Topology and its Applications 159 (2012) 2331-2337

ELSEVIER

Contents lists available at SciVerse ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Continuous extensions of functions defined on subsets of products $\stackrel{\text{\tiny{trian}}}{\longrightarrow}$

W.W. Comfort^a, Ivan S. Gotchev^{b,*}

^a Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT 06459, USA
 ^b Department of Mathematical Sciences, Central Connecticut State University, New Britain, CT 06050, USA

ARTICLE INFO

Respectfully dedicated to Dikran Dikranjan, mathematician and educator, on the occasion of his 60th birthday

MSC: primary 54B10, 54C45 secondary 54G10

Keywords: Product space G_{δ} -dense subset C-embedded subspace P-space $\overline{G_{\kappa}}$ -set $\overline{G_{\kappa}}$ -set $P(\kappa)$ -point $P(\kappa)$ -space G_{κ} -diagonal Realcompact space Topologically complete space Moscow space

ABSTRACT

A subset Y of a space X is G_{δ} -dense if it intersects every nonempty G_{δ} -set. The G_{δ} -closure of Y in X is the largest subspace of X in which Y is G_{δ} -dense.

The space *X* has a *regular* G_{δ} -*diagonal* if the diagonal of *X* is the intersection of countably many regular-closed subsets of *X* × *X*.

Consider now these results: (a) (N. Noble, 1972 [18]) every G_{δ} -dense subspace in a product of separable metric spaces is *C*-embedded; (b) (M. Ulmer, 1970 [22], 1973 [23]) every Σ product in a product of first-countable spaces is *C*-embedded; (c) (R. Pol and E. Pol, 1976 [20], also A.V. Arhangel'skiĭ, 2000 [3]; as corollaries of more general theorems), every dense subset of a product of completely regular, first-countable spaces is *C*-embedded in its G_{δ} closure.

The present authors' Theorem 3.10 concerns the continuous extension of functions defined on subsets of product spaces with the κ -box topology. Here is the case $\kappa = \omega$ of Theorem 3.10, which simultaneously generalizes the above-mentioned results.

Theorem. Let $\{X_i: i \in I\}$ be a set of T_1 -spaces, and let Y be dense in an open subspace of $X_I := \prod_{i \in I} X_i$. If $\chi(q_i, X_i) \leq \omega$ for every $i \in I$ and every q in the G_{δ} -closure of Y in X_I , then for every regular space Z with a regular G_{δ} -diagonal, every continuous function $f : Y \to Z$ extends continuously over the G_{δ} -closure of Y in X_I .

Some examples are cited to show that the hypothesis $\chi(q_i, X_i) \leq \omega$ cannot be replaced by the weaker hypothesis $\psi(q_i, X_i) \leq \omega$.

© 2012 Elsevier B.V. All rights reserved.

1. Notation and terminology

Topological spaces considered here are not subjected to any standing separation properties. Additional hypotheses are imposed as required. Throughout this paper, ω is the least infinite cardinal, κ and α are infinite cardinals. For I a set we define $[I]^{<\kappa} := \{J \subseteq I: |J| < \kappa\}$, the symbol $[I]^{\leq\kappa}$ is defined analogously. For X a space and $x \in X$, a set $U \subseteq X$ is a *neighborhood* of x in X if x is in the interior of U in X. For $A \subseteq X$ we denote by $\mathcal{N}_X(A)$, or simply by $\mathcal{N}(A)$ when ambiguity is unlikely, the set of open sets in X containing A. A point $x \in X$ is a $P(\kappa)$ -point of X if $\bigcap \mathcal{V}$ is a neighborhood of x whenever $\mathcal{V} \subseteq \mathcal{N}(x)$ and $|\mathcal{V}| < \kappa$; X is a $P(\kappa)$ -space provided each point $x \in X$ is a $P(\kappa)$ -point. Clearly, every topological space is a $P(\omega)$ -space. The $P(\omega^+)$ -spaces are often called P-spaces (cf. [14] and sources cited there).

* Corresponding author.

^{*} A preliminary version of much of the material in this paper was presented by the second-listed co-author at the 2006 International Conference on Topology and its Applications, Aegion, Greece, June 23–26, 2006.

E-mail addresses: wcomfort@wesleyan.edu (W.W. Comfort), gotchevi@ccsu.edu (I.S. Gotchev).

^{0166-8641/\$ -} see front matter © 2012 Elsevier B.V. All rights reserved. doi:10.1016/j.topol.2011.08.030

For *X* a space, $x \in X$ and $A \subseteq X$, *x* belongs to the G_k -closure of *A* in *X* if $(\bigcap \mathcal{V}) \cap A \neq \emptyset$ whenever $\mathcal{V} \subseteq \mathcal{N}(x)$ and $|\mathcal{V}| < \kappa$. A set $A \subseteq X$ is a G_k -set [respectively, a $\overline{G_k}$ -set] in *X* if there exists $\mathcal{V} \subseteq \mathcal{N}_X(A)$ such that $|\mathcal{V}| < \kappa$ and $A = \bigcap \mathcal{V}$ [respectively, $A = \bigcap \{\overline{V}: V \in \mathcal{V}\}$]. (Thus, the familiar G_{δ} -sets are exactly the G_{ω^+} -sets.) *V* is a G_k -neighborhood of *x* if there exists a G_k -set *U* such that $x \in U \subseteq V$.

The symbol $\chi(x, X)$ denotes the character (i.e., the local weight) of the point *x* in the space *X*; $\chi(X) := \sup\{\chi(x, X): x \in X\}$; for $x \in X$ with *X* a T_1 -space, $\psi(x, X)$ denotes the pseudocharacter of the point *x* in *X*; and $\psi(X) := \sup\{\psi(x, X): x \in X\}$.

