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Abstract

This paper presents a hybrid method for identification of Pareto-optimal fuzzy classifiers (FCs). In contrast to many
existing methods, the initial population for multiobjective evolutionary algorithms (MOEAs) is neither created randomly
nor a priori knowledge is required. Instead, it is created by the proposed two-step initialization method. First, a decision
tree (DT) created by C4.5 algorithm is transformed into an FC. Therefore, relevant variables are selected and initial par-
tition of input space is performed. Then, the rest of the population is created by randomly replacing some parameters of
the initial FC, such that, the initial population is widely spread. That improves the convergence of MOEAs into the correct
Pareto front. The initial population is optimized by NSGA-II algorithm and a set of Pareto-optimal FCs representing the
trade-off between accuracy and interpretability is obtained. The method does not require any a priori knowledge of the
number of fuzzy sets, distribution of fuzzy sets or the number of relevant variables. They are all determined by it. Perfor-
mance of the obtained FCs is validated by six benchmark data sets from the literature. The obtained results are compared
to a recently published paper [H. Ishibuchi, Y. Nojima, Analysis of interpretability-accuracy tradeoff of fuzzy systems by
multiobjective fuzzy genetics-based machine learning, International Journal of Approximate Reasoning 44 (1) (2007) 4–31]
and the benefits of our method are clearly shown.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Fuzzy classifiers (FCs) with if-then rules are related to the way human beings think and that is their main
advantage over black-box models, such as neural networks. Identification of FCs involves determining the
adequate structure and parameters. The structure identification consists of several tasks, such as, selecting
the adequate variables, assigning the adequate number of fuzzy sets to each variable and defining the number
of fuzzy rules used. In addition to that, the parameters of fuzzy sets need to be specified as well. It was illus-
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trated in [1], that such a task is highly complex due to its enormous search space, especially when high-dimen-
sional problems are covered.

Grid-type partitioning is a way to reduce the complexity of the identification problem. In that approach, the
number of fuzzy sets assigned to each variable is fixed to some number and also the parameters of fuzzy sets
are predefined. However that approach suffers from the curse of dimensionality, that is, the number of fuzzy
rules is exponentially increased when the dimensionality of the problem is increased. To overcome that prob-
lem [2] applied grid-type partitioning with ‘‘don’t care’’ linguistic values and selected only the relevant rules
out of the all possible rules. The benefit of the approach is its simple implementation, because it does not mod-
ify the parameters of fuzzy sets. Nevertheless, it was stated in [3] that fuzzy sets are the major components of
FCs, since they affect the accuracy of the model, interpretability of fuzzy rules and also the performance of the
system. It was stated in [2], that homogenously assigned fuzzy sets are intuitive, therefore making the FCs
more interpretable. However, often they do not represent the real distribution of the data and therefore the
accuracy of the obtained FCs is degraded [4,3]. Moreover, the intuitiveness of the linguistic values is also dete-
riorated. To tackle that problem, the fuzzy sets can also be pre-specified by domain experts. However, when
dealing with high-dimensional problems, domain experts will have problems in assigning the fuzzy sets for
each variable. Therefore automatic tuning of the fuzzy sets is usually required.

Recently the goal in FC identification has been in obtaining accurate and interpretable FCs. Naturally
accuracy and interpretability are conflicting objectives. For example, an FC with a vast rule-base may be accu-
rate for training patterns, however, it lacks for interpretability and may not perform well on unseen samples
due to the overfitting. Usually a trade-off between the accuracy and interpretability is sought using evolution-
ary algorithms (EAs) and often those approaches are called genetic fuzzy systems (GFS) [5]. A single trade-off
solution can be found by aggregating multiple objectives (e.g. accuracy, number of rules and number of con-
ditions) into a single fitness function and by setting the weights for each objective [6,7]. However, that requires
work in choosing the appropriate weights, which may be different for each problem at hand. Moreover, it is
not guaranteed that with every run a new solution is found [8]. Since multiobjective evolutionary algorithms
(MOEAs) can find several widely spread Pareto-optimal solutions in a single run without assigning weight val-
ues for each objective, they are often preferred. After a set of solutions is obtained, advances and drawbacks of
them can be considered and a solution can be selected based on the preferences.

When EAs are applied, the population needs to be initialized first. That can be done randomly or manually
like in [9–11]. Adequate initialization, however, can improve the convergence of EAs [12,13]. Hence, it is ben-
eficial to use, for example, decision tree (DT) or clustering algorithms to initialize the population [14,6,15–17].
Furthermore, if variable selection is applied during the initialization and only the relevant variables are used to
form the fuzzy rules, EAs need to search the appropriate rules and parameters of fuzzy sets only for the
reduced set of variables. That clearly reduces the search space of EAs.

