF THREE SITES 

The following definition is from Kanellakis and Papadimitriou (1984). 

DEFINITION. Let T 1 = ($1, <1) and T 2 = ($2, <2) be two locked t r ans -  
actions. D(T1, T2) is defined as the directed graph (V, A), where 

(1) V = { x l L x ,  U x C S I ~ S 2 } ,  

(2) (x, y) is in A, i f L x  <1 Uy and L~ <2 Ux. 

PROPOSITION 1 (Kanellakis and Papadimitriou, 1984). Let T 1 and T 2 be 
locked transactions. I f  D(T  1 , Tz) is strongly connected, then {T 1 , T2} is safe. 
On the other hand, if  T 1 and T 2 are distributed among two sites only, then 
the safety of {T 1 , T2} implies that D(T  1 , T2) is strongly connected. 

In the following we prove that also when three sites are involved 
Proposition 1 provides a characterization of safety. 

THEOREM 2. Let  r = { T 1 ,  Tz}, where T 1=($1 ,<1)  and T 2 = ( $ 2 , < 2 )  
are distributed among at most three sites. I f  z is safe, then D(T1, T2) is 
strongly connected. 

Proof In the case of two sites Kanellakis and Papadimitriou (1984) 
prove that if r is safe, then D(T 1, T2) is strongly connected. They prove a 
central lemma (Lemma 3 in Kanellakis and Papadimitriou, 1984) which 
allows the derivation of an unsafe situation whenever D(T1, T2) is not 
strongly connected. We shall prove the corresponding lemma in the case of 
three sites. We assume that D(T1, T2) is not strongly connected and obtain a 
contradiction to the safety of r. 

Let X be a dominator of D(T  1, T2), i.e., a subset of the set V of nodes of 
D(T 1, T2) such that there is no arc from a node in ~ to a node in X. 
Because D(T1, Tz) is not strongly connected, we know that both X and V~X 
must be nonempty. If for all x, y in X and z in ~ satisfying the conditions 
Lz <1 Ux and Ly <2Uz, conditions x4= y, Uy <1 Ux, and Ly <2Lx hold, 
then r can easily been shown to be unsafe (see Kanellakis and 
Papadimitriou, 1984). However, we can deduce from L z <  1 Ux and 
L y <2 Uz only that x 4: y, Ux +.1 Uy, and Lx  +. 2 L y (+. denotes the negation 
of <). It is sufficient to show that adding the precedences Uy <1 Ux and 
Ly <2Lx for all x, y, and z as above leads to a transaction pair which is safe 
if r is safe and for which X is still a dominator. To be precise, let us define 
this (new) transaction pair r '  = {T' 1, T~} as follows: 

T"l = (S'1, <~) = ($1,  (<1 ~) {(ey, Ux)lx, y ~ X, Lz <1 Ux, Ly <2 Uz 

for some z E V~X})*), 

T; = (S;,  < ; ) =  (S 2 , (<2 kA {(Ly, Lx) lx ,  y C X, Lz  <1 Ux, Ly  <2 Uz 

for some z C V~X})*). 



106 SOISALON-SOININEN AND WIDMAYER 

(By R* we mean the reflexive transitive closure of R.) Clearly, <~ and <~ 
are partial orders, and if r '  is unsafe then so is r. It remains to show that X 
is a dominator of D(T~, T~): 

Claim. X is a dominator of D(T~, T6). 

Proof of Claim. Assume for the contrary that x '  E X and z '  E V~X are 
entities for which Lz'  <~ Ux' and Lx' <~ Uz'. Because X is a dominator of 
D(T 1, T2), this can only be the case if at least one of the conditions 
Lz'  <~ Ux' and Lx' <~ Uz' holds because of the newly added precedences. 
Let us now distinguish various cases, according to the distribution of the 
entities among the sites. 

