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Convergence of the Adomian method applied to a class of nonlinear
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Abstract

In this work, a reliable approach for convergence of the Adomian method when applied to a class of nonlinear Volterra integral
equations is discussed. Convergence analysis is reliable enough to estimate the maximum absolute truncated error of the Adomian
series solution.
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1. Introduction

The Adomian Decomposition Method (ADM) solves successfully different types of linear and nonlinear equations
in deterministic or stochastic fields [1–4]. Application of ADM to different types of integral equations has been
discussed by many authors, for example [5–8]. In this work, the nonlinear Volterra integral equation of the second
kind

y(t) = x(t) +

∫ t

0
k(t, τ ) f (y(τ ))dτ (1)

is considered where x(t) is assumed to be bounded ∀t ∈ J = [0, T ] and |k(t, τ )| ≤ M ∀0 ≤ τ ≤ t ≤ T . The nonlinear
term f (y) is Lipschitz continuous with | f (y) − f (z)| ≤ L |y − z| and has the Adomian polynomial representation

f (y) =

∞∑
n=0

An(y0, y1, . . . , yn), (2)

where the traditional formula for An is

An = (1/n!)(dn/dλn)

[
f

(
∞∑

n=0

λi yi

)]
λ=0

. (3)
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The author in [9] deduced another programmable formula for the Adomian polynomials:

An = f (Sn) −

n−1∑
j=0

A j , (4)

where the partial sum is Sn =
∑n

i=0 yi (t). Application of ADM to (1) yields

y(t) =

∞∑
i=0

yi (t), (5)

where

y0(t) = x(t), (6)

yi (t) =

∫ t

0
k(t, τ )Ai−1dτ, i ≥ 1. (7)

The contribution of the work reported here can be summarized in the following four points:

• Introducing the sufficient condition that guarantees a unique solution to problem (1) (see Theorem 1).
• On the basis of the above point and formula (4), convergence of ADM is discussed (see Theorem 2).
• Using point two, the maximum absolute truncated error of the Adomian series solution (5) is estimated (see

Theorem 3).
• Preparation of an algorithm using the MATHEMATICA package to generate the two types of Adomian

polynomials, make a comparative study and solve the related numerical examples.

2. Convergence analysis

2.1. Uniqueness theorem

Theorem 1. Problem (1) has a unique solution whenever 0 < α < 1, where, α = L MT .

Proof. Let y and
∗
y be two different solutions to (1) then

|y −
∗
y | =

∣∣∣∣∫ t

0
k(t, τ )[ f (y) − f (

∗
y)] dτ

∣∣∣∣
≤

∫ t

0
|k(t, τ )| | f (y) − f (

∗
y)| dτ

≤ L M |y −
∗
y |

∫ t

0
dτ

≤ α|y −
∗
y |

from which we get (1 − α) |y −
∗
y | ≤ 0. Since 0 < α < 1, then |y −

∗
y | = 0, implies y =

∗
y and this completes the

proof. �

2.2. Convergence theorem

Theorem 2. The series solution (5) of problem (1) using ADM converges if 0 < α < 1 and |y1| < ∞.

Proof. Denote as (C[J ], ‖.‖) the Banach space of all continuous functions on J with the norm ‖ f (t)‖ = max∀t∈J
| f (t)|. Define the sequence of partial sums {Sn}; let Sn and Sm be arbitrary partial sums with n ≥ m. We are going to
prove that {Sn} is a Cauchy sequence in this Banach space:

‖Sn − Sm‖ = max
∀t∈J

|Sn − Sm |

= max
∀t∈J

∣∣∣∣∣ n∑
i=m+1

yi (t)

∣∣∣∣∣
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= max
∀t∈J

∣∣∣∣∣ n∑
i=m+1

∫ t

0
k(t, τ )Ai−1 dτ

∣∣∣∣∣
= max

∀t∈J

∣∣∣∣∣
∫ t

0
k(t, τ )

n−1∑
i=m

Ai dτ

∣∣∣∣∣ .
From (4) we have

∑n−1
i=m Ai = f (Sn−1) − f (Sm−1) so

‖Sn − Sm‖ = max
∀t∈J

∣∣∣∣∫ t

0
k(t, τ )

[
f (Sn−1) − f (Sm−1)

]
dτ

∣∣∣∣
≤ max

∀t∈J

∫ t

0
|k(t, τ )| | f (Sn−1) − f (Sm−1)| dτ

≤ α ‖Sn−1 − Sm−1‖ .