As illustrated above, many FC identification methods using EAs have been developed. They, however, have
some limitations, which are listed next. Some of the methods do not tune the fuzzy sets and require a priori
knowledge of the distribution of the fuzzy sets [9,1,18]. Some of the approaches initializes the population ran-
domly [10], which deteriorates the convergence. Also the variable selection in initialization phase is neglected
in many approaches [10,9,1,19,15,11,17]. Moreover some approaches use aggregated fitness functions
[20,16,6,7,21].

To the best of our knowledge, a method which initializes the population adequately (i.e. selects the relevant
variables, creates the relevant initial rules and partitions the input space adequately), tunes the membership
functions, and identifies a set of Pareto-optimal FCs has not been developed yet. This paper aims to fill that
gap.

In this paper the initial population is created in two phases. First a DT is created by C4.5 algorithm [22].
Because of the rectangular decision boundaries of crisp DTs, they can be overly complex. FCs, however, can
create non-axis parallel decision boundaries [23,24]. Therefore, DT is converted into an FC [6]. Because widely
distributed initial population improves the convergence of MOEAs [12,13], the rest of the population is cre-
ated by randomly replacing some parameters of the initial FC by random numbers, such that, the population
is widely distributed. DT initialization was previously applied, for example, in [6,7]. However, in those
approaches further optimization by EAs was performed using aggregated fitness functions and therefore a
set of Pareto-optimal FCs was not obtained.
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NSGA-II algorithm [8] is applied to optimize the initial population and to find a set of Pareto-optimal FCs.
It was successfully applied in [25,1] for the same purpose. However, in this paper NSGA-II is also applied to
fine-tune the parameters of fuzzy sets, not only to find the appropriate rules and rule conditions. Furthermore,
only the relevant variables, selected by C4.5 algorithm, are used to form fuzzy rules.

The rest of this paper is organized as follows. Section 2 briefly represents the theory behind multiobjective
problems (MOPs) and NSGA-II algorithm. Furthermore, FCs are introduced and the criteria defining their
fitness is presented. Section 3 represents the proposed FC identification method. It introduces the proposed
two-step initialization method and presents the coding of the FC into a chromosome, such that, NSGA-II
algorithm can be applied. In Section 4 performance of our method is studied on six benchmark data sets
and the obtained results are compared to the results in the literature. The results show that by the proposed
method a compact set of high quality solutions is obtained. Finally, Section 5 concludes the paper.

2. Preliminaries

In this section a brief introduction to the theory of multiobjective problems (MOPs) is given first. Then,
NSGA-II [8], a popular multiobjective evolutionary algorithm (MOEA) applied in this paper, is briefly pre-
sented. After that, the basic theory of fuzzy classifiers (FCs) is given. Finally, the fitness function applied in
this paper is defined.

2.1. Multiobjective problems

Let us assume a MOP with h objectives fi, i = 1, . . . ,h. Let s be the decision vector and S the feasible region
of the decision vector. That MOP can be formulated as:
Minimize f 1ðsÞ; f2ðsÞ; . . . ; fhðsÞ subject to s 2 S: ð1Þ
It is often impossible to find a solution which simultaneously minimizes all h objectives. Hence, a set of widely
spread trade-off solutions is often sought. A particular interest is on the non-dominated (Pareto optimal) deci-
sion vectors. A decision vector s1 2 S is Pareto optimal, if there does not exist a decision vector s2 2 S, which
fulfills the following conditions:
8i; f iðs2Þ 6 fiðs1Þ and 9j; f jðs2Þ < fjðs1Þ: ð2Þ
If s2 meets the conditions in (2), it dominates s1. The Pareto-optimal set is formed of non-dominated solutions
and their image under the objective functions is the Pareto front. [26,1].

2.2. Multiobjective evolutionary algorithms

MOEAs have been widely used to solve MOPs. Some of the application areas are, for example, the stochas-
tic multiobjective environmental/economic dispatch problems [27] and scheduling of drilling operations [28].
Like mentioned earlier, they have also been used to design the fuzzy classifiers and function estimators.

NSGA-II [8] is a popular MOEA. It is a well-applicable algorithm, because it includes, for example, an effi-
cient constraint-handling method, a fast non-dominated sorting procedure, an elitist approach and uses par-
ameterless crowding distance measure to maintain the diversity of population. It is applied in this paper with
polynomial mutation and simulated binary cross-over (SBX) [29] as genetic operators. The details of NSGA-II
are not given in this paper but they can be found from [8]. Other good MOEAs are SPEA2 [30] and �-MOEA
[31], just to mention a few.

