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Let H be a finite-dimensional Hopf algebra over a field k, and let G be a subgroup of the group 

of grouplikes of H. Then every left (H, kG)-Hopf module is free as a left kG-module. If k is 

algebraically closed and C is a simple subcoalgebra of H with gC= C for all g E G, then the expo- 

nent of G and (in characteristic p > 0) the p-part of 1 G 1 divide n, where n2 is the dimension of C. 

Introduction 

Let H be a finite-dimensional Hopf algebra over a field k, and let B be a Hopf 

subalgebra. Kaplansky conjectured [5, Appendix 21 that His free as a module over 

B. This result is known and easy if B contains the coradical of H [8, Corollary 11; 

deeper results are that the result holds if His commutative or has a cocommutative 

coradical[9, Theorem 1, Proposition 31. (See [ 12, Section 21 for two additional cases 

involving more technical commutativity assumptions.) Progress in determining the 

structure of finite-dimensional Hopf algebras has been hindered by a lack of 

freeness results which hold for all H. Recently the second author has shown [13, 

Theorem 61 that His a free kG-module when G is a subgroup of the group G(H) 

of grouplikes of H, provided that kG is semisimple. In this paper we remove the 

restriction on kG. We have worked in a generality which allows us to include here 

a proof of the semisimple case. 

After some preparatory results from representation theory, we consider the situa- 

tion in which H is a finite-dimensional Hopf algebra over an algebraically closed 

field k and G is a subgroup of G(H) which stabilizes a simple subcoalgebra C of 

H. We show that C is free as a kG-module and that the exponent of G and the p-part 

of IG 1 (in characteristic p>O) divide n, where rz* is the dimension of C. We then 

prove our main result, which is that for H a finite-dimensional Hopf algebra over 

a field k and G a subgroup of G(H), every left (H, kG)-Hopf module is free as a 
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occurs [G : Q](dim M)/s times in the decomposition of M2, we see that s must con- 

tain the entire q-part of ( G 1. In characteristic p > 0, s must contain the entire p-part 

of 1 G 1, since M is free as a kt>-module for some p-Sylow subgroup P of G. Thus 

s = /G 1, and M=M, is a free kG-module, as required. q 

A well-known elementary result [2, Exercise IO.181 is that if W is a finitely 

generated free left kG-module and M any finitely generated left kG-module, then 

W@M is a free left kG-module. (Here G acts on W@M via g(w@m) = gwOgm for 

all g E G, w E W, m EM.) Thus in this case we have WOM= WC0 as kG-modules, 

where t = dim M. Our next result is a partial converse. 

Proposition 1.3. Let k be a field, G a finite group, and W a finitely generated left 
kc-module. Suppose that there exists a finitely generated faithful left kG-module 
M with WOM= W (‘) as kG-modules, where t = dim M. Then W is free as a left 
kG-module. 

Proof. We may assume that k is algebraically closed. By Proposition 1.2, it suffices 

to show that W is free as a kG,-module for each subgroup Gr such that either G, 

is cyclic and kG, is semisimple, or Gr is a p-Sylow subgroup (in the case 

characteristic k =p > 0). 
Let F be the span of a maximal kG1 -independent subset .%I of W. Then F is free, 

hence injective [ 1, Theorem 62.31, so we may write W = FO E as a kG, -module. By 

the maximality of %‘, each element of E is annihilated by a nonzero element of 

kGI. This implies that we can find Ofxe kGI with XE = (0); this follows in the first 

case from the fact that kG, splits into a product of fields, and follows in the case 

G, a p-group, p the characteristic of k, from the fact that kGl has a unique 

minimal left ideal [2, Exercise 18.21. 

Now suppose that WOM= WC’), t=dimM. Then F(‘)@E(‘)=(F@E)(‘)= 
WC’)= W@M=(FOM)O(E@M)ZF(‘)O(E@M). By the Krull-Schmidt-Azumaya 

Theorem, we have E”‘=EOM. Let us decompose M in the same manner as we 

decomposed W: M= F’OE’ as a kG,-module, where F’ is a free kG,-module and 

Ann(E’) # (0). Since M is faithful, we must have F’#(O). The free kc,-module 

EOF’ is isomorphic to a direct summand of EOM= EC’); since xE(‘) = (0), we con- 

clude that E= (0), and thus that W= F is free, as required. 0 

2. Main results 

Theorem 2.1. Let H be a finite-dimensional Hopf algebra over an algebraically clos- 
ed field k. Let C be a simple subcoalgebra of H, and let G be a subgroup of G(H) 
such that gC = C, all g E G. Then C is free as a left kG-module. Moreover, for each 
subgroup G2 of G which either is cyclic or which (in characteristic p>O) is a p- 
Sylow subgroup, C is isomorphic to a kG,-module of the form End,(W)*, where 
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W is a free left kG2-module. Thus the exponent of G and (in characteristic p> 0) 
the p-part of I G ~ divide II, where n2 is the dimension of C. 