For spaces *X* and *Z* and *Y* \subseteq *Z*, the symbol *C*(*Y*, *Z*) denotes the set of all continuous functions *f* : *Y* \rightarrow *Z*. The set *C*(*Y*, \mathbb{R}) is denoted by *C*(*Y*). The subspace *Y* of *X* is *C*(*Z*)*-embedded* in *X* provided each function *f* \in *C*(*Y*, *Z*) extends continuously over *X*. When *Z* = \mathbb{R} , *Y* is said to be *C*-*embedded*.

Below we use the simple fact (which we will not mention again explicitly) that when *Y* is dense in *X* and *Z* is a regular T_1 -space, a function $f \in C(Y, Z)$ extends continuously over *X* if and only if *f* extends continuously to each point of $X \setminus Y$ (restated: *Y* is C(Z)-embedded in *X* if and only if *Y* is C(Z)-embedded in $Y \cup \{q\}$ for each $q \in X \setminus Y$); in this connection see [5,17].

For a set { X_i : $i \in I$ } of sets and $J \subseteq I$, we write $X_J := \prod_{i \in J} X_i$; and for every generalized rectangle $A = \prod_{i \in I} A_i \subseteq X_I$ the *restriction set of* A, denoted R(A), is the set $R(A) = \{i \in I : A_i \neq X_i\}$. When each $X_i = (X_i, \mathcal{T}_i)$ is a space, the symbol $(X_I)_{\kappa}$ denotes X_I with the κ -box topology; this is the topology for which { $U: U = \prod_{i \in I} U_i, U_i \in \mathcal{T}_i, |R(U)| < \kappa$ } is a base. Thus the ω -box topology on X_I is the usual product topology. We note that even when κ is regular, the intersection of fewer than κ -many sets, each open in $(X_I)_{\kappa}$, may fail to be open in $(X_I)_{\kappa}$.

For X_I as above and $q \in X_I$, the Σ -product in X_I based at q is the set

 $\Sigma(q) := \{ x \in X_I \colon |i \in I \colon x_i \neq q_i| \leq \omega \}.$

For additional topological definitions not given here see [13,14], or [10].

2. Introduction

The problem of determining conditions on a space *X* and a proper, dense subspace *Y* under which *Y* is *C*-embedded in *X* has generated considerable attention in the literature. H. Corson [11], I. Glicksberg [15], R. Engelking [12], N. Noble [18], N. Noble and M. Ulmer [19], M. Ulmer [22,23], M. Hušek [16], R. Pol and E. Pol [20], A.V. Arhangel'skiĭ [3] and many others have achieved nontrivial results for the case where *X* is a product space. As is indicated in [10,8], and [7], many of their results admit generalizations to product spaces with the κ -box topology.

The present paper continues that initiative. We remark on two features of our principal result, Theorem 3.10: (a) the basic case $\kappa = \omega$, subsumes simultaneously the results of N. Noble [18], M. Ulmer [23], R. Pol and E. Pol [20], and A.V. Arhangel'skiĭ [3] cited in the abstract; and (b) unlike those results it is *local* in flavor in the sense that it gives conditions on points $q \in X_I \setminus Y$ sufficient to ensure that functions $f \in C(Y, Z)$ extend continuously to *q*-conditions which in natural circumstances may fail for other points $q' \in X_I \setminus Y$ (to which $f \in C(Y, Z)$ may fail to extend).

So far as we know, Ulmer was the first to show [22,23] that not every Σ -product in every (Tychonoff) product space is *C*-embedded. Modifying his examples, we showed in [8] that in a (suitably constructed) product space X_I , even a G_{δ} -dense set of the form $X_I \setminus \{q\}$ need not be *C*-embedded, even when $\psi(X_i) \leq \omega$ for each $i \in I$.

3. Main results

Definition 3.1. Let $\kappa \ge \omega$ and let *Z* be a space. Then

- (a) $\Delta(Z) := \{(z, z) \in Z \times Z : z \in Z\}$ is the *diagonal* of *Z*; and
- (b) Z has a G_{κ} -diagonal [respectively, a $\overline{G_{\kappa}}$ -diagonal] if $\Delta(Z)$ is a G_{κ} -set [respectively, a $\overline{G_{\kappa}}$ -set] in $Z \times Z$.

Remark 3.2. (a) Spaces with a G_{ω^+} -diagonal are those with a G_{δ} -diagonal. The spaces with a $\overline{G_{\omega^+}}$ -diagonal are also called spaces with *regular* G_{δ} -diagonal.

(b) Clearly every space Z with a $\overline{G_{\kappa}}$ -diagonal has a G_{κ} -diagonal but the converse is not true in general. Indeed D. Shakhmatov [21] has shown that there are Tychonoff c.c.c. spaces of arbitrarily large cardinality with a G_{ω^+} -diagonal, while R.Z. Buzyakova [6], answering a question of A.V. Arhangel'skiĭ [2], showed that every regular c.c.c. space with a $\overline{G_{\omega^+}}$ -diagonal has cardinality at most c.

We begin with two lemmas.

Lemma 3.3. Let α be an infinite cardinal and let X, Y and Z be spaces such that $Y \subseteq X$ and Z has a G_{α^+} -diagonal [respectively, $a \overline{G_{\alpha^+}}$ -diagonal]-say $\Delta(Z) = \bigcap \{ 0_\eta : \eta < \alpha \}$ [respectively, $\Delta(Z) = \bigcap \{ \overline{O_\eta} : \eta < \alpha \}$] with each $O_\eta \in \mathcal{N}(\Delta(Z))$. Let $f \in C(Y, Z)$ and $q \in X \setminus Y$ belong to the G_{α^+} -closure of Y in X. If for each $\eta < \alpha$ there is $U_\eta \in \mathcal{N}(q)$ such that $(f(y), f(y')) \in O_\eta$ [respectively, $(f(y), f(y')) \in \overline{O_\eta}$] whenever $y, y' \in U_\eta \cap Y$, then the set $U := \bigcap_{\eta < \alpha} U_\eta$ is a G_{α^+} -neighborhood of q in X such that f is constant on $U \cap Y$.