2.3. Fuzzy classifiers

Fuzzy classification rules consist of fuzzy sets in the antecedent and a class label in the consequent. Let us
denote the data set with D data points and n variables as Z = [X y], where input matrix X and output vector y

are given as:
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X ¼

x1;1 x1;2 . . . x1;n

x2;1 x2;2 . . . x2;n

..

. ..
. . .

. ..
.

xD;1 xD;2 . . . xD;n

2
66664

3
77775; y ¼

y1

y2

..

.

yD

2
66664

3
77775: ð3Þ
According to [6] fuzzy classification can be performed as follows:
Ri : If x1 is Ai;1 . . . and xn is Ai;n then gi; i ¼ 1; . . . ;R; ð4Þ

where R is the number of rules, Ai,j, j = 1, . . . ,n is a membership function, gi 2 {1, . . . ,C} is the rule consequent
and C is the number of different classes in data set. For each data point xk, the degree of fulfillment of a rule is
computed as:
biðxkÞ ¼
Yn

j¼1

Ai;jðxk;jÞ: ð5Þ
The rule with the highest degree of fulfillment is declared as the winner rule (i.e. Winner takes all strategy). The
output of the classifier is the rule consequent associated to that rule. There are also other types of fuzzy rules
and t-norms which can be applied to reasoning [32] and the properties of fuzzy classifiers are discussed in de-
tail in [33].

2.4. Fitness of a fuzzy classifier

Accuracy of FCs is measured by calculating the number of misclassifications. However, there is no generic
way to measure the interpretability of FCs [34]. Often the interpretability is measured by calculating the num-
ber of rules and the total number of antecedents in the rules (total rule length) [18]. It was stated in [1], that the
number of rules together with the total rule length can prevent overfitting. Consequently, it is beneficial to use
both of those objectives. So in this paper, the objectives to be minimized are the number of misclassifications,
the number of rules and the total rule length.

3. Proposed hybrid fuzzy classifier identification method

This section introduces the hybrid fuzzy classifier (FC) identification method, which is based on decision
tree (DT) and multiobjective evolutionary algorithms (MOEA). When any standard MOEA is applied, the
first step is the creation of the initial population. In contrast to many existing methods, the initial population
is not created randomly or based on a priori knowledge, but by a two-step initialization method. First, an FC
is identified using C4.5 algorithm. Then, to improve the convergence of EAs, the rest of the population is cre-
ated by randomly replacing some parameters of that FC such a way, that the initial population is widely dis-
tributed. Finally, NSGA-II algorithm is applied to optimize the initial population and a set of non-dominated
solutions is obtained. The proposed method is summarized in Fig. 1.

The rest of this section is organized as follows. First, FC initialization by C4.5 algorithm is discussed. Then,
coding of an FC into a chromosome is presented and an illustrative example is given. Finally, it is introduced
how the rest of the population is created in a way that the initial population is widely spread.
Fig. 1. Proposed hybrid fuzzy classifier identification method.
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3.1. Initialization of FCs

First C4.5 algorithm is applied to create a decision tree (DT). C4.5 was selected as a part of initialization,
because it is a top rated DT algorithm [35], it can select the relevant variables and partition the input space [6].
DT is then converted into an FC like shown in [6]. That can be done without decomposition error, if trape-
zoidal membership functions (MFs) are used, such that, they present the crisp decision boundaries of DT [6].
In this paper, however, the crisp decision boundaries are softened by using generalized bell (gbell) MFs:
f ðx; a; b; cÞ ¼ 1

1þ x�c
a

�� ��2b ; ð6Þ
where x is the data point, and a, b and c are the parameters of a gbell MF. The value of b defines the fuzziness
of a MF. If it is set to a high value, say more than 100, then a MF is very close to a crisp function. Therefore,
in this paper 0 < b < 10.

The value of a is restricted as:
maxð0; ainitial � ð1� aÞÞ < a < ainitial � ð1þ aÞ;

where ainitial denotes the value of a, when a DT is converted into an FC. Value of a = 1/Mj defines how much
parameters can vary around their initial values [14]. Mj stands for the maximum number of fuzzy sets assigned
to a variable j and equals to the number of fuzzy sets in variable j in initial FC.