Proof. Fix a minimal left ideal W of C*. Since C is simple, there is an algebra 

isomorphism L : C*+End,JW), given by L,,(w) =c*w for all C*E C*, WE W. 
We shall use the letter L to denote various ‘left multiplication’ operators, we hope 

without causing any confusion. 

For each gE G, the map L, : C+ C is a coalgebra automorphism, so (Lg)*: 
C*-+C* is an algebra automorphism. It is given by (L,)*(c*) =c*g for all C*E C*. 

(Here c*g is given by (c*g 1 c) = (c*lgc) for all C*E C*, CE C.) The corres- 

ponding algebra automorphism of Endk( W) is then L,, ++ Lc*g, all c* E C*. By the 

Noether-Skolem Theorem, for each g E G there exists U(g) E GL( W) with L,*, = 
U(g)-‘L,*U(g), all C*E C*. We select U(1) to be idw. 

For each g, h E G we have L(,,,,, = Lc*(ghj for all c* E C*. A simple computation 

leads to the conclusion that U(g)U(h) U(gh)-’ lies in the center of End,J W). Thus 

we have U(g) U(h) = a(g, h) U(gh) for some a(x, y) E k’, the multiplicative group of 

nonzero elements of k. 
Thus U: G+GL( W) is a projective representation of G. So a : G x G+ k’ is a 

cocycle - i.e., a~ Z2(G, k’). 
Let us now restrict our attention to a fixed subgroup G2 of G which either is 

cyclic or (in characteristic p > 0) is ap-Sylow subgroup of G. It is proved in [6, Lem- 

ma 5.8.131 that in this case H2(G2, k’)= 1. Thus we can find p: G2-+k’ with 

/?( 1) = 1 and a(g, h) = j?(g)P(h)/?(gh)-’ for all g, h E G2. Define V2 : G2 -+ GL( W) by 

U,(g)=&)‘U(g), all gEG2. Then U2 is a linear representation of GZ. We shall 

write gw= U,(g)w for ge Gz, w E W, and consider W to be a left kG2-module. 

For c*EC*, gEG2 we have Lceg= U2(g)-‘L,* U,(g). Thus the right kG,-module 

structure on Endk(W) which comes from W via the definition (T-g)(w)= 
g-* T(gw) for TEE~~~( W), gE G, w E W is the right kG2-module structure 

transported from C* by L. We have C=End,(W)* as a left kG2-module. 

We shall show that W is free as a left kG,-module. This will allow us to com- 

plete the proof of the theorem, as follows. If wi, . . . , w, is a kG2-basis of W, then 

the elements (Tg, j,j: 1 ~i,j~m} of Endk(W) given by (T,,bj)(h~r)=6g,h~j,i,wWj 
form a kG,-basis of End,(W) as a right kG,-module. Since kG2 is a Frobenius 

algebra [ 1, Theorem 62.11, this yields that C=Endk( W)* is free as a left kG2- 
module. Then C is free as a left kc-module by Proposition 1.2. 

The algebra isomorphism L : C*+ Endk( W) gives rise to a sequence of algebra 

isomorphisms (which we shall explain) Hom,(C, H) = C*@H% End,( W)@H= 
End,( WOH). 

Here Homk(C, H) is the convolution algebra (see [ll]). The map C*OH+ 

Homk(C, H) is given by (c*Ox)(c) = (c*/ c>x for C*E C*, CE C, xeH. The isomor- 

phism from C*OH to Endk( W)OH is LOid. We are considering WOH as a right 

H-module via (wOa)b= w@ab for w E W, a, by H. The map End,(W)OH+ 

End,(WOH) is given by (T@a)(wOb)= T(w)Oab for TEEnd,JW), WE W, 
a, bEH. 
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The coalgebra automorphism L, : C+ C also induces an algebra automorphism 

Li of Hom,(C, H), given by L,*(T) = To L, for all T~Hornk(C, H). This cor- 

responds, along our sequence, to the automorphism of C*OH sending c*Ox to 

c*g@x (c*EC*, xeH), the automorphism of End,(W)@H sending L&x to 

L,,,Ox= U,(g)-‘L,.Uz(g)Ox (C*E C*, XEH), and thus to the automorphism of 

End&W&H) sending TeEnd,(W@H) to (U,(g)@id)-‘T(U,(g)Oid). 

Write ‘^ ’ to denote extension by applying the functor OH. Then we have that 

the automorphism L: of Hom,(C, H) corresponds to the automorphism of 

EndH(@) given by conjugation by oz(g). 

