1

View metadata, citation and similar papers at core.ac.uk brought to you by : CORE

provided by Elsevier - Publisher Connector

Journal of Pure and Applied Algebra 56 (1989) 51-57 51
North-Holland

FINITE-DIMENSIONAL HOPF ALGEBRAS ARE FREE OVER
GROUPLIKE SUBALGEBRAS

Warren D. NICHOLS
Florida State University, Tallahassee, FL 32306-3027, U.S.A.

M. Bettina ZOELLER
Western Kentucky University, Bowling Green, KY 42101, U.S.A.

Communicated by J.D. Stasheff
Received 22 November 1986
Revised 8 August 1987

Let H be a finite-dimensional Hopf algebra over a field k, and let G be a subgroup of the group
of grouplikes of H. Then every left (H, kG)-Hopf module is free as a left kG-module. If k is
algebraically closed and C is a simple subcoalgebra of H with gC=C for all g € G, then the expo-
nent of G and (in characteristic p > 0) the p-part of |G| divide n, where n? is the dimension of C.

Introduction

Let H be a finite-dimensional Hopf algebra over a field k£, and let B be a Hopf
subalgebra. Kaplansky conjectured [5, Appendix 2] that H is free as a module over
B. This result is known and easy if B contains the coradical of H [8, Corollary 1];
deeper results are that the result holds if A is commutative or has a cocommutative
coradical [9, Theorem 1, Proposition 3]. (See [12, Section 2] for two additional cases
involving more technical commutativity assumptions.) Progress in determining the
structure of finite-dimensional Hopf algebras has been hindered by a lack of
freeness results which hold for all H. Recently the second author has shown [13,
Theorem 6] that H is a free kG-module when G is a subgroup of the group G(H)
of grouplikes of H, provided that kG is semisimple. In this paper we remove the
restriction on kG. We have worked in a generality which allows us to include here
a proof of the semisimple case.

After some preparatory results from representation theory, we consider the situa-
tion in which H is a finite-dimensional Hopf algebra over an algebraically closed
field £ and G is a subgroup of G(H) which stabilizes a simple subcoalgebra C of
H. We show that C is free as a kG-module and that the exponent of G and the p-part
of |G| (in characteristic p>0) divide n, where n? is the dimension of C. We then
prove our main result, which is that for A a finite-dimensional Hopf algebra over
a field £ and G a subgroup of G(H), every left (H, kG)-Hopf module is free as a
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left kG-module. (In particular, H is free as a left kG-module.) This result was prov-
ed in the cases mentioned above by the authors previously cited. We then conclude
the paper with two simple applications of the main theorem.

1. Preliminaries

Let G be a finite group, and let ¥ be a field. The first result we require is a
deep property of the group ring kG. The result seems to have first appeared in
[3, Lemme 1].

Proposition 1.1. Let k be a field, and let G be a finite group. Then two finitely
generated projective kG-modules are isomorphic if and only if they have the same
composition factors.

Proof. In characteristic zero, the result holds since kG is semisimple. So assume
characteristic X =p>0. By {2, Corollary 21.23], the result holds for any field k for
which one can find a complete discrete valuation ring R of characteristic zero whose
residue class field is isomorphic to k. Using an elementary argument, it is shown in
[10, p. 48] that such an R can be found for any k. This completes the proof. [

Remark. We shall use Proposition 1.1 only for the case &k algebraically closed. In
that case, the Witt ring W (k) provides a familiar example of a ring R of the type
required.

Proposition 1.2. Let k be a field, G a finite group, and M a finitely generated left
kG-module. Suppose that M is a free k{g)-module for each ge G for which k{g)
is semisimple. If characteristic k=p>0, assume in addition that M is a free kP-
module for some p-Sylow subgroup P of G. Then M is a free kG-module.

Proof (cf. [13, Proposition 1]). By the Noether-Deuring Theorem we may assume
that k is algebraically closed.

We have that M is projective as a kG-module. This is clear in characteristic zero,
and follows in characteristic p>0 via [2, Proposition 19.5, (ix) and (viii)] from the
fact that M is free as a left kP-module for some p-Sylow subgroup P of G.

