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In this paper, we describe a simple method for sampling, pre-concentrating, and separating volatile and
semi-volatile components from two different cave atmospheres. Sampling is performed by capturing a
volume of cave atmosphere in a Tedlar bag or Suma canister for sample storage and transport back to
the laboratory. Loading a portion of the sample on a multi-bed sorption trap allows for sample pre-
concentration prior to separation and detection of components on a comprehensive two-dimensional
gas chromatograph (GC�GC). Comparison of two Texas caves reveals the power of comprehensive
two-dimensional gas chromatography (GC�GC) for volatile separation and detection, and to our
knowledge marks the first use of GC�GC for the analysis of cave atmospheres. Analysis of the results
revealed 138 and 146 chromatographic signals over an S/N threshold of 500 and direct comparison of
the two samples revealed 50 identical chromatographic signals. This study is a first step toward demon-
strating the ability of GC�GC to separate the complex volatiles and semi-volatiles in the cave atmosphere
as a fingerprinting tool.

� 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

A number of recent discoveries have triggered renewed interest
in cave environments. Among these was the discovery of extremo-
phile bacteria in Cueva de Villa Luz in Mexico that metabolize min-
erals and hydrocarbons while living in concentrated sulfuric acid
(pH 0.0) [1,2]. Caves also entered the realm of the extraterrestrial
when their presence was detected on the surface of Mars by the
NASA Mars Odyssey orbiter’s Thermal Emission Imaging System
(THEMIS) in 2007 [3]. Perhaps the most pressing current issue
involving cave environments was the discovery in 2006 of the
highly-infectious and rapidly-spreading fungal disease known as
‘‘white nose syndrome’’ (WNS) among bats in Schoharie County,
New York, and traced to the psychrophilic fungus Pseudogymnoas-
cus destructans [4–6]. WNS has now spread to over a dozen U.S.
states and several Canadian provinces, and claimed an estimated
5.6 million bats [7]. Studying the atmospheres of these complex
and diverse environments not only serves as a diagnostic aid in
understanding extremes in the boundary conditions of terrestrial
microbes, but also has implications for astrobiology [8] and the
origins of life on Earth [9].
Over the past five years, members of our experienced cave team
have conducted studies of the changing meteorological conditions
in caves in the vicinity of San Antonio, Texas. This work involved
continuous logging of temperature, barometric pressure, humidity,
airflow, and carbon dioxide levels [10]. This cave microclimate
work was further expanded in 2011 in a collaboration between
St. Mary’s University and Southwest Research Institute (SwRI) to
deploy a cave mass spectrometer (CMS) in four Texas caves, includ-
ing Bracken Bat Cave, home to the largest colony of maternity bats
in the world. Discrete air samples were also obtained in Bracken for
subsequent analysis at SwRI by gas chromatograph mass spec-
trometry (GCMS).

The air samples for Bracken Bat Cave were obtained during peak
occupation of the colony when the interior temperature of the cave
was 43.3 �C and humidity greater than 99%. Subsequent analysis
revealed a complex mixture of organic molecules that included
hydrocarbons, ketones, aldehydes and alcohols, as well as
compounds that could not be identified against the background
noise of overlapping chemical signatures. A more powerful
analytical chemistry method was essential to unravel the
mysteries of such a harsh and complex natural environment teem-
ing with life. To the best of our knowledge and despite its limita-
tions, this effort to characterize cave atmospheres by GCMS was
also the first of its kind. Details of that effort have been described
previously [11].
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It is rare for caves in South Texas to experience freezing temper-
atures even in winter, so these caves are not known to contain the
fungus that causes WNS. Even so, colonies of the fungus responsi-
ble for WNS have been shown to grow well at temperatures
between 0 and 15 �C, poorly at temperatures between 15 and
20 �C and not at all at higher temperatures [12]. Also, bats in
maternity colonies in South Texas do not exhibit the depressed
or compromised immune systems characteristic of bats in torpor
within hibernacula in colder climates where WNS is prevalent.
However, warm cave environments do serve as complex biological
and environmental analogues for conditions encountered in colder
North American caves afflicted by WNS. Texas caves can also serve
as field laboratories for the deployment of analytical techniques
and testing protocols that can also be used in infected caves, yet
without the same program constraints that arise in WNS-afflicted
regions due to contamination concerns. Furthermore, the inven-
tory of atmospheric volatiles within the air of hot and humid South
Texas caves is anticipated to be far more complex than similar vol-
atiles encountered at the reduced temperatures within caves in the
Northeast.