The value of c, which defines the center of gbell MF, is restricted as:
maxðcinitial � a � v; lboundÞ < c < minðcinitial þ a � v; uboundÞ;

where ‘ubound’ and ‘lbound’ are respectively the upper and lower bounds of a variable and v = ubound–
lbound denotes the range of a variable.

There are also other reasons for applying gbell MFs instead of trapezoidal MFs. Gbell MFs may have bet-
ter fit to the data [36] and they have three parameters in contrast to four parameters of trapezoidal MFs. Fur-
thermore, the parameters of gbell MFs can be optimized independently, which is not the case when trapezoidal
MFs are used. Therefore, standard mutation and cross-over operators of NSGA-II algorithm can be used
without the need to make sure that, for example, parameter b is greater than parameter a. The decomposition
error caused by transformation of trapezoidal MFs into gbell MFs can be usually overcome by EA optimiza-
tion [7].

3.2. Structure of a chromosome

Each individual (chromosome) contains an FC. Their structure is coded as a real coded vector including
antecedents of the rules A and parameters of the fuzzy sets P. Antecedent vector A is defined as:
A ¼ ðA�1;1;A�1;2; . . . ;A�1;ns
;A�2;1;A

�
2;2; . . . ;A�2;ns

; . . . ;A�R;1;A
�
R;2; . . . ;A�R;ns

Þ; ð7Þ
where R denotes the number of rules in initial FC and ns stands for the number of variables selected from n

variables by C4.5 algorithm. Naturally ns 6 n, but usually ns < n. Since real coding of the variables is used for
all parameters, the integers Ai, j = {0, 1, . . . ,Mj}, indicating which membership function is used for variable j in
rule i, are coded as real coded values A�i;j, which are rounded to the nearest integer when fitness evaluation is
performed. Therefore, Ai;j ¼ roundðA�i;jÞ, where �0:5 < A�i;j < Mj þ 0:5.

During MOEA optimization, number of rules, rule conditions and variables can be decreased. If variable j

is not used in rule i, then Ai,j = 0. If rule i is not used in an FC, then "j, Ai,j = 0. If variable j is not used in an
FC, then "i, Ai,j = 0. In this paper it is required that each chromosome has at least one antecedent and one
rule (i.e. $i,$ j,Ai,j 5 0).

Parameter vector P is given as:
P ¼ ðP 1;1; P 1;2; . . . ; P 1;b; P 2;1; P 2;2; . . . ; P 2;b; . . . ; P c;1; P c;2; . . . ; P c;bÞ; ð8Þ

where c is the number of parameters used to define a membership function and b ¼

Pns
j¼1Mj is the total num-

ber of fuzzy sets in initial FC. In this paper Gbell membership functions are used, so c = 3.
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Consequent part of the fuzzy rule g = (g1, . . . ,gR) is not included in an individual. It is static and created in
initialization phase by C4.5 algorithm. So, NSGA-II is used to select rules, rule antecedents and parameters of
membership functions for the pre-specified class labels. The total number of parameters h to be optimized by
NSGA-II algorithm is therefore given as:
h ¼ R� ns þ c� b: ð9Þ

Each parameter is restricted with lower and upper bounds defined in current and previous subsections. There-
fore the number of constrains is 2 · h.

3.3. Coding of a chromosome: an example

Let us consider a classification problem with 5 classes and 4 variables. Let us assume that an FC with 5 rules
and 5 fuzzy sets has been created by transforming a DT into an FC. C4.5 algorithm has selected 2 variables, x1

and x2, assigned 3 fuzzy sets to variable x1 and 2 fuzzy sets to variable x2. The obtained rules with total rule
length of 9 are the following:

Rule1: If x1 is 1 and x2 is 1 then Class is 5

Rule2: If x1 is 1 and x2 is 2 then Class is 4

Rule3: If x1 is 2 and x2 is 1 then Class is 3
Rule4: If x1 is 2 and x2 is 2 then Class is 2

Rule5: If x1 is 3 then Class is 1

Coding of the antecedent part would be then:
A ¼ 1; 1|{z}
Rule1

; 1; 2|{z}
Rule2

; 2; 1|{z}
Rule3

; 2; 2|{z}
Rule4

; 3; 0|{z}
Rule5

0
B@

1
CA:
Coding of the five membership functions would be:
P ¼ P 1;1; P 1;2; P 1;3; P 1;4; P 1;5|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Gbell parameter a

; P 2;1; P 2;2; P 2;3; P 2;4; P 2;5|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Gbell parameter b

; P 3;1; P 3;2; P 3;3; P 3;4; P 3;5|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Gbell parameter c

0
B@

1
CA:
The rule consequents, which are the same for all individuals and not included in an individual are:
g ¼ 5|{z}
Rule1