Proof. Suppose there are $y, y' \in Y \cap U$ such that $f(y) = z \neq z' = f(y')$. Since $(z, z') \notin \Delta(Z)$ there is $\eta < \alpha^+$ such that $(z, z') \notin O_{\eta}$ [respectively, $(z, z') \notin \overline{O_{\eta}}$]. But since $y, y' \in Y \cap U_{O_{\eta}}$ we have $(z, z') = (f(y), f(y')) \in O_{\eta}$ [respectively, $(z, z') = (f(y), f(y')) \in \overline{O_{\eta}}$], a contradiction. \Box

Lemma 3.4. Let α be an infinite cardinal and let X, Y and Z be spaces such that $Y \subseteq X$. Let $f \in C(Y, Z)$ and $q \in X \setminus Y$ belong to the G_{α^+} -closure of Y in X and there are a G_{α^+} -neighborhood U of q in X and $z \in Z$ such that f(y) = z for all $y \in U \cap Y$. If X is a T_1 -space and for each $0 \in \mathcal{N}(\Delta(Z))$ there is $U_0 \in \mathcal{N}(q)$ such that $(f(y), f(y')) \in O$ whenever $y, y' \in U_0 \cap Y$, then $\overline{f} : Y \cup \{q\} \to Z$ defined by the rule

$$\overline{f}|Y = f, \qquad \overline{f}(q) = z$$

is continuous.

Proof. Since Y is open in $Y \cup \{q\}$, the function \overline{f} remains continuous at each $y \in Y$. To show that \overline{f} is continuous at q it is enough to show that for every $W \in \mathcal{N}(z)$ there is $O \in \mathcal{N}(\Delta(Z))$ such that $\overline{f}[U_0 \cap (Y \cup \{q\})] \subseteq W$. If that fails then for every $O \in \mathcal{N}(\Delta(Z))$ there is $y_0 \in U_0 \cap Y$ such that $f(y_0) \notin W$. Then

$$(W \times W) \cap \overline{\{(z, f(y_0)): 0 \in \mathcal{N}(\Delta(Z))\}} = \emptyset,$$

hence

$$\Delta(Z) \cap \left\{ \left(z, f(y_0) \right) : \ 0 \in \mathcal{N} \left(\Delta(Z) \right) \right\} = \emptyset$$

and therefore with

$$\widetilde{O} := (Z \times Z) \setminus \overline{\left\{ \left(z, f(y_0) \right) : 0 \in \mathcal{N} \left(\Delta(Z) \right) \right\}}$$

we have $\widetilde{O} \in \mathcal{N}(\Delta(Z))$ and

$$\widetilde{O} \cap \overline{\left\{ \left(z, f(y_0) \right) : \ O \in \mathcal{N} \left(\Delta(Z) \right) \right\}} = \emptyset.$$

Since $U_{\widetilde{O}} \in \mathcal{N}_X(q)$ the set $U_{\widetilde{O}} \cap U$ is a G_{α^+} -neighborhood of q in X, so there is $\widetilde{y} \in U_{\widetilde{O}} \cap U \cap Y$. Then $f(\widetilde{y}) = z$ and we have the contradiction

$$\left(f(\widetilde{y}), f(y_{\widetilde{0}})\right) = \left(z, f(y_{\widetilde{0}})\right) \in \widetilde{O} \cap \overline{\left\{\left(z, f(y_{0})\right): 0 \in \mathcal{N}(\Delta(Z))\right\}} = \emptyset.$$

The following definition enunciates a strictly set-theoretic (non-topological) condition. The concept is used in Theorem 3.8 where we find conditions sufficient to ensure that the hypotheses of Lemma 3.4 are satisfied.

Definition 3.5. Let $\alpha \ge \omega$ and let $\{X_i: i \in I\}$ be a family of sets and $Y \subseteq X_I$. Then $Y \alpha$ -duplicates $q \in X_I$ if for every $J \in [I]^{<\alpha}$ there exists a point $p \in Y$ such that $p_I = q_I$.

Remark 3.6. (a) To help the reader fix ideas, we note that if in Definition 3.5 X_I is a space which is the product of discrete spaces then *Y* α -duplicates *q* if and only if *q* belongs to the G_{α} -closure of *Y* in X_I . In what follows we are going to use the following more general fact, the elementary proof of which we leave to the reader: Let $\kappa \leq \alpha^+$ and *q* be a point in X_I such that $\psi(q_i, X_i) \leq \alpha$ for each $i \in I$. Then *Y* α^+ -duplicates *q* in X_I if and only if *q* belongs to the G_{α^+} -closure of *Y* in $(X_I)_{\kappa}$.

(b) The reader familiar with the works [8, 2.3], [9, 2.1], [7, 2.2] will observe structural parallels between the proofs given there and in Theorem 3.7 below.

Theorem 3.7. Let $\omega \leq \kappa \leq \alpha$ with either $\kappa < \alpha$ or α regular, let $\{X_i: i \in I\}$ be a set of spaces, and let Y be dense in an open subset U of $(X_I)_{\kappa}$. Let $q \in X_I \setminus Y$ be a point such that Y α^+ -duplicates q in X_I . Then for every space Z and every $O \in \mathcal{N}_{Z \times Z}(\Delta(Z))$ and every $f \in C(Y, Z)$, there is $J \in [I]^{<\alpha}$ such that $(f(y), f(y')) \in \overline{O}$ whenever $y, y' \in Y$ satisfy $y_J = y'_J = q_J$.