Comprehensive two-dimensional gas chromatography, more
commonly referred to as GC�GC, has become a powerful analyti-
cal tool since its inception [13–15]. In 1991, Phillips et al. devel-
oped the first comprehensive GC�GC which employed a thermal
modulator for transferring effluent from the first column to the
second column [16]. This novel technique of GC�GC has allowed
the separation and analysis of complex samples such as petro-
leum [17–19], flavors [20], metabolites [21–23], environmental
[24,25] and even human breath [26]. The technique of GC�GC
employs two serially coupled capillary columns of different selec-
tivity via a modulation device. The modulator continuously traps
and re-focuses the first column effluent and subsequently injects
it onto the second column for a rapid analysis. This continuous
process allows the entire sample to undergo separation on both
columns. In a non-polar (x) polar column configuration, the first
column separates components based on volatility, similar to
one-dimensional separation, while the second column separates
components by a different physical characteristic, in this example
by polarity (also similar to a one-dimensional separation). The
second dimension separation is very fast, on the order of a few
seconds, meaning that analysis time is virtually unchanged from
1-dimensional GC.

The analytical advantages of GC�GC are multiple. First, the
focusing of eluting bands from the first dimension in the thermal
modulator and re-injection of the focused band onto the second
dimension column results in improvements in both signal-to-
noise (S/N) ratios and detectability (providing lower limits of
detection). The higher amplitude, narrow peak widths provided
from thermal modulation provide increased chromatographic res-
olution. Furthermore, the two-dimensional separation allows for
the data to be presented on a two-dimensional retention plane
rather than a single dimension (chromatogram). The two-
dimensional retention plane provides visual evidence of the
increase in peak capacity; the total peak capacity being the prod-
uct of each single dimension peak capacity. Trend lines reveal
chemical family recognition, or groupings of chemical families
within the two-dimensional retention plane. The analytical
advantages of GC�GC and its impact in separation science are well
documented in review articles [27,28].

Armed with the knowledge that caves are a complex habitat for
extremophile microbes, that an epidemic is killing bats directly
tied to their natural cave environment, and that caves are on Mars,
we sought to apply the GC�GC separation technique as an
analytical chemistry tool for fingerprinting this complex environ-
ment. This application is tested by comparing the fingerprints of
two separate cave environments.
2. Experimental

2.1. Cave sampling

Cave atmospheric samples were acquired by investigators
descending into caves to obtain air samples from just above the
floor in a deep interior portion of each cave (samples were taken
just above the floor for the sake of simplicity, it is possible that
the atmospheric profile may change at different strata in the cave).
The sample container used for collection and storage was either a
1 L Tedlar bag or an evacuated 1 L Suma canister. Each of these
types of sample containers has advantages and disadvantages
[29]. In its deflated sampling configuration, the Tedlar bag is square
in shape and very small when compared to a Suma canister. Con-
structed from heavy-duty plastic, the bag is inflated by a tracheal
syringe to an internal volume of 1 L through a quarter-turn valve.
Thus, a 1 L tracheal syringe is used to first sample the atmosphere
and then the sample is expelled from the syringe into the Tedlar
bag. The quarter turn valve on the bag is then closed and the sam-
ple returned to the laboratory for analysis. Perhaps even easier
sampling is accomplished through use of a Suma canister. The
Suma canister is evacuated by a vacuum pump (to 30 psi below
atmospheric pressure) prior to descent into the cave. Once in the
cave sampling location, the valve on the canister is simply opened
and the local atmosphere is drawn into the canister until the pres-
sure equilibrates, a procedure that takes less than two seconds. The
valve is then returned to the closed position and the canister
returned to the laboratory for analysis. An advantage of the Suma
canister is its ruggedness, structural rigidity, and the stainless steel
inner surface walls. The durability of the sample container can be a
critical issue during lengthy cave descents and ascents in which
Tedlar bags could be perforated against rock while negotiating
tight spaces. The structural rigidity of the Suma canister also
allows pressurization with helium if desired once returned to the
laboratory. The size and mass of the Suma canister limits the num-
ber of samples that can be retrieved on a typical cave expedition.
The unfilled Tedlar bags are compact and can be carried through
tight spaces, but still require the time and effort associated with
the large sampling syringe for filling. The inner walls of the Suma
canister are also less reactive than walls of the Tedlar bags, which
are subject to permeation and other surface effects related to gas
reactivity and retention. For this study, a sample was taken from
a cave in the western part of Texas while the other sample was
taken from Robber Baron cave in San Antonio. Both samples were
returned to Southwest Research Institute for analysis in the GC�GC
lab of the Space Science and Engineering Division. Cave samples
were taken on expeditions into caves by employees from South-
west Research Institute and were taken with permission from cave
managers or land owners where the cave was present. For this rea-
son, only a limited number of samples could be taken. Temperature
and humidity measurements of the cave were not taken at the time
of sampling and while these data could have provided additional
information, for the purpose of this experiment showing the ana-
lytical utility of GC�GC for investigating cave atmospheres are
not required.
2.2. Pre-concentration with multi-bed sorption trap