; 4|{z}
Rule2

; 3|{z}
Rule3

; 2|{z}
Rule4

; 1|{z}
Rule5

0
@

1
A:
3.4. Initializing the rest of the population

The rest N � 1 chromosomes, where N is the population size, are created by randomly replacing some
parameters of the FC created by C4.5 algorithm in Section 3.1. The replacement algorithm creates a set of
widely distributed chromosomes and it is given next:

Repeat for I = 1, . . . ,N � 1, where I is the chromosome iterator.
Step 1: Calculate the number of parameters to be replaced m as follows:
m ¼ round
I

ðN � 1Þ � h

� �
; ð10Þ
where ‘round’ stands for the operator rounding the result to the nearest integer.
Step 2: Choose randomly m parameters out of h.
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Step 3: Replace them by randomly generating m parameters between their corresponding limits, defined
in Sections 3.1 and 3.2.
1 It was, ho
End for
So the algorithm above generates widely distributed chromosomes, which all share the same structure, defined
in Section 3.2. Some of the chromosomes are either very similar or very different to the chromosome generated
by C4.5 algorithm, whereas some are between those extremes. That is important, because it speeds up the con-
vergence of EAs to the correct Pareto front [13].

4. Experiments

In this section performance of the proposed identification framework is validated. First, the experimental
setup used in this paper is described. Then, as illustrative examples, well-known Wine and Sonar classification
data sets are studied. Finally, six benchmark data sets from UCI Machine Leaning Repository [37] are studied
and a rigorous comparison of our results to the results presented in [1] is performed.

4.1. Experimental setup

Six benchmark data sets, Wisconsin breast cancer (Wisc), Pima Indians diabetes (Pima), Glass, Cleveland
heart disease (Cleve), Sonar, and Wine were studied in this paper. These data sets represent problems with
different number of classes, variables and data points (see Table 1) and they were also studied in [1]. Wisconsin
breast cancer and Cleveland heart disease data sets contained data points with missing values. Those data
points were removed.

In [1] a multiobjective fuzzy genetics-based machine learning (GBML) algorithm based on NSGA-II algo-
rithm was applied to obtain a set of non-dominated fuzzy rule-based classifiers. The parameters of fuzzy sets
were pre-specified by partitioning each input variable with 14 fuzzy sets and with a ‘‘don’t care’’ value. So the
problem was to specify the appropriate number of rules and to select the antecedents to these rules from those
aforementioned 15 fuzzy sets. Variable selection was not applied before executing GBML algorithm, so for
each rule n antecedents need to be specified. However, GBML algorithm can remove variables by assigning
‘‘don’t care’’ values for certain variables in all rules.

Three formulations of multiobjective optimization problems (MOPs) were applied in [1]. MOP-1 was used
to maximize the accuracy and to minimize the number of rules. MOP-2 was applied to maximize the accuracy
and to minimize the total number of conditions in rules. MOP-3 was used to maximize the accuracy, minimize
the total number of conditions in rules and to minimize the number of rules. So MOP-3 uses the same fitness
function as in this paper.

In [1], the number of generations and population size were set to 5000 and 200, respectively. Like illustrated
in [1], the search space is enormous, even when the parameters of fuzzy sets are pre-specified. In our case, when
the parameters of fuzzy sets need to optimized as well, it is beneficial to use larger population size [38]. How-
ever to perform a fair comparison, the number of fitness evaluations was limited to 10000001 (i.e. 5000 · 200).
So in this paper the number of generations and population size were both set to 1000. The applied parameters
for NSGA-II algorithm are shown in Table 2. The same cross-over and mutation probabilities and distribu-
tion indexes were also applied in [8]. For C4.5 algorithm, the pruning confidence value was set to 5 in order to
reduce the complexity of the initial FCs. The rest of the parameters were kept as their default values defined in
[22].

4.2. Illustrative examples

The purpose of this subsection is to shed light on the proposed method by identifying FCs for Wine and
Sonar classification data sets (see also Table 1). Those data sets were selected as examples, because they
wever, illustrated in [1], that better results can be obtained by increasing the number of fitness evaluations.



Table 1
Data sets used in this study

Data Variables Data points Classes

Wisconsin breast cancer 9 683 2
Pima Indians diabetes 8 768 2
Glass 9 214 6
Cleveland heart disease 13 297 5
Sonar 60 208 2
Wine 13 178 3

Table 2
NSGA-II parameters

Population size 1000
Number of generations 1000
Distribution index for mutation 20
Distribution index for cross-over 20
Cross-over probability 0.9
Mutation probability 1/h
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represent problems with different complexity, that is, Wine data have a moderate number of variables (13 vari-
ables) and Sonar data have a high number of variables (60 variables).