(1) x and y are stored at the same site. In this case < 1 =  <~ and 
< 2 = < ~ ,  because Lx, Ux, Ly, and Uy are totally ordered. Hence the 
existence of z '  and x '  such that (z ' ,x ')  CD(T~, T~) implies ( z ' , x ' )  E 
D(T 1, T2), which contradicts the fact that X is a dominator of D(T 1, T2). 

(2) x and y are stored at different sites and z is stored at the site of x. 
In this case, LZ<lUX implies Uz<2Lx because otherwise (z ,x )C 
D(TI, T2). Ly <~Lx cannot contribute because Ly <2 Uz and Uz <2Lx 
already hold. Hence, Lx'  <2 Uz' must hold. For Uy <~ Ux to contribute, 
L z ' < l U y  and Ux<lUx '  must hold. LZ<lUX and UX<lUX' imply 
Lz <1 Ux'. Let us now further distinguish. 

(2.1) x '  is stored at the site o fx .  As (z,x') q~ D(T 1, T2), Lz <1 Ux' 
implies Uz <2Lx '. Ly <2 Uz, Uz <2Lx ', and Lx'  <2 Uz' imply Ly <2 Uz'. 
With Lz'  <1 Uy this yields (z', y) @ D(T1, T2), a contradiction. 

(2.2) x '  is stored at the site of y. As Lz <1 Ux' ,Ly <zLx'  must 
hold, because L x ' < 2 L y  would imply LX'(zUz and hence ( z , x ' )~  
D(T1, T2). Ly <zLx'  and Lx'  <2 Uz' imply, however, Ly <2 Uz', which 
together with Lz'  <1 Uy implies (z', y) ~ D(T 1 , T2), a contradiction. 

(2.3) x '  is stored at the third site. Let us further distinguish. 

(2.3.1) z '  is stored at the site ofx .  As Lz <1 Ux' and Lx' <z Uz', 
Uz <2 Uz' must hold, because otherwise (z, x') C D(T 1, T2). But this implies 
Ly <z Uz', hence with Lz'  <1 Uy we conclude (z', y) ~ D(T 1, T2), a con- 
tradiction. 

(2.3.2) z '  is stored at the site ofy.  As Lz <1 Ux' and Lx'  <2 Uz', 
Ly <2 Uz' must hold, because otherwise (z, x') E D(T1, Tz). But this implies, 
together with Lz'  <1 Uy, that (z', y) E D(T1, T2), a contradiction. 

(2.3.3) z '  is stored at the site of x ' .  Trivial: Lx',  Ux' ,Lz ' ,  and 
Uz' are totally ordered in T 1 and T 2 (see (1)). 

(3) x and y are stored at different sites, and z is stored at the site ofy.  
Symmetric with case (2) in the following sense: 
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(a) exchange x with y; 

(b) exchange U with L; 

(c) exchange T a with T2; 

(d) invert all precedences. 

The corresponding arguments from (2) establish that also in (3) X is a 
dominator of D(T~, T;). 

(4) x, y, and z are all stored at different sites. Let us distinguish 
according to the site of x' ,  then according to the site of z' .  

(4.1) x '  is stored at the site o fx .  

(4.1.1) z '  is stored at the site o fx .  Analogous to (2.3.3). 

(4.1.2) z'  is stored at the site of y. In T; ,Ly<~Lx  cannot 
contribute to Lx'<~Uz' ,  because Lx '<2Ly  implies L x ' < 2 L x  and 
Lx <2 Uz' leads to Lx'  <2 Uz'. For Uy <~ Ux to contribute, Lx'  <2 Uz' and 
Lz' <1 Uy and Ux <1 Ux' must hold. Hence, Uz' <2Ly must hold, otherwise 
(z', y) ~ D(T 1, T2). From Lz <1 Ux and Ux <1 Ux',Lz <1 Ux' holds. From 
Lx' <2 Uz', Uz' <2Ly, and Ly <2 Uz we conclude Lx'  <2 Uz, which means 
(z, x')  C D(T 1, T2), a contradiction. 