Upon return to the laboratory, the sample container was con-
nected to a multi-bed sorption trap where sample pre-concentra-
tion, or enrichment, is accomplished prior to injection on a
GC�GC commercial instrument. The multi-bed sorption trap
(MBST) consists of four discrete beds of carbon molecular sieve
material separated by plugs of glass wool. The carbon molecular
sieve materials are as follows: Carbopack Y, Carbopack X,
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Carbopack B, and Carboxen 1000 (Supelco; St. Louis, MO). Each bed
component, surface area size, and relative analyte size trapped in
the bed (related to hydrocarbon size) are displayed in Table 1.
The beds are packed within a thin walled Inconel 600 tube (8 cm
length, outer diameter of 0.062500 (1/1600), with a wall thickness
of 0.00600 from AllTube Microgroup; Medway, MA), allowing for
quick resistive heating of the trap to desorb components into the
comprehensive two-dimensional gas chromatograph. Details,
applications, and performance of the multi-bed sorption trap have
been published previously [26,30,31].

A schematic of the sample pre-concentration and subsequent
analysis step in the GC�GC instrument is displayed in Fig. 1. Sam-
ple is drawn from the sampling container (sampling pathway is
denoted by the dotted maroon line in the figure), a Suma canister
in the figure, with a diaphragm vacuum pump (S/N 1/667418 KNF
Neuberger Inc.; Trenton, NJ). During sampling, the valve for the
sample inlet is opened and the two-way valve is switched to open
the plumbing to the vacuum pump. Valve control is accomplished
through a Crydom D1D40 solid state relay (Digi-Key Corporation;
Thief River Falls, MN). A flow controller (Omega Engineering Model
FMA.5605, Omega Engineering; Stamford CT) is placed upstream
from the vacuum pump so the vacuum flow rate is known and
the time duration of sampling along with the known flow rate
can be used to calculate the volume of gas sampled from the con-
tainer. The sample is collected on the trap with each analyte being
trapped on a respective bed according to its size with larger ana-
lytes being trapped on the first bed (lower volatility components)
and smaller analytes (higher volatility components) trapped on
the last beds. All plumbing between the valves, the MBST, and
the GC�GC is accomplished by using an Rxi guard column of inner
diameter 250 lm (Restek Corporation; Bellefonte, PA).

After a user-defined sampling period, the sample inlet valve is
closed and the two-way valve is switched to allow helium carrier
gas to flow through the trap and the GC�GC columns. Time is
Table 1
Bed component, surface area size of component and relative analyte size trapped.

Bed component Surface area size (m2/g) Relative analyte size trapped

Carbopack Y 24 C12–C20

Carbopack B 100 C5–C12

Carbopack X 240 C3–C9

Carboxen 1000 1200 C2–C5

Fig. 1. Schematic of sample pre-concentration on m
allowed for carrier gas equilibration through the entire set-up
before desorption of components off the trap and injection onto
the primary column of the GC�GC instrument. Carrier gas flow is
defined by the dotted olive green line in the figure.