Proof. We suppose the result fails.

Let $Y \subseteq U \subseteq \overline{Y}$, U open in $(X_I)_{\kappa}$. For each $\xi < \alpha$ we define $y(\xi), y'(\xi) \in Y$, disjoint basic open neighborhoods $U(\xi) \subseteq U$ and $V(\xi) \subseteq U$ in $(X_I)_{\kappa}$ of $y(\xi)$ and $y'(\xi)$, respectively, and $J(\xi), A(\xi) \subseteq I$ such that:

(i) $(f(y), f(y')) \notin \overline{O}$ if $y \in U(\xi) \cap Y$, $y' \in V(\xi) \cap Y$;

- (ii) $A(\xi) := \{i \in R(U(\xi)) \cup R(V(\xi)): y(\xi)_i \neq q_i \text{ or } y'(\xi)_i \neq q_i\};$
- (iii) $U(\xi)_i = V(\xi)_i$ if $i \in I \setminus A(\xi)$;
- (iv) $y(\xi)_i = y'(\xi)_i = q_i$ for $i \in J(\xi)$; and with
- (v) $J(0) = \emptyset$, $J(\xi) = \bigcup_{\eta < \xi} A(\eta)$ for $0 < \xi < \alpha$.

To begin, we choose $y(0) \in Y$ and $y'(0) \in Y$ such that $(f(y(0)), f(y'(0))) \notin \overline{O}$, and open neighborhoods $W_y(0)$ and $W_{y'}(0)$ in Z of f(y(0)) and f(y'(0)), respectively, such that $(W_y(0) \times W_{y'}(0)) \cap \overline{O} = \emptyset$. Then $(W_y(0) \times W_{y'}(0)) \cap \Delta_Z = \emptyset$, so $W_y(0) \cap W_{y'}(0) = \emptyset$. It follows from the continuity of f that there are disjoint, basic open neighborhoods $\widehat{U(0)} \subseteq U$ and $\widehat{V(0)} \subseteq U$ in $(X_1)_k$ of y(0) and y'(0), respectively, such that $(f(y), f(y')) \notin \overline{O}$ for all $y \in \widehat{U(0)} \cap Y$ and $y' \in \widehat{V(0)} \cap Y$. Then, define $A(0) := \{i \in R(\widehat{U(0)}) \cup R(\widehat{V(0)}): y(0)_i \neq q_i \text{ or } y'(0)_i \neq q_i\}$ and define (basic open) neighborhoods U(0) and V(0) in $(X_1)_k$ of y(0) and y'(0), respectively, as follows:

$$U(0)_{i} = V(0)_{i} = X_{i} \quad \text{if } i \in I \setminus \left(R\left(U(\overline{0})\right) \cup R\left(V(\overline{0})\right)\right);$$

$$U(0)_{i} = V(0)_{i} = \widetilde{U(0)}_{i} \cap \widetilde{V(0)}_{i} \quad \text{if } i \in \left(R\left(\widetilde{U(0)}\right) \cup R\left(\widetilde{V(0)}\right)\right) \setminus A(0); \text{ and}$$

$$U(0)_{i} = \widetilde{U(0)}_{i}, \qquad V(0)_{i} = \widetilde{V(0)}_{i} \quad \text{if } i \in A(0).$$

Then $U(0) \subseteq U$ and $V(0) \subseteq U$, and (i)–(v) hold for $\xi = 0$.

Suppose now that $0 < \xi < \alpha$ and that $y(\eta), y'(\eta) \in Y$, $U(\eta) \subseteq U$, $V(\eta) \subseteq U$, and $A(\eta), J(\eta) \subseteq I$ have been defined for $\eta < \xi$ satisfying (the analogues of) (i)–(v). Since $J(\xi)$, defined by (v), satisfies $|J(\xi)| < \alpha$, there are $y(\xi)$ and $y'(\xi)$ in Y such that (iv) holds and $(f(y(\xi)), f(y'(\xi))) \notin \overline{O}$, and open neighborhoods $W_y(\xi)$ and $W_{y'}(\xi)$ in Z of $f(y(\xi))$ and $f(y'(\xi))$, respectively, such that $(W_y(\xi) \times W_{y'}(\xi)) \cap \overline{O} = \emptyset$. Then $(W_y(\xi) \times W_{y'}(\xi)) \cap \Delta_Z = \emptyset$, so $W_y(\xi) \cap W_{y'}(\xi) = \emptyset$. It follows from the continuity of f that there are disjoint, basic open neighborhoods $\widehat{U(\xi)} \subseteq U$ and $\widehat{V(\xi)} \subseteq U$ in $(X_I)_{\kappa}$ of $y(\xi)$ and $y'(\xi)$, respectively, such that $(f(y), f(y')) \notin \overline{O}$ for all $y \in \widehat{U(\xi)} \cap Y$, $y' \in \widehat{V(\xi)} \cap Y$. Then, define $A(\xi) := \{i \in R(\widehat{U(\xi)}) \cup R(\widehat{V(\xi)}): y(\xi)_i \neq q_i$ or $y'(\xi)_i \neq q_i$ } and define (basic open) neighborhoods $U(\xi)$ and $V(\xi)$ in $(X_I)_{\kappa}$ of $y(\xi)$ and $y'(\xi)$, respectively, as follows:

$$\begin{aligned} U(\xi)_i &= V(\xi)_i = X_i \quad \text{if } i \in I \setminus \left(R\left(U(\xi)\right) \cup R\left(V(\xi)\right) \right); \\ U(\xi)_i &= V(\xi)_i = \widetilde{U(\xi)}_i \cap \widetilde{V(\xi)}_i \quad \text{if } i \in \left(R\left(\widetilde{U(\xi)}\right) \cup R\left(\widetilde{V(\xi)}\right) \right) \setminus A(\xi); \quad \text{and} \\ U(\xi)_i &= \widetilde{U(\xi)}_i, \qquad V(\xi)_i = \widetilde{V(\xi)}_i \quad \text{if } i \in A(\xi). \end{aligned}$$

Then $U(\xi) \subseteq U$ and $V(\xi) \subseteq U$, and (i)–(v) hold. The recursive definitions are complete.