4.2.1. An illustrative example 1: wine classification

The problem is to classify 3 types of wines based on 13 variables, labeled here as x1,x2, . . . ,x13. There are
total of 178 datapoints in the data set. To perform the experiments, the data set was randomly divided into
training and testing set. Training set consisted of 80% of datapoints, that is, 142 datapoints and testing set
the rest 20% of datapoints (36 datapoints).
Fig. 2. Wine data: the obtained decision tree.
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C4.5 algorithm was run and a decision tree (DT) was obtained (see Fig. 2). It was converted into an FC
consisting of 7 rules and 21 rule conditions. The initial FC used six variables, x4, x7, x10, x11, x12, and x13,
selected by C4.5. The fuzzy sets of the initial FC are shown in Fig. 3. Since each of the 6 variables are parti-
tioned with 2 fuzzy sets, they can be labeled, for example, as small and large. Therefore, seven rules, generated
by collecting all the conditions on the way from the root of the tree to each of the seven leaves of DT [6] can be
expressed as:

If x13 is large and x11 is small then Class is 3

If x13 is large and x11 is large and x10 is large then Class is 1
If x13 is large and x11 is large and x10 is small then Class is 2

If x13 is small and x12 is large then Class is 2

If x13 is small and x12 is small and x4 is small then Class is 2
If x13 is small and x12 is small and x4 is large and x7 is large then Class is 2

If x13 is small and x12 is small and x4 is large and x7 is small then Class is 3

After that, the rest of the population was created by randomly modifying some parameters of the initial FC,
like illustrated in Subsection 3.4. The initial population is shown in Fig. 4.

Then, MOEA optimization was performed and a set of Pareto-optimal FCs was obtained. It can be seen
from Fig. 4 that complexity of FCs was highly reduced due to MOEA optimization. That, however, did
not deteriorate the accuracy. From the set of Pareto-optimal FCs, an FC can be selected based on the
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Fig. 3. Wine data: the fuzzy sets of the initial FC.
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Fig. 4. Wine data: initial population and final population.
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preferences. For example, an FC with 4 rules and 6 rule conditions can be selected. Its fuzzy sets are shown in
Fig. 5 and its rules are the following:

If x7 is small then Class is 3

If x10 is small then Class is 2

If x7 is large and x13 is small then Class is 2
If x10 is large and x13 is large then Class is 1

The properties of the selected FC along with properties of DT and initial FC are shown in Table 3. It is seen
that the selected FC is highly accurate, yet it is the most interpretable solution. From that Table it can be
noticed that the training error of initial FC is slightly worse than training error of DT. That is due to the
decomposition error caused when DT was converted into FC.

4.2.2. An illustrative example 2: sonar classification
Sonar data with 60 variables is studied in order to emphasize the variable selection capability of the pro-

posed method. Sonar data consist of 111 and 97 patterns obtained by bouncing off the sonar signals from
metal cylinders and rocks, respectively [39]. The problem is to distinguish between those signals based on
60 variables, named here x1,x2, . . . ,x60.

The experiments were carried out exactly the same manner as in the previous example, but for the sake of
brevity, DT and the fuzzy sets of initial and final FCs are not shown here. C4.5 selected 11 variables, namely
x8, x11, x13, x36, x45, x46, x51, x53, x54, x59, x60. The initial population and the final population after MOEA
optimization are shown in Fig. 6. It is seen that even the dimensionality of the problem is high, the complexity
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Fig. 5. Wine data: obtained fuzzy sets for the selected FC after MOEA optimization.

Table 3
Wine data: result comparison for decision tree, initial FC and selected FC

Method Train error rate Test error rate Rules Total rule length Variables

C4.5 0.0211 0.0278 7 21 6
Initial FC 0.0282 0.0278 7 21 6
Selected FC 0.0141 0 4 6 3
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of the initial FC is still moderate, consisting of 12 rules and 49 rule conditions. In Table 4 properties of four
FCs of final population are shown along with the initial FC and DT. Selected FC 1 is the most complex FC of
the final population and it consists of 10 rules and 26 rule conditions in contrast to 12 rules and 49 rule con-
ditions of the initial FC. Yet, selected FC 1 is more accurate than more complex initial FC. It is also noticed
from Table 4 that the best testing accuracy is obtained when the number of rules and rule conditions are 3 and
4, respectively.