Upon helium carrier gas equilibration, a relatively fast, high-
current DC heating pulse is applied across the multi-bed sorption
trap (Inconel 600 tube) followed by a second, lower-current DC
heating pulse to maintain the MBST temperature. The first heating
pulse is a 3.8 V DC (�17.5 A) pulse of 2.5 second duration, followed
by a 1.4 V DC (�6–7 A) pulse of 15 s duration. The MBST is heated to
300 �C during the initial pulse and temperature is maintained
around this maximum temperature from the second heating pulse.
Control of the heating pulses are accomplished by two, separate
Crydom D1D40 solid state relays with an Agilent E3633A DC power
supply (0–8 V, 20 A/0–20 V, 10 A) for the first heating pulse and an
Agilent E3634A DC power supply (0–25 V, 7 A/0–50 V, 4 A) for the
second heating pulse delayed 0.2 s after the fall of the first heating
pulse (Agilent Technologies; Santa Clara, CA). MBST temperature is
monitored by a TT-K-40 fine wire duplex insulated thermocouple
(Omega Engineering; Stamford, CT) with the thermocouple wire
attached to the middle surface between the heating contact points
and the thermocouple wire is fed into a model DP116-KC1 temper-
ature panel meter (Omega Engineering; Stamford, CT). Coinciding
with the rise of the first heating pulse is the manual start of the
GC�GC (pseudo-injection on the GC�GC) for analysis of the des-
orbed components. Retention time shifts between replicate runs
was seen to be less than 4 s in the first dimension (corresponding
to the GC�GC modulation time). Random selection of five chro-
matographic signals were compared for triplicate runs and all of
them showed the first dimension retention time to be ‘‘dead on’’
while the second dimension retention time shifted by only ±0.015 s.

All of the timing for valve operation and heating pulses is
accomplished through a LabVIEW (National Instruments; Austin,
TX) program custom-written by the authors. Valve signals and
heating pulse signals are relayed out of digital-out signals on a
National Instruments USB-6009 DAQ (National Instruments;
Austin, TX) while the temperature of the MBST is fed back into
an analog input on the DAQ and stored in a plot in the LabVIEW
program. This program allows experimental parameters to be
easily changed or for reproducibility between multiple experimen-
tal runs when experimental values are kept constant.

All other pertinent experimental parameters associated with
sample loading for the samples presented herein are described
ulti-bed sorption trap and analysis via GC�GC.
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below. Sample was loaded onto the MBST for 50 s and the flow rate
onto the trap provided from the vacuum pump and measured by
the flow meter was approximately 40 ml min�1. Thus, approxi-
mately 33.3 ml of gas was loaded onto the MBST for each run with
the experiment being done in triplicate. After sample loading, the
two-way valve was switched to allow helium carrier gas to flow
through the MBST and GC�GC instrument for 300 s to permit
equilibration of flow and pressure throughout the whole system.
After this time period, the two heating pulses were turned on
and the desorbed components were analyzed by the GC�GC
instrument.

Between runs, the trap is conditioned by purging helium gas
through the trap while maintaining trap temperature at about
150–200 �C. In this way, any remaining trapped components from
the previous run will be desorbed from the trap. This conditioning
process ensures that the trap is clean prior to the next run.

2.3. Comprehensive two-dimensional gas chromatograph (GC�GC)

The comprehensive two-dimensional gas chromatograph
(GC�GC, Leco Corporation; St. Joseph, MI) is an Agilent 7890 GC
(Palo Alto, CA) equipped with a consumable free thermal modula-
tor and flame ionization detector (FID). The instrument is slightly
modified to allow for the MBST to be mounted near the GC inlet.
Modifications include removal of the autosampler, removal of the
inlet liner, and helium carrier gas flowing directly through the trap
and through the GC�GC columns rather than using the electronic
pressure controller of the instrument. To accomplish this, the Rxi
guard column (250 lm id) exiting the low-dead volume connector
to the GC inlet passes through the inlet and into the oven and is
connected to the primary dimension column by way of a Universal
Press-Tight� connector (Restek Corporation; Bellefonte, PA). The
carrier gas flow rate was measured with the GC oven at an isother-
mal temperature of 30 �C and was set to a flow rate of 1.5 ml min�1

and used for all experiments described herein. For all experimental
data shown, the inlet temperature was 250 �C.

The columns used in the GC�GC instrument are a 30 m long,
250 lm id, 0.25 lm film thickness Rtx-1 primary column and a
1.3 m long, 100 lm id, 0.1 lm film thickness Rxi-17 secondary col-
umn (Restek Corporation; Bellefonte, PA). The oven temperature
program ramps are as follows: primary oven 40 �C hold for
0.5 min followed by a 3 �C min�1 ramp to 240 �C held for 0.5 min
and secondary oven 50 �C hold for 0.5 min followed by a 3 �C min�1

ramp to 250 �C and then held for 0.5 min at the final temperature.
The modulator temperature is held 15 �C above the secondary oven
Fig. 2. Temperature profile of the MBST during heating. The first heat
temperature over the entire course of the run. The two-stage mod-
ulator period is 4 s (1.4 s cold pulse and 0.6 s hot pulse of gas for
each stage), defining the overall retention time of the second
dimension. The instrument employs a flame ionization detector
(FID) which provides a signal response, or current, for analytes
eluting from the secondary column. Data were post-processed with
the ChromaTOF� software (Leco Corporation; St. Joseph, MI).