Now Homk(C, H) is a left kGZ-module via (gT)(c) =gT(c) for ge GZ, 

TE Hom(C, H), CE C. The corresponding kGz-module structure on C*@H is 

given by g. (c*Ox)=c*Ogx for gEGz, c*EC*, XEH. In EndH(@) this becomes 

g. T= (id@L,) T for TE EndH( I@‘), where here L, : H-t H. 
Let I : C-t H be the inclusion map. Let A denote the element of EndH( @) cor- 

responding to I under our sequence of isomorphisms. 

The identity element of the algebra Homk(C, H) is the map TIE : C-+ H given by 

(I;IE)(c)=E(c)~. (Here E : C+ k is the counit of C, and v : k-+H is the unit of H.) In 

Homk(C, H) we have an identity (g . VE) *I = L,*(r); both maps send c E C to gc E H. 
The corresponding identity in EndH( @) is (g . idw))A = oz(g)-]A oI(g). Thus 

A~~(g)=~~(g)(g.id~)A=(Cr,(g)Oid,)(id,OL,)A=(U,(g)OL,)A. 

Now I E Hom(C, H) is invertible, with inverse S 0 I where S is the antipode of H. 
Thus A is invertible. Thus the equation (U,(g)OL,)A =A(U,(g)@id,) gives us that 

the kG,-module WOH is isomorphic to the kGz-module W@H,, where HO is the 

vector space H, given the trivial kGz-module structure gh = h for all g E G,, h E H. 
Thus W@ H= W(‘) as kG2-modules, where t = dim H. Applying Proposition 1.3, 

we obtain that W is free as a left kG,-module, and we are done. 0 

Remark. There exists an example [4] of an g-dimensional Hopf algebra H over the 

complex numbers with G = G(H) z Z, x Z, and containing a simple subcoalgebra C 

of dimension 4 with gC= C for all g E G. Thus, in the situation of Theorem 2.1, it 

is not true in general that ) G 1 divides n. 

We now come to our main theorem. 

Let H be a bialgebra over a field k, and let B be a sub-bialgebra. A left (H, B)- 
Hopf module is a left H-comodule M which is a left B-module in such a way that 

the comodule structure map o : M+ HOM is a B-module homomorphism. (Here 

B acts ‘diagonally’ on HOM: b. (a@m) = C b~l,a@b~2,m for b E B, a E H, m EM.) 
For example, any subcoalgebra C of H for which BCc C is a left (H, B)-Hopf 

module. Our main result is the following: 

Theorem 2.2. Let H be a finite-dimensional Hopf algebra over a field k. Let G be 
a subgroup of G(H), the grouplike elements of H. Then every left (H, kG)-Hopf 
module is free as a left kc-module. 



56 W. D. Nichols, M. B. Zoeller 

Proof. By (9, Proposition 51 or the discussion in [13], the result follows immediately 

from Theorem 2.1 if k has characteristic zero. So assume that k has characteristic 

p>O. 

By [9, Proposition l] it is enough to show that every finite-dimensional (H, kG)- 
Hopf module Mis free. We may thus assume that k is algebraically closed. By [9, 

Proposition 11, it is enough to show that every M of the form M= kG. V, where 

I/ is a simple left subcomodule of H, is free. Let C be the simple subcoalgebra of 

Hforwhichd(V)cCOV.LetG’=(gEG:gC=C),andletM’=d~’(COM).By 

19, Proposition 21, M’ is an (H, kG’)-Hopf module, and if M’ is a free left kG’- 
module, then A4 is a free left kc-module. 

If g’E G’ has order relatively prime to p, then M’ is a free left k(g’)-module by 

Theorem 2.1 and [9, Proposition 51. Thus by Proposition 1.2, it is enough to show 

that M’ is a free kP-module, where P is a p-Sylow subgroup of G’. 

The comultiplication map A : M’ +COM’ is a homomorphism of left kP- 
modules, with kP-module inverse &id. Thus M’ is a direct summand of C@M’ as 

a kP-module. By Theorem 2.1, C is a free kP-module. This gives us that C@M’ is 

a free kP-module. Thus M’ is a projective kP-module, hence free [2, Theorem 5.241 

and we are done. 0 

3. Applications 

Proposition 3.1. Let H be a finite-dimensional Hopf algebra over a field k. Then 
(i) The number of one-dimensional ideals of H divides dim H. 

(ii) The order of the antipode divides 4. dim H. 

Proof. (i) By [7] the number of one-dimensional ideals of His IG(H*)I . Since H* 
is a free kG(H*)-module by Theorem 2.2, the result follows. 

(ii) Radford showed in [7] that the order of the antipode divides 4elcm( IG(H*)I , 

/G(H)/}. By Theorem 2.2, both /G(H*)/ and /G(H)/ divide dim H, and we are 

done. 
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