Let s=ged(|G|, dim M). Let M, =MC1"9 af, = (kG)d™mMV9 Since for each
g € G for which k(g) is semisimple we have that M, and M, are free k(g)-modules
of the same rank, we have by (1, Theorem 30.14] (in characteristic zero) or by Pro-
position 1.1 and [1, proof of Theorem 82.3] (in characteristic p> 0) that M, =M,
as kG-modules.

Let Q be a g-Sylow subgroup of G. (In characteristic p>0, take g#p.) The
number of times that the trivial kQ-module k occurs in a decomposition of M, as
a direct sum of indecomposable kQ-modules is c{G |/s, for some integer c. Since &
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occurs [G: Q](dim M)/s times in the decomposition of M,, we see that s must con-
tain the entire g-part of |G|. In characteristic p>0, s must contain the entire p-part
of |G|, since M is free as a kP-module for some p-Sylow subgroup P of G. Thus
s=|G|, and M=M, is a free kG-module, as required. [l

A well-known elementary result [2, Exercise 10.18] is that if W is a finitely
generated free left kG-module and M any finitely generated left kG-module, then
W®M is a free left k<G-module. (Here G acts on WM via g(w®@m) =gw®gm for
all ge G, we W, me M.) Thus in this case we have WRM= W as kG-modules,
where t=dim M. Our next result is a partial converse.

Proposition 1.3. Let k be a field, G a finite group, and W a finitely generated left
kG-module. Suppose that there exists a finitely generated faithful left kG-module
M with WOM=WY as kG-modules, where t=dim M. Then W is free as a left
kG-module.

Proof. We may assume that & is algebraically closed. By Proposition 1.2, it suffices
to show that W is free as a kG,-module for each subgroup G, such that either G,
is cyclic and kG, is semisimple, or G, is a p-Sylow subgroup (in the case
characteristic k=p>0).

Let F be the span of a maximal kG;-independent subset & of W. Then Fis free,
hence injective {1, Theorem 62.3], so we may write W =F®E as a kG,;-module. By
the maximality of @&, each element of E is annihilated by a nonzero element of
kG, . This implies that we can find 0+ x € kG, with xE = (0); this follows in the first
case from the fact that &G, splits into a product of fields, and follows in the case
G, a p-group, p the characteristic of k, from the fact that kG, has a unique
minimal left ideal [2, Exercise 18.2].

Now suppose that W@M=WY, t=dimM. Then FOQEV=(FOE)'=
W2 WM=(FOM)DERM)=F"®(E®M). By the Krull-Schmidt-Azumaya
Theorem, we have EYY=FE®M. Let us decompose M in the same manner as we
decomposed W: M=F'@E’ as a kG,-module, where F'is a free kG,-module and
Ann(E )Y+ (0). Since M is faithful, we must have F’#(0). The free kG,-module
E®F' is isomorphic to a direct summand of EQ M=E¥; since xE® = (0), we con-
clude that E=(0), and thus that W=F is free, as required. []

2. Main results

Theorem 2.1. Let H be a finite-dimensional Hopf algebra over an algebraically clos-
ed field k. Let C be a simple subcoalgebra of H, and let G be a subgroup of G(H)
such that gC=C, all ge G. Then C is free as a left kG-module. Moreover, for each
subgroup G, of G which either is cyclic or which (in characteristic p>0) is a p-
Sylow subgroup, C is isomorphic to a kGy-module of the form End(W)*, where
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W is a free left kG;-module. Thus the exponent of G and (in characteristic p>0)
the p-part of |G| divide n, where n® is the dimension of C.

Proof. Fix a minimal left ideal W of C*. Since C is simple, there is an algebra
isomorphism L : C*— End, (W), given by L..(w)=c*w for all c*eC* we W.

We shall use the letter L to denote various ‘left multiplication’ operators, we hope
without causing any confusion.