3. Results and discussion

The first sample to be run was taken from the cave in western
Texas herein referred to as BBC cave. The sample was captured in
a 1 L Tedlar bag and was brought back to the laboratory and ana-
lyzed within 4 days of the sample being taken. The experiments
were done in triplicate and the heating profiles of the MBST for
the three runs are displayed in Fig. 2. It can be seen from Fig. 2 that
the time of heating (desorption of components from the trap) and
the temperature of the MBST versus time shows good reproducibil-
ity between the experimental runs. Similar results were seen for
the other cave samples but the data are not shown for reasons of
brevity and simplicity.

The sample components then undergo separation on both the
primary and secondary dimension column and with the analytical
advantages of the thermal modulator the chromatographic signals
are narrow and of increased sensitivity. A two-dimensional con-
tour plot (chromatogram) of the chromatographic signal intensity
versus first and second dimension retention time is shown in
Fig. 3. For clarification purposes, the important parts of the figure
to call out are the first dimension retention time (x-axis), the sec-
ond dimension retention time (y-axis), and the contour plot (color
scheme) is blue for the background noise, then green-to-yellow-to-
red in terms of increasing chromatographic signal intensity. The
signals standing out from the background show all of the chro-
matographic signals (volatile and semi-volatile substances) pres-
ent in the atmospheric cave sample, 138 chromatographic signals
above an S/N threshold of 500 on average between the three trip-
licate experimental runs. The S/N threshold was chosen to examine
similarity in higher abundance components that can be seen more
easily from the two-dimensional plots. If the S/N threshold was
reduced to lower values, for example around an LOD of 10, the
number of identified chromatographic signals would increase. This
large number of chromatographic signals demonstrates the com-
plexity of the sample. The streaking of signal in the early first
dimension retention times is due to the high volatility of the
corresponding compound and the cold gas jet temperature of the
ing pulse begins at 350 s from the beginning of the trap loading.



Fig. 3. Two-dimensional contour plot (chromatogram) of the West Texas cave sample.
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thermal modulator being insufficient to trap the compound and
thus the compound breaks through the modulator and this streak
of signal is seen across the entire second dimension.

Some advantages provided by GC�GC which can be illustrated
from Fig. 3 are increased chromatographic resolution, peak capac-
ity, and signal-to-noise ratios. Increases in chromatographic reso-
lution and peak capacity somewhat go hand-in-hand as
chromatographic resolution and peak capacity are increased with
orthogonal separations (separations over two dimensions).

The second sample was taken from a cave near San Antonio,
Texas, called Robber Baron Cave. The two-dimensional contour
plot (chromatogram) resulting from analysis of the sample on the
MBST with the GC�GC is displayed in Fig. 4. Likewise, there is
much complexity in this sample showing an average of 146 signals
above an S/N threshold of 500 for the triplicate experimental runs.

In order to display the chromatographic complexity of the two
cave samples a similar figure is displayed for background air sam-
pled from within the laboratory. Sampling was performed in the
exact same manner as the cave samples and the result is shown
in Fig. 5. At the same S/N threshold of 500, only 1/3 the number
Fig. 4. Two-dimensional contour plot (chroma
of chromatographic signals are seen (approximately 50). These
cave samples show much increased complexity in the number
and intensity of the chromatographic signals present.

Another analytical advantage of GC�GC is chemical family rec-
ognition in terms of chromatographic space. A contour plot result-
ing from a standard GC�GC solution test mixture run on a Leco
Pegasus� 4D GC�GC-TOFMS instrument housed in a separate divi-
sion at Southwest Research Institute is displayed in Fig. 6. There
are 49 signals numerically labeled in the contour plot and the
chemical identity of said signals is listed in Table 2. On the basis
of chemical identity (structure), signals are grouped and classified
into similar chemical families denoted by the white oval regions in
Fig. 6. Groupings of chemical families are denoted as aliphatics
(alkanes, alkenes, and substituted alkanes and alkenes), mono-
aromatics, polar aromatics, di- and tri-aromatics, and higher order
aromatics (>tri-aromatics). The individual chemical identities in
relation to their respective chemical family can be checked from
Table 2. This chemical family recognition in the two-dimensional
contour plot is one of the advantages of GC�GC and can be used
as a screening tool for what types of chemical compounds are
togram) of the Robber Baron cave sample.