(4.1.3) z '  is stored at the site of z. As in (4.1.2), Lx'  <2 Uz', 
Lz'  < 1 Uy, and Ux < 1 Ux' must hold. Thus, Lz' <lLz  implies ( z ' , x ' ) ~  
D(T 1, T:), and Lz <1Lz' implies (z, y) C D(T 1 , T2), a contradiction. 

(4.2) x '  is stored at the site ofy .  

(4.2.1) z '  is stored at the site of x. Uy <~ Ux cannot contribute to 
Lz' <~ Ux'. Hence Lz' <1 Ux' must hold. For Ly<~Lx  to contribute, 
Lx'  <2LY and Lx <2 Uz' must hold. This implies that Ux <lLz' ,  because 
otherwise ( z ' , x )~D(T1 ,  Tz). With Lz <1 Ux and Lz' <1 Ux' this yields 
Lz <~ Ux', implying (z,x')  ~ D(T 1, T2), a contradiction (Lx' <2 Uz, 
because Lx'  <zLy <2 Uz). 

(4.2.2) z '  is stored at the site ofy .  Analogous to (2.3.3). 

(4.2.3) z '  is stored at the site ofz .  Uy <~ Ux cannot contribute to 
Lz' <~ Ux'. Hence Lz'  <1 Ux' must hold. Ly <;Lx can only contribute if 
Lx'  <2LY and Lx <z Uz'. Lx'  <2LY and Ly <2 Uz imply Lz ~,~ Ux', 
because otherwise (z, x')  ~ D(T 1, T2). Lz' <l Ux' implies that Lz' <i Lz, 
because otherwise Lz <1 Ux' would hold. Lz' < l Lz, Lz < l Ux, and 
Lx <2 Uz' imply (z', x) C D(T~, T2), a contradiction. 

(4.3) x '  is stored at the site of z. 

(4.3.1) z '  is stored at the site ofx .  Uy <~ Ux cannot contribute to 
Lz' <~ Ux'. Hence Lz' <1 Ux' must hold. Ly <;Lx can only contribute if 
Lx' <2Ly and Lx <2 Uz'. Lx <2 Uz' implies that Ux <lLz' ,  and as 
Lz <1 Ux and Lz' <1 Ux' hold, Lz <1 Ux' holds. Hence Uz <2Lx' must 



108 SOISALON-SOININEN AND WIDMAYER 

hold, because otherwise ( z , x ' ) E  D(T 1, T2). This, however, would imply a 
cycle of  Uz, Lx ' ,  and Ly in T2, a contradict ion.  

(4.3.2) z '  is stored at  the site o f y .  Ly <~Lx cannot  contr ibute to 
Lx '  <~ Uz'. Hence Lx '  <2 Uz' must hold. Fo r  Uy <'l Ux to contr ibute to 
Lz '  <~ Ux, Lz '  <1 Uy and Ux <1 Ux' must hold. As Lz <1 Ux holds,  
Lz <1 Ux' holds,  implying that  Uz <2Lx'  must hold,  because otherwise 
(z ,x ' )  C D(Ta, TE). As Lz '  <1 Uy, and (z', y)q~ D(T  1, T2), Uz' <2Ly must 
hold. Hence Uz < 2 L x ' , L x '  <2 Uz', Uz' <ELY, and Ly <2 Uz yield a cycle 
in T2, a contradict ion.  

(4.3.3) z '  is stored at the site of  z. Analogous  to (2.3.3). 

This completes the proof  of  the claim, and hence the proof  of  our theorem 
is complete.  | 

By Proposi t ion 1 and Theorem 2 we get 

COROLLARY 3. A transaction pair {T 1, T2} distributed among at most 
three sites is safe if  and only if  D(T  1 , TE) is strongly connected. 

If  S 1 in T 1 = (S 1, < l )  and $2 in T z -- (Sz, <2) have n elements altogether,  
we have 

COROLLARY 4. A transaction pair {T 1, T2} distributed among at most 
three sites can be tested for safety in O(n 2) time. 
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