We note that if $\eta < \xi < \alpha$ and $i \in A(\eta)$ then $y(\xi)_i = y'(\xi)_i = q_i$ and hence $i \notin A(\xi)$. That is: the sets $A(\xi)$ ($\xi < \alpha$) are pairwise disjoint.

Let $J(\alpha) := \bigcup_{\eta < \alpha} A(\eta)$. Since $|J(\alpha)| = \alpha$ and $Y \alpha^+$ -duplicates q in X_I , there is $\overline{p} \in Y \subseteq U$ such that $q_{J(\alpha)} = \overline{p}_{J(\alpha)}$. Notice that each basic open neighborhood $W \subseteq U$ of \overline{p} in $(X_I)_{\kappa}$ satisfies $|\{\xi < \alpha : W \cap U(\xi) \neq \emptyset\}| \ge \kappa$. Fix such W and choose $\overline{\xi} < \alpha$ such that $W \cap U(\overline{\xi}) \neq \emptyset$ and no $i \in R(W)$ is in $A(\overline{\xi})$. (This is possible since $|R(W)| < \kappa$ and each $i \in R(W)$ is in at most one of the sets $A(\xi)$.) For each such $\overline{\xi}$ by (iii) we have $U(\overline{\xi})_i = V(\overline{\xi})_i$ for all $i \in R(W)$, so also $W \cap V(\overline{\xi}) \neq \emptyset$.

Since Y is dense in $U \subseteq (X_I)_{\kappa}$, the previous paragraph shows this: For each neighborhood W in $U \subseteq (X_I)_{\kappa}$ of \overline{p} there is $\overline{\xi}$ such that $W \cap U(\overline{\xi}) \cap Y \neq \emptyset$ and $W \cap V(\overline{\xi}) \cap Y \neq \emptyset$. Let $G \in \mathcal{N}_Z(f(\overline{p}))$ satisfy $G \times G \subseteq O$. Since f is continuous at \overline{p} there is a basic open neighborhood $W' \subseteq U$ of \overline{p} such that $f[W' \cap Y] \subseteq G$. Then there is $\overline{\xi'}$ such that $W' \cap U(\overline{\xi'}) \cap Y \neq \emptyset$ and $W' \cap V(\overline{\xi'}) \cap Y \neq \emptyset$, and with $y \in W' \cap U(\overline{\xi'}) \cap Y$ and $y' \in W' \cap V(\overline{\xi'}) \cap Y$ we have $(f(y), f(y')) \in G \times G \subseteq O$. This contradicts (i), completing the proof. \Box

Theorem 3.8. Let $\omega \leq \kappa \leq \alpha$ with either $\kappa < \alpha$ or α regular, let $\{X_i: i \in I\}$ be a set of spaces, and let Y be dense in an open subset U of $(X_I)_{\kappa}$. Let $q \in X_I \setminus Y$ be a point such that Y α^+ -duplicates q in X_I , and Z be a space with $\overline{G_{\alpha^+}}$ -diagonal. Then for every $f \in C(Y, Z)$, there is $J \in [I]^{\leq \alpha}$ such that f(y) = f(y') whenever $y, y' \in Y$ are such that $y_J = y'_J = q_J$.

Proof. Let $\{O_{\eta}: \eta < \alpha\} \subseteq \mathcal{N}_{Z \times Z}(\Delta(Z))$ satisfy $\Delta(Z) = \bigcap \{\overline{O}_{\eta}: \eta < \alpha\}$. For each $\eta < \alpha$ there is (by Theorem 3.7) $J_{\eta} \in [I]^{<\alpha}$ such that $(f(y), f(y')) \in \overline{O}_{\eta}$ whenever $y, y' \in Y$ satisfy $y_{J_{\eta}} = y'_{J_{\eta}} = q_{J_{\eta}}$. We set $J := \bigcup \{J_{\eta}: \eta < \alpha\}$. Then $|J| \leq \alpha$, and f(y) = f(y') whenever $y, y' \in Y$ with $y_J = y'_J = q_J$. \Box

To prove our principal result, Theorem 3.10, we need a simple observation.

Lemma 3.9. Let X be a space, p be a $P(\kappa)$ -point in X and $\chi(p, X) \leq \kappa$. Then there is a local base $\{U_{\alpha} : \alpha < \kappa\}$ at p such that $U_{\alpha'}(p) \subseteq U_{\alpha}(p)$ whenever $\alpha < \alpha' < \kappa$.

Proof. Let $\mathcal{V} = \{V_{\beta}: \beta < \chi(p)\}$ be a base at p. If $\chi(p) < \kappa$ we take $U_{\alpha}(p) := \bigcap \mathcal{V}$ for all $\alpha < \kappa$. If $\chi(p) = \kappa$ we set $U_0 = V_0$ and recursively, if $\alpha < \chi(p)$ and U_{β} has been defined for all $\beta < \alpha$, we choose β' so that $V_{\beta'} \subseteq V_{\alpha} \cap (\bigcap_{\gamma < \beta} U_{\gamma})$ and we set $U_{\alpha} := V_{\beta'}$. \Box

As indicated in our introduction, it is a feature of the following theorem that the conditions shown sufficient to ensure the extension of certain continuous functions are local at the hypothesized point q.