4.3. Results comparison

For each of the six data sets, described in Table 1, a 10-fold cross-validation (10-CV) [40,35] was performed
10 times (i.e. 10 · 10-CV). So the total number of runs for each data set was 100. A different random seed was
used for each of the ten 10-CV runs. Since NSGA-II algorithm was applied, a set of non-dominated solutions
was obtained for each run. Usually those sets are not identical. They may contain solutions with different
structures (i.e. the number of rules and number of rule conditions) and the number of different solutions in
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Fig. 6. Sonar data: initial population and final population.

Table 4
Sonar data: result comparison for decision tree, initial FC and some selected FCs

Method Train error rate Test error rate Rules Total rule length Variables

C4.5 0.0181 0.2857 12 49 11
Initial FC 0.0301 0.2857 12 49 11
Selected FC 1 0.0060 0.2381 10 26 11
Selected FC 2 0.0602 0.2381 4 7 6
Selected FC 3 0.1145 0.2143 3 4 4
Selected FC 4 0.1627 0.3095 2 3 3
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a set may vary as well. In [1] only the solutions which were present in at least in 51 out of 100 runs were rep-
resented to have reliable results and we did that as well in order to perform a fair comparison. So the average
error rates on test set over the number of runs the solution was present were calculated. In this paper, there
may exist several solutions with the same structure and training error, but with different test error. That is
possible because the parameters of fuzzy sets are not fixed. In those cases, the average of those test errors
was selected to represent the solution for that run.

The solutions are presented in Figs. 7–12 along with the results of [1].2 It is noted that all of our solutions
for Wisconsin breast cancer, Glass and Wine data sets are not dominated by MOP-1, MOP-2 or MOP-3.
2 The exact values to reconstruct the figures were kindly provided by Hisao Ishibuchi and Yusuke Nojima, the authors of that paper.
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Fig. 7. Wisconsin breast cancer data.
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Fig. 8. Pima Indians diabetes data.
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Moreover, most of our solutions dominate some solutions of MOP-1, MOP-2 and MOP-3. For Pima Indians
diabetes data, some of our solutions are dominated by MOP-3, but one of our solutions also dominates the
solutions of MOP-1, MOP-2 and MOP-3. Our results for sonar data are quite similar to MOP-2 and MOP-3.
Some of our solutions for Cleveland heart disease data clearly dominate the solutions of MOP-1, MOP-2 and
MOP-3. However, one of our solutions with 1 rule and 1 rule condition is dominated by MOP-3.

Average best error rates for test and training sets over the 100 runs were calculated and presented in Tables
5 and 6. For comparison, the results of SOP-1, SOP-2 and SOP-3 [1], the single-objective versions of MOP-1,
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MOP-2 and MOP-3, respectively, are included in those Tables. Moreover, the best results of six C4.5 variants,
representing different splitting strategies and evaluation functions [41], are included in Table 6. Their perfor-
mances were evaluated by 10 · 10-CV, which is the same experimental setup as in this paper.

It is noted from Table 5 that by means of our method the lowest training error rates were obtained for
four out of six data sets. Furthermore, it can be seen from Table 6 that the lowest testing error rates for five



Table 5
Average best error rates on train set

Data This paper MOP-1 MOP-2 MOP-3 SOP-1 SOP-2 SOP-3

Glass 9.50 25.11 27.08 25.94 17.81 21.92 22.36
Sonar 1.95 8.55 8.69 8.42 3.55 5.89 5.82
Wine 0.6 0.01 0.10 0.03 0.00 0.00 0.00

Cleve 23.18 33.43 35.05 34.59 25.72 29.65 29.98
Wisc 1.94 1.59 1.71 1.74 1.08 1.44 1.51
Pima 16.17 19.48 19.79 19.59 17.74 18.37 18.41

Table 6
Average best error rates on test set

Data This paper MOP-1 MOP-2 MOP-3 SOP-1 SOP-2 SOP-3 C4.5 in [41]

Glass 24.05 35.55 33.93 34.05 35.76 39.21 38.36 27.3
Sonar 16.73 23.18 17.32 17.51 24.04 23.47 24.29 24.6
Wine 2.98 3.99 3.65 3.04 7.30 6.49 6.52 5.6
Cleve 38.22 42.57 42.85 42.64 44.83 45.80 45.44 46.3
Wisc 2.95 2.93 2.74 2.66 3.88 3.69 3.56 5.1
Pima 21.78 23.27 22.32 21.80 25.26 25.00 24.20 25.0

Table 7
Average number of obtained non-dominated FCs.