Fig. 5. Two-dimensional contour plot (chromatogram) of the background laboratory air sample.

Fig. 6. Contour plot showing results from a GC�GC solution test mixture ran on a commercial Leco Pegasus� 4D GC�GC-TOFMS.
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present in an unknown sample. For confident chemical identifica-
tion, however, a mass spectrometer such as the time-of-flight mass
spectrometer in the Pegasus� 4D GC�GC-TOFMS is required. At the
time of this work, the Leco Pegasus� 4D GC�GC-TOFMS was
unavailable for use.

Using the contour plot of Fig. 6 and Table 2 of chemical com-
pounds as a guide, some of the chemical families are denoted in
Fig. 7. This comparison is valid as the two instruments used the
same column configurations (nonpolar volatility based first dimen-
sion separation and polar second dimension separation), oven tem-
perature ramps, etc. The differences in liquid injection versus
desorption from the MBST are minimal and the resulting retention
times of components may vary slightly but the groupings of com-
ponents in chemical families (chemical family recognition) still
holds. The chemical family groupings can be used in comparing
the two cave samples as one can see some of the similarities and
differences in the caves as well as seeing what ‘types’ of signals
are present. In the comparative two-dimensional chromatograms
part of the first dimension retention time has been truncated (does
not go out to 4060 s as in Figs. 3 and 4) as the majority of the chro-
matographic signals elute in the first 3000 s.

Utilizing the compare feature in ChromaTOF� software allows a
retention time matching in both the first and second dimension
that can be used to determine like signals between the two chro-
matograms being compared. Filters are manually set to make the
comparison and are as follows: first dimension retention time
deviation from centroid of chromatographic signal of 4 s, second
dimension retention time deviation of 0.1 s, and no filter for peak
area or peak height as intensities for matching components might
vary between samples. Applying these filters, the average number
of matches between the triplicate experiments is 50 chromato-
graphic signals (for comparative purposes, the number of matches
between triplicate runs of the West Texas cave sample is on aver-
age �125). One can look at Fig. 7 and visually see a few matching
signals but the chromatographic complexity requires the software
to hunt for all of the like signals. Many of the matching signals are



Table 2
List of chemical compounds detected in the GC�GC solution test mixture.

Peak number Chemical compound Peak number Chemical compound Peak number Chemical compound

1 N-Nitrosodimethylamine 18 Phenol, 2-nitro- 35 Acenaphthene
2 Pyridine 19 Phenol, 2,3-dimethyl- 36 Dibenzofuran
3 Aniline 20 Methane, bis(2-chloroethoxy)- 37 Fluorene
4 Bis(2-chloroethyl) ether 21 Phenol, 2,5-dichloro- 38 Diethyl phthalate
5 Phosphonic acid, (p-hydroxyphenyl)- 22 Benzene, 1,2,4-trichloro- 39 Naphthalene, 2-methyl-
6 Phenol, 2-chloro- 23 Azulene 40 Diphenylamine
7 Benzene, 1,3-dichloro- 24 m-Chloroaniline 41 Azobenzene
8 Benzene, 1,2-dichloro- 25 1,3-Butadiene, 1,1,2,3,4,4-hexachloro- 42 Diphenyl ether
9 Benzene, 1,4-dichloro- 26 Phenol, 4-chloro-3-methyl- 43 Benzene, hexachloro-

10 Benzyl alcohol 27 Naphthalene, 1-methyl- 44 Phenanthrene
11 Isopropyl alcohol 28 Naphthalene, 1-methyl- 45 Carbazole
12 Phenol, 3-methyl- 29 1,3-Cyclopentadiene, 1,2,3,4,5,5-hexachloro- 46 Dibutyl phthalate
13 1-Propanamine, N-nitroso-N-propyl- 30 Phenol, 2,4,5-trichloro- 47 Fluoranthene
14 Benzene, nitro- 31 Naphthalene, 1-chloro- 48 Pyrene
15 Phenol, 3-methyl- 32 o-Nitroaniline 49 Fluoranthene
16 Ethane, hexachloro- 33 Dimethyl phthalate
17 2-Cyclohexen-1-one, 3,5,5-trimethyl- 34 Biphenylene