Theorem 3.10. Let $\omega \leq \kappa \leq \alpha$ with either $\kappa < \alpha$ or α regular, let $\{X_i: i \in I\}$ be a set of T_1 -spaces, and let Y be dense in an open subset of $(X_I)_{\kappa}$. Let $q \in X_I \setminus Y$ be a point from the G_{α^+} -closure of Y in $(X_I)_{\kappa}$ such that q_i is a $P(\alpha)$ -point in X_i with $\chi(q_i, X_i) \leq \alpha$ for each $i \in I$. Then Y is C(Z)-embedded in $Y \cup \{q\}$ for each regular space Z with a $\overline{G_{\alpha^+}}$ -diagonal.

Proof. Let $Y \subseteq U \subseteq \overline{Y}$, U open in $(X_I)_{\kappa}$, Z be as hypothesized and $f \in C(Y, Z)$.

According to Remark 3.6(a), $Y \alpha^+$ -duplicates q in X_I . Hence it follows from Theorem 3.8 that there exist $z \in Z$ and $J \in [I]^{\leq \alpha}$ such that f(y) = z for all $y \in Y$ satisfying $y_I = q_I$. We define $\overline{f} : Y \cup \{q\} \to Z$ by the rule

$$\overline{f}|Y = f, \qquad \overline{f}(q) = z.$$

We must show $\overline{f} \in C(Y \cup \{q\}, Z)$. Since Y is open in $Y \cup \{q\}$, the function \overline{f} remains continuous at each $y \in Y$.

If \overline{f} is not continuous at q then from Lemma 3.4 it follows that there is $O \in \mathcal{N}_{Z \times Z}(\Delta(Z))$ such that for every $U_q \in \mathcal{N}_{X_I}(q)$ there exist points $y_{U_q}, y'_{U_q} \in Y \cap U_q$ such that $(f(y_{U_q}), f(y'_{U_q})) \notin O$. Let V be an open neighborhood of z such that $\overline{V} \times \overline{V} \subseteq O$ (since Z is regular such neighborhood V exists). It follows from the continuity of f at y_{U_q} and y'_{U_q} that there are basic open neighborhoods $V_{y_{U_q}}$ of y_{U_q} of y'_{U_q} of y'_{U_q} such that $V_{y_{U_q}} \subseteq U \cap U_q$, $V_{y'_{U_q}} \subseteq U \cap U_q$, and such that $(f(y), f(y')) \notin \overline{V} \times \overline{V}$ whenever $y \in V_{y_{U_q}} \cap Y$ and $y' \in V_{y'_{U_q}} \cap Y$.

It follows from the hypotheses that for $i \in I$ there is a local base $\{U_{\beta}(q_i): \beta < \alpha\}$ at q_i such that $U_{\beta'}(q_i) \subseteq U_{\beta}(q_i)$ whenever $\beta < \beta' < \alpha$ (see Lemma 3.9). (To avoid ambiguity in this choice we assume without loss of generality that $X_{i'} \cap X_i = \emptyset$ for $i, i' \in I$ with $i \neq i'$.)

For $\beta < \alpha$ we define $J(\beta)$, $U(\beta)$, $y(\beta)$, and $y'(\beta)$ as follows:

- (i) $J(0) = \emptyset$;
- (ii) $U(0) = X_I$;
- (iii) $y(0) = y_{U(0)}, y'(0) = y'_{U(0)};$
- (iv) $J(\beta + 1) = J(\beta) \cup R(V_{y_{U(\beta)}}) \cup R(V_{y'_{U(\beta)}});$
- (v) $J(\beta) = \bigcup_{\gamma < \beta} J(\gamma)$ for β limit ordinal;
- (vi) $U(\beta) = \{z \in X_I: z_i \in U_\beta(q_i) \text{ for } i \in J(\beta)\};$ and
- (vii) $y(\beta) = y_{U(\beta)}, y'(\beta) = y'_{U(\beta)}.$

For every β we have $|J(\beta)| < \alpha$ since $\kappa < \alpha$ or α is regular. Hence $U(\beta)$ is a G_{α} -neighborhood of q in $(X_I)_{\kappa}$. Let $J_1 = \bigcup_{\beta < \alpha} J(\beta)$ and $J_2 = J \cup J_1$. Let $U'(\beta) = \{z \in X_I: z_i \in U_{\beta}(q_i), i \in J_2\}$ for $\beta < \alpha$. The set $U' := \bigcap_{\beta < \alpha} U'(\beta)$ is a nonempty G_{α^+} -set in X_I such that $q \in U'$ and $|R(U')| < \alpha^+$, so (again by Remark 3.6(a)) there is $w \in Y \cap U'$ with $w_i = q_i$ for each $i \in J_2$. Hence we have $w_J = q_J$ and therefore f(w) = z. Since f is continuous at w there is a basic open neighborhood $W \subseteq U$ of w such that $f[Y \cap W] \subseteq V$. Let $\beta < \alpha$ be such that $\pi_{J_1}[U(\beta)] \subseteq \pi_{J_1}[W]$ (such β exists since $\pi_{J_1}(w) = \pi_{J_1}(q)$ and $\kappa < \alpha$ or α is regular). Then $\pi_{J_1}[V_{y_{U(\beta)}}] \subseteq \pi_{J_1}[W]$, $\pi_{J_1}[V_{y'_{U(\beta)}}] \subseteq \pi_{J_1}[W]$ and since $R(V_{y_{U(\beta)}}) \subseteq J_1$ and $R(V_{y'_{U(\beta)}}) \subseteq J_1$ we have $W \cap V_{y_{U(\beta)}} \neq \emptyset$ and $W \cap V_{y'_{U(\beta)}} \neq \emptyset$. Therefore there exist $y \in W \cap V_{y_{U(\beta)}} \cap Y$ and $y' \in W \cap V_{y'_{U(\beta)}} \cap Y$. It follows from the choice of $V_{y_{U(\beta)}}$ and $V_{y'_{U(\beta)}}$ that $(f(y), f(y')) \notin \overline{V} \times \overline{V}$ and at the same time $(f(y), f(y')) \in V \times V \subseteq O$. This contradiction completes the proof. \Box

4. Corollaries of Theorem 3.10

In this section we state some special cases of Theorem 3.10 and some results that follow directly from it.