Let n = m + 1; then

‖Sm+1 − Sm‖ ≤ α ‖Sm − Sm−1‖ ≤ α2
‖Sm−1 − Sm−2‖ ≤ · · · ≤ αm

‖S1 − S0‖ .

From the triangle inequality we have

‖Sn − Sm‖ ≤ ‖Sm+1 − Sm‖ + ‖Sm+2 − Sm+1‖ + · · · + ‖Sn − Sn−1‖

≤ [αm
+ αm+1

+ · · · + αn−1
] ‖S1 − S0‖

≤ αm
[1 + α + α2

+ · · · + αn−m−1
] ‖S1 − S0‖

≤ αm
(

1 − αn−m

1 − α

)
‖y1(t)‖ .

Since 0 < α < 1 we have (1 − αn−m) < 1; then

‖Sn − Sm‖ ≤
αm

1 − α
max
∀t∈J

|y1(t)| . (8)

But |y1| < ∞ (since x (t) is bounded); so, as m → ∞, then ‖Sn − Sm‖ → 0. We conclude that {Sn} is a Cauchy
sequence in C[J ], so the series converges and the proof is complete. �

2.3. Error estimate

Theorem 3. The maximum absolute truncation error of the series solution (5) to problem (1) is estimated to be
max∀t∈J

∣∣y(t) −
∑m

i=0 yi (t)
∣∣ ≤

Kαm+1

L(1−α)
where K = max∀t∈J | f (x(t))| .

Proof. From Theorem 2 inequality (8) we have

‖Sn − Sm‖ ≤
αm

1 − α
max
∀t∈J

|y1(t)| .

As n → ∞ then Sn → y(t) and max∀t∈J |y1 (t)| ≤ T M max∀t∈J | f (y0)|, so

‖y (t) − Sm‖ ≤
αm+1

L (1 − α)
max
∀t∈J

| f (x(t))| .

Finally, the maximum absolute truncation error in the interval J is

max
∀t∈J

∣∣∣∣∣y(t) −

m∑
i=0

yi (t)

∣∣∣∣∣ ≤
Kαm+1

L (1 − α)
. (9)

This completes the proof. �
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3. Numerical experiments

The Adomian polynomials can be generated using formula (3) or formula (4). Formula (4) is programmable and the
Adomian series solution can be converged faster when using it. For example, if f (y) = y2 the first four polynomials
using formulas (3) and (4) are computed to be:

Using formula (3):

A0 = y2
0

A1 = 2y0 y1

A2 = y2
1 + 2y0 y2

A3 = 2y1 y2 + 2y0 y3

A4 = y2
2 + 2y1 y3 + 2y0 y4.

Using formula (4):

A0 = y2
0

A1 = 2y0 y1 + y2
1

A2 = 2y0 y2 + 2y1 y2 + y2
2

A3 = 2y0 y3 + 2y1 y3 + 2y2 y3 + y2
3

A4 = 2y0 y4 + 2y1 y4 + 2y2 y4 + 2y3 y4 + y2
4 .

Clearly, the first four polynomials computed using formula (4) include the first four polynomials computed using
formula (3) in addition to other terms which should appear in A5, A6, A7, . . . using formula (3). Thus, the solution
using formula (4) forces many terms to be entered into the calculation processes earlier, yielding a faster convergence.
In order to verify the conclusions of Theorems 2 and 3 consider the following numerical example:

y(t) =
1
20

(300 + 315t2
+ 5t4

+ t6) −
1

150

∫ t

0
(t − τ)y2(τ )dτ, 0 ≤ t ≤ 1,

with exact solution y(t) = 15(t2
+ 1). Table 1 shows the exact absolute truncation error 4 =

∣∣y(t) −
∑m

i=0 yi (t)
∣∣
t=1

and the maximum absolute truncation error
∗

4 =
Kαm+1

L(1−α)
for different values of m where T = 1, M =

1
150 , L = 60,

α =
2
5 and K =

385641
400 .

Table 1

m 4
∗

4

5 1.23333 × 10−3 0.109693
10 6.27671 × 10−9 0.00112326
15 2.60089 × 10−14 0.0000115022
20 9.79976 × 10−19 1.17782 × 10−7

4. Conclusion

The sufficient condition that guarantees a unique solution to the given problem is obtained. The contraction
mapping principles can be employed successfully to prove the convergence of ADM. The convergence study is reliable
enough to estimate the maximum absolute truncated error of the Adomian series solution.
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