Fig. 7. Comparison of the two-dimensional chromatograms from the two cave samples with some of the more noticeable differences in detected components as well as
denoted regions specific to chemical families for a screening tool of what ‘type’ of components are present in the caves.
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seen in the aliphatic (branched and linear alkanes, alkenes, etc.)
trend line and areas around the substituted aromatics. Two of
the most noticeable similar signals are more polar compounds at
a second dimension retention time around 2 s (marked by the dark
red box in the right of Fig. 7). The same signals are seen in the fig-
ure at left but at significantly different abundances from the colors
of the contour plot. There are also many matches among the smal-
ler alkanes where streaking of the signal is seen across the entire
second dimension.

Those signals that are not among the 50 matches are unique sig-
nals to the respective samples (88 and 96, respectively from the
138 and 146 chromatographic signals originally above an S/N
threshold of 500). A few of the more noticeable unique signals
are denoted in Fig. 7. The first signal is marked by the white circle
in the lower left portion of the Robber Baron cave sample at left of
Fig. 7 around a first dimension retention time of 500 s and a second
dimension retention time of 1.2 s. In the plot at right (West Texas
cave sample), a similar signal is seen but at a second dimension
retention time around 1 s (following the aliphatic trend line). The
deviation in this signal from the Robber Baron sample shows
increased polarity and would be an interesting signal to target with
mass spectrometry detection employed. The second set of differ-
ences take place along the aliphatic trend line at a first dimension
retention time around 2000 s denoted by the purple box in the left
plot (Robber Baron sample). Within the region defined by the pur-
ple box, there are an increased number of signals (3) sitting just
above the dotted white line representing the aliphatic trend line.
These signals are not present in the West Texas cave sample. In
the same region, two very distinct signals present in the West
Texas cave sample denoted by the two small white circles in plot
at right are not present in the Robber Baron sample. These two sig-
nals are very abundant and one deviates above the trend line (more
polar) while the other is below the trend line (less polar). The last
set of unique signals are seen in the West Texas cave sample
denoted by the large white oval for the highly polar compounds
in the region of second dimension retention time of 2–3 s. These
unique sets of signals between the two samples would be interest-
ing starting points for mass spectrometry detection and identifica-
tion to help characterize the chemical differences between the
caves and what could be responsible for said differences.

A better, more visually striking, comparison can be made using
the subtract tool in the ChromaTOF� software. The software allows
the user to select two contour plots and subtract one of the contour
plots from the other and one can more easily see the variation in
both signal intensity and unique signals between the two samples.
This comparison was done for both cave samples and the results
are presented in Fig. 8. The lower plots in Fig. 8 represent the sub-
traction of one contour plot from another and the resulting contour



Fig. 8. Comparison of the two cave samples utilizing the subtract tool in the ChromaTOF� software. The upper left contour plot shows the raw data of the West Texas cave
sample while the lower left plot depicts said contour plot minus the raw data of the Robber Baron cave sample. The plots at right are for the initial Robber Baron cave sample
and subtraction with the compared sample.
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plots provide greater visual acuity in the differences of the cave
atmospheres.

4. Conclusion

Our cave sampling method coupled with sample pre-concentra-
tion using a multi-bed sorption trap (MBST) prior to injection onto
a commercial GC�GC-FID has proven to be a successful tool for
screening, fingerprinting, and comparing cave atmospheres.
Results from two different Texas caves compared to a background
air sample from within a laboratory (normal building environ-
ment) show variation in volatile and semi-volatile compounds.
Furthermore, the two caves show differences in chromatographic
signals and more specifically differences in the amount and abun-
dance of signals corresponding to different chemical families (i.e.
suspected aliphatics, aromatics, polar compounds, etc.). To
improve upon the method in the future, mass spectrometry detec-
tion will be implemented with the commercial GC�GC instrument.
Effluent will be diverted through a heated transfer line into an elec-
tron impact source and ions will then be extracted from the source
into a time-of-flight mass spectrometer. However, it should be reit-
erated that the power of GC�GC for providing chemical informa-
tion for differentiating and fingerprinting atmospheres can be
seen without the use of a mass spectrometer and can be used to
glean information about likeness and diversity of atmospheres.
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