Theorem 4.1. Let $\omega \leq \kappa \leq \alpha$ with either $\kappa < \alpha$ or α regular. Let $\{X_i: i \in I\}$ be a set of T_1 -spaces, and let Y be dense in an open subset of $(X_I)_{\kappa}$. If every $q \in X_I \setminus Y$ in the G_{α^+} -closure of Y in $(X_I)_{\kappa}$ satisfies

 $i \in I \implies \chi(q_i, X_i) \leq \alpha$ and q_i is $aP(\alpha)$ -point in X_i ,

then the space Y is C(Z)-embedded in its G_{α^+} -closure in $(X_I)_{\kappa}$ for each regular space Z with a $\overline{G_{\alpha^+}}$ -diagonal.

The countable cases of Theorem 3.10 and Theorem 4.1 are the following:

Theorem 4.2. Let $\{X_i: i \in I\}$ be a set of T_1 -spaces, let Y be dense in some open subset of X_1 , and let $q \in X_1 \setminus Y$ belong to the G_δ -closure of Y and be such that $\chi(q_i, X_i) \leq \omega$ for every $i \in I$. Then Y is C(Z)-embedded in $Y \cup \{q\}$ for every regular T_1 -space Z with a regular G_δ -diagonal.

Theorem 4.3. Let $\{X_i: i \in I\}$ be a set of T_1 -spaces and let Y be dense in an open subset of X_1 . If every $q \in X_1 \setminus Y$ in the G_{δ} -closure of Y in X_I satisfies $\chi(q_i, X_i) \leq \omega$ for every $i \in I$, then Y is C(Z)-embedded in its G_{δ} -closure in X_I for every regular space Z with a regular G_{δ} -diagonal.

Let *X* be a space with a subspace *Y* such that, for a family $\{Z_j: j \in J\}$ of spaces, *Y* is $C(Z_j)$ -embedded in *X* for each *j*. If *Z* is a closed subspace of the product space $\prod_{j \in J} Z_j$, then *Y* is also C(Z)-embedded in *X*. (Indeed for $f \in C(Y, Z)$ we have $\pi_j \circ f \in C(Y, Z_j)$ for each *j*, and then the hypothesized family $\{\overline{\pi_j \circ f}: j \in J\}$ of continuous extensions furnishes \overline{f} such that $f \subseteq \overline{f} \in C(X, \prod_{i \in J} Z_i)$, with $\overline{f}[X] \subseteq Z$ since *Z* is closed in $\prod_{i \in J} Z_i$.)

Familiar applications of this argument show (a) if Y is C-embedded in X then Y is C(Z)-embedded in X for each space Z closed in a space of the form \mathbb{R}^J (these are the so-called *realcompact* spaces); (b) if Y is C(M)-embedded in X for each metrizable space M then Y is C(Z)-embedded in X for each space Z closed in a product of metrizable spaces (such spaces are called *topologically complete* or, by some authors, *Dieudonné-complete*). For alternative definitions and characterizations of realcompact and of topologically complete spaces, see [14].

For the case when *Z* is a metric space, we have the following:

Theorem 4.4. Let $\kappa \ge \omega$ be regular, $\{X_i: i \in I\}$ be a set of T_1 -spaces and let Y be dense in an open subset of $(X_I)_{\kappa}$. Let $q \in X_I \setminus Y$ be a point in the G_{κ^+} -closure of Y in $(X_I)_{\kappa}$ such that

 $i \in I \implies \chi(q_i, X_i) \leq \kappa$ and q_i is a $P(\kappa)$ -point in X_i .

Then Y is C(Z)-embedded in $Y \cup \{q\}$ for every metric space Z, hence for every topologically complete space Z.

Theorem 4.5. Let $\kappa \ge \omega$ be regular, $\{X_i: i \in I\}$ be a set of T_1 -spaces and let Y be dense in $(X_I)_{\kappa}$. If every $q \in X_I \setminus Y$ in the G_{κ^+} -closure of Y in $(X_I)_{\kappa}$ satisfies

 $i \in I \implies \chi(q_i, X_i) \leq \kappa \text{ and } q_i \text{ is a } P(\kappa)\text{-point in } X_i,$

then Y is C(Z)-embedded in its G_{K^+} -closure in $(X_1)_K$ for every metric space Z, hence for every topologically complete space Z.

The countable case of Theorem 4.5 is this.

Theorem 4.6. Let $\{X_i: i \in I\}$ be a set of T_1 -spaces and let Y be a dense subspace of X_I . If every $q \in X_I \setminus Y$ in the G_{δ} -closure of Y in X_I satisfies $\chi(q_i, X_i) \leq \omega$ for every $i \in I$, then Y is C(Z)-embedded in its G_{δ} -closure in X_I for every metric space Z, hence for every topologically complete space Z.

The theorem of R. Pol and E. Pol [20] and A.V. Arhangel'skiĭ [3, 1.9, 2.21] (see also [4]) mentioned in the abstract is a special case of the case $\mathbb{R} = Z$ of Theorem 4.6 (see also Corollary 4.12). Theorem 4.6 generalizes the following theorem of M. Ulmer [23]:

Theorem 4.7. Let $\{X_i: i \in I\}$ be a set of T_1 -spaces such that $\chi(X_i) \leq \omega$ for every $i \in I$. Then each space of the form $\Sigma(q) \subseteq X_I$ is *C*-embedded in X_I .