For each ge G, the map L,:C—C is a coalgebra automorphism, so (L,)*:
C*— C*is an algebra automorphism. It is given by (L,)*(c*)=c*g for all c*e C*.
(Here c*g is given by (c*g|c)={(c*|gc) for all c*eC*, ceC.) The corres-
ponding algebra automorphism of Endy (W) is then L «— L., all c*e C*. By the
Noether-Skolem Theorem, for each ge G there exists U(g) e GL(W) with L., =
U(g)‘lLC*U(g), all c*e C*. We select U(1) to be idy,.

For each g, he G we have L g, =L.«gp for all c*e C*, A simple computation
leads to the conclusion that U(g)U(h)U(gh) ! lies in the center of End,(W). Thus
we have U(g)U(h) = a(g, h)U(gh) for some a(x, y) e k*, the multiplicative group of
nonzero elements of k.

Thus U: G—GL(W) is a projective representation of G. So a:GxG—k" is a
cocycle - i.e., ae ZXG, k).

Let us now restrict our attention to a fixed subgroup G, of G which either is
cyclic or (in characteristic p>0) is a p-Sylow subgroup of G. It is proved in [6, Lem-
ma 5.8.13] that in this case H*(G,, k')=1. Thus we can find 8:G,—~k" with
A1) =1 and a(g, ) =pL(g)B(H) B(gh) ™" for all g, he G,. Define U, : G,— GL(W) by
U,(g) =p(2) " 'U(g), all geG,. Then U, is a linear representation of G,. We shall
write gw= U,(g)w for ge G,, we W, and consider W to be a left kG,-module.

For ¢*e C* ge G, we have L..,= U,(2) 'L U,(g). Thus the right kG,-module
structure on End,(W) which comes from W via the definition (7-g}{(w)=
g 'T(gw) for TeEnd (W), geG, we W is the right kG,-module structure
transported from C* by L. We have C=End (W)* as a left kG,-module.

We shall show that W is free as a left kG,-module. This will allow us to com-
plete the proof of the theorem, as follows. If w,,...,w,, is a kG,-basis of W, then
the elements {7, ;;:1<i,j<m} of End, (W) given by (T, ; J(hw,) =0, ,0; , W,
form a kG,-basis of End, (W) as a right £G,-module. Since kG, is a Frobenius
algebra [1, Theorem 62.1], this yields that C=End, (W)* is free as a left kG,-
module. Then C is free as a left kG-module by Proposition 1.2.

The algebra isomorphism L : C*— End (W) gives rise to a sequence of algebra
isomorphisms (which we shall explain) Hom,(C, H)=C*®@H=End, (W)RH=
Endy(WQH).

Here Hom,(C, H) is the convolution algebra (see [11]). The map C*Q@H—
Hom,(C, H) is given by (c*®x)(c) = {c*|c)x for c*€ C*, ce C, xe H. The isomor-
phism from C*® H to End,(W)® H is L&®id. We are considering W& H as a right
H-module via (w®a)b=w®ab for we W, a,be H. The map End, (W)QH—
End, (W®H) is given by (T®a)(w@b)=T(w)Rab for TeEnd (W), we W,
a,beH.
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The coalgebra automorphism L,: C—C also induces an algebra automorphism
L;‘ of Hom,(C, H), given by Lg*(T)zTOLg for all TeHom,(C, H). This cor-
responds, along our sequence, to the automorphism of C*® H sending c*®x to
c g®x (c*eCH, er) the automorphism of End,(W)®H sending L.®x to

v q®x=Us(8) ' LrUy(g)®x (c*€ C* xeH), and thus to the automorphism of
EndH(W®H) sending Te Endy(W®H) to (Uz(g)®1d)_ T(U,(g)®1id).

Write ¢~ to denote extension by applying the functor ® H. Then we have that
the automorphism L, of Homy(C, H) corresponds to the automorphism of
End (W) given by conjugation by U,(g).

Now Hom,(C, H) is a left kG,-module via (gT7)c)=gT(c) for geG,,
TeHom(C, H), ceC. The corresponding kG,-module structure on C*®@H is
given by g- (¢*®x)=c*Qgx for ge G,, c*eC* xeH. In Endy (W) this becomes
g T=(Gd®L,)T for Te End, (W), where here L,:H—H.

Let 1: C— H be the inclusion map. Let A denote the element of Endg (W) cor-
responding to  under our sequence of isomorphisms.