Data This paper MOP-1 MOP-2 MOP-3

Glass 21.48 13.98 16.49 27.09

Sonar 16.84 10.01 20.47 17.66
Wine 6.03 11.45 9.96 11.81

Cleveland 23.35 11.56 22.17 18.59
Wisconsin 5.64 12.09 13.32 12.25
Pima 13.52 9.71 15.80 17.06
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out of six data sets were also obtained by our method. That indicates good generalization capabilities of our
method.

In Table 7 the average number of the obtained non-dominated solutions is presented. It is noted that
generally our method obtained less non-dominated solutions than MOP-3, which has the same fitness function
as our method. Only for one out of six data sets our method obtained more non-dominated solutions than
MOP-3. That was due to the initialization algorithm used in this paper. Because C4.5 algorithm selected
the relevant variables and created moderate number of rules and fuzzy sets, the number of possible solutions
was reduced. However, as Tables 5 and 6 and Figs. 7–12 indicated, the quality of the obtained solutions was
high.

A reader may wonder, that the number of obtained non-dominated FCs in Table 7 is higher than in Figs. 7–
12. That is due to the experimental setup, which requires that an FC with a certain structure (i.e. certain num-
ber of rules and certain total rule length) must be present at least in 51 out of 100 runs. FCs which consist of
few rules have less conceivable structures and therefore they are more likely to be presented in those aforemen-
tioned figures. To illustrate the effect of the experimental setup, Fig. 10 is constructed again, such that, one of
the hundred runs is selected and the non-dominated solutions for that run are shown in Fig. 13. By comparing
Figs. 10 and 13, it is seen that FCs with more than 5 rules are present in Fig. 13, but not in Fig. 10. A clear
trade-off structure for train set is seen in Fig. 13. That is, however, not the case when test set is considered.
Some of the more complex solutions show poor generalization capabilities due to the overfitting. That con-
firms again, that the number of rules together with total rule length can prevent overfitting, like illustrated
in [1].
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Fig. 13. Cleveland heart disease data: the results of one run, selected out of 100 runs. A clear trade-off structure is seen for train set, but
that is not so clear for test set due to the overfitting.
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5. Conclusions

This paper proposed a hybrid method for identification of Pareto-optimal fuzzy classifiers (FCs). In con-
trast to many existing methods, the initial population for the multiobjective evolutionary algorithms
(MOEAs) was neither created randomly nor a priori knowledge was required. Instead of those techniques,
a two-step initialization method was applied. First, an FC was obtained by transformation of a decision tree
(DT) into an FC. Therefore, no a priori knowledge of the relevant variables, number of fuzzy sets or distri-
bution of fuzzy sets was required. Then, the rest of the population was created by randomly replacing some
parameters of that FC, in a way that the population was widely spread. That improved the convergence of
MOEAs into the correct Pareto front.

FCs were coded in a way that a popular MOEA, named NSGA-II, could be used to select rules, rule ante-
cedents and parameters of membership functions for the class labels specified by DT algorithm in initialization
phase. Because the parameters of fuzzy sets were not static, it enabled us to approximate the distribution of
data more accurately.

Number of misclassifications, number of rules and total rule length were used as objectives to be optimized.
In the future, it can be considered, whether it is beneficial to use different objectives. For example, number of
misclassifications could be replaced with the area under the receiver operating characteristic curve (AUC),
which is useful when class distributions and misclassification costs are unknown [10]. Also the number of
membership functions could be a object to be minimized. Those modifications to the fitness function can
be easily done without affecting any other part of the proposed method. In the future it can also be considered
whether MOEA should be used to modify the class labels of consequents as well. That may be useful in cases
when genetic operators significantly modify the antecedents of the rules and therefore the class labels specified
in initialization phase may not be adequate anymore.
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The validity of the proposed method was confirmed through six well-known benchmark data sets from the
literature. We compared our results to another FC identification method by Ishibuchi and Nojima [1], which
also utilized NSGA-II algorithm. The number of obtained Pareto-optimal solutions by our method was usu-
ally lower than in the comparative study. That was due to the initialization algorithm used in this paper.
Because C4.5 algorithm selected the relevant variables and created moderate number of rules and fuzzy sets,
the number of possible Pareto-optimal solutions was reduced. However, the variable selection also reduced the
computational costs significantly. Furthermore, the quality of the obtained solutions was higher than in the
comparative study; in five out of six data sets, we obtained more accurate solutions. Moreover, in three data
sets, none of our solutions were dominated by the solutions of the comparative study and some of our solu-
tions dominated the solutions of that study.
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