Another generalization of Ulmer's theorem is the following:

Corollary 4.8. Let $\kappa \ge \omega$ be a regular cardinal and $\{X_i: i \in I\}$ be a set of T_1 , $P(\kappa)$ -spaces such that $\chi(X_i) \le \kappa$ for every $i \in I$. Then each G_{κ^+} -dense subspace of $(X_I)_{\kappa}$ is C-embedded in $(X_I)_{\kappa}$.

Corollary 4.8 has in addition the following consequence:

Theorem 4.9. ([18]) In a product of separable metric spaces every G_{δ} -dense subset is C-embedded.

The attention which the Σ -products $\Sigma(p) \subseteq X_I$ have attracted with respect to questions of *C*-embedded subspaces of product spaces might lead one to believe that every G_{δ} -dense *C*-embedded subspace must contain such a space. In [8, 2.7] it is shown that this is by no means the case. Indeed, in appropriate circumstances a G_{δ} -dense, *C*-embedded subspace of a product space X_I may meet each Σ -product $\Sigma(p) \subseteq X_I$ in at most one point.

Ulmer, in [22] and [23], constructed an example showing that not every Σ -product in every (Tychonoff) product space is *C*-embedded. Extending his ideas, the following is shown in [8, 3.2]:

Example 4.10. For every $\kappa \ge \omega$ there are a set $\{X_i: i \in I\}$ of Tychonoff spaces, with $|I| = \kappa$, $q \in X_I$ and $f \in C((X_I \setminus \{q\}), \{0, 1\})$, such that no continuous function from X_I to $\{0, 1\}$ extends f. One may arrange further that either

- (i) there is $i_0 \in I$ such that $\psi(X_{i_0}) = \omega$, while for $i_0 \neq i \in I$ the space X_i is the one-point compactification of a discrete space with cardinality κ ; or
- (ii) the spaces X_i are pairwise homeomorphic, with $\psi(X_i) = \omega$ and either
 - (a) all but one point in each space X_i is isolated; or
 - (b) each space X_i is dense-in-itself.

We note for emphasis that examples as in Example 4.10(ii) show that in Theorem 3.10 and in its corollaries in this section the hypothesized inequality about χ cannot be replaced by its ψ analogue.

Theorem 4.11. Let X and Z be spaces such that each dense subset of X is C(Z)-embedded in its G_{δ} -closure in X. Let Y be dense in an open subset U of X. Then Y is C(Z)-embedded in its G_{δ} closure in U. Indeed for each $f \in C(Y, Z)$ there is a function $\overline{f} \in C(Y', Z)$ such that $f \subseteq \overline{f}$ and Y' is G_{δ} -closed in a dense open subset of X.

Proof. Let $f \in C(Y, Z)$. Fix $z \in Z$, set $V := X \setminus \operatorname{cl}_X U$, and let Y' be the G_δ -closure in X of $Y \cup V$. Define $f' : Y \cup V \to Z$ by: f'(y) = f(y) when $y \in Y$, f'(x) = z when $x \in V$. Since $f' \in C(Y \cup V, Z)$ and $Y \cup V$ is dense in X, there is $\overline{f} \in C(Y', Z)$ such that $f' \subseteq \overline{f}$. From $f \subseteq f'$ follows $f \subseteq \overline{f}$, as required. \Box

According to a definition of A.V. Arhangel'skiĭ [1] a space is a *Moscow space* if the closure of each of its open subsets is the union of G_{δ} sets. Among Tychonoff spaces, the Moscow spaces are characterized [4] as those for which each dense set is *C*-embedded in its own G_{δ} -closure. The case $Z = \mathbb{R}$ of the preceding theorem simply duplicates or confirms the obvious assertion that an open subset of a Moscow space is a Moscow space. Clearly, another corollary of the special case $Z = \mathbb{R}$ of Theorem 4.6 can be stated efficiently using the notion of Moscow spaces.

Corollary 4.12. Let $\kappa \ge \omega$ be a regular cardinal and $\{X_i: i \in I\}$ be a set of T_1 , $P(\kappa)$ -spaces such that $\chi(X_i) \le \kappa$ for every $i \in I$. Then $(X_I)_{\kappa}$ is a Moscow space.

References

- [1] A.V. Arhangel'skiĭ, Functional tightness, Q-spaces and τ -embeddability, Comment. Math. Univ. Carolin. 24 (1983) 105–120.
- [2] A.V. Arhangel'skii, The structure and classification of topological spaces and invariants, Uspekhi Mat. Nauk 33 (1978) 29-84, 272 (in Russian).
- [3] A.V. Arhangel'skiĭ, Moscow spaces and topological groups, Topology Proc. 25 (2000) 383-416.
- [4] A.V. Arhangel'skiĭ, Moscow spaces, Pestov-Tkačenko problem, and C-embedding, Comment. Math. Univ. Carolin. 41 (2000) 585-595.
- [5] N. Bourbaki, J. Dieudonné, Note de tératopologie II, Revue Scientifique 77 (1939) 180-181.
- [6] R.Z. Buzyakova, Cardinalities of ccc-spaces with regular G_{δ} -diagonals, Topology Appl. 153 (2006) 1696–1698.
- [7] W.W. Comfort, I.S. Gotchev, Continuous mappings on subspaces of products with the κ -box topology, Topology Appl. 156 (16) (2009) 2600–2608.
- [8] W.W. Comfort, I.S. Gotchev, L. Recoder-Núñez, Dense C-embedded subspaces of products, Scientiae Mathematicae Japonicae 64 (3) (2006) 509-515.
- [9] W.W. Comfort, I.