The identity element of the algebra Hom,(C, H) is the map ne: C— H given by
(ne)(c)=¢€(c)1. (Here € : C— k is the counit of C, and #: k— H is the unit of H.) In
Hom,(C, H) we have an identity (g - 77¢) *1=L;‘(1); both maps send ce Cto gce H.
The corresponding identity in Endg(W) is (g-idw)A = U,(g) 'AU,(g). Thus
AUy(9)=U,(g)(g- idp)A = (U,(@)®id ) (idp® LA = (Uy(g)® L) A.

Now 1€ Hom(C, H) is invertible, with inverse S o7 where S is the antipode of H.
Thus A is invertible. Thus the equation (U,(g)®L,)A = A(U,(g)®idy) gives us that
the kG,-module W® H is isomorphic to the kG,-module W® H,, where H, is the
vector space H, given the trivial kG,-module structure gh=4 for all ge G,, he H.

Thus WRH= WY as kG,-modules, where ¢ =dim H. Applying Proposition 1.3,
we obtain that W is free as a left kG,-module, and we are done. []

Remark. There exists an example [4] of an 8-dimensional Hopf algebra H over the
complex numbers with G = G(H)= Z, X Z, and containing a simple subcoalgebra C
of dimension 4 with gC = C for all g e G. Thus, in the situation of Theorem 2.1, it
is not true in general that |G| divides n.

We now come to our main theorem.

Let H be a bialgebra over a field k, and let B be a sub-bialgebra. A left (H, B)-
Hopf module is a left H-comodule M which is a left B-module in such a way that
the comodule structure map w: M— H®M is a B-module homomorphism. (Here
B acts ‘diagonally’ on HOM: b-(a®m)= ¥, byya®bym for be B, ae H, me M.)
For example, any subcoalgebra C of H for which BCC C is a left (H, B)-Hopf
module. Our main result is the following:

Theorem 2.2. Let H be a finite-dimensional Hopf algebra over a field k. Let G be
a subgroup of G(H), the grouplike elements of H. Then every left (H, kG)-Hopf
module is free as a left kG-module.
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Proof. By [9, Proposition 5} or the discussion in [13], the result follows immediately
from Theorem 2.1 if k has characteristic zero. So assume that & has characteristic
p>0.

By [9, Proposition 1] it is enough to show that every finite-dimensional (H, kG)-
Hopf module M is free. We may thus assume that & is algebraically closed. By [9,
Proposition 1], it is enough to show that every M of the form M=kG- V, where
V is a simple left subcomodule of H, is free. Let C be the simple subcoalgebra of
H for which A(V)CC®V. Let G'={geG: gC=C}, and let M’ =4 (C®M). By
[9, Proposition 2], M’ is an (H, kG ’")-Hopf module, and if M’ is a free left kG’-
module, then M is a free left kG-module.

If g’e G’ has order relatively prime to p, then M’ is a free left k{g’)-module by
Theorem 2.1 and [9, Proposition 5]. Thus by Proposition 1.2, it is enough to show
that M’ is a free kP-module, where P is a p-Sylow subgroup of G’.

The comultiplication map A: M’ —C®M’ is a homomorphism of left kP-
modules, with kP-module inverse e®id. Thus M’ is a direct summand of CRM ' as
a kP-module. By Theorem 2.1, C is a free kP-module. This gives us that CQM " is
a free kP-module. Thus M’ is a projective kP-module, hence free [2, Theorem 5.24]
and we are done. [

3. Applications

Proposition 3.1. Let H be a finite-dimensional Hopf algebra over a field k. Thern
(i) The number of one-dimensional ideals of H divides dim H.
(ii) The order of the antipode divides 4- dim H.

Proof. (i) By [7] the number of one-dimensional ideals of H is |G(H *)|. Since H*
is a free kG(H *)-module by Theorem 2.2, the result follows.

(ii) Radford showed in [7] that the order of the antipode divides 4 - lem{|G(H*)|,
|G(H)|}. By Theorem 2.2, both (G(H*)| and |G(H}| divide dim A, and we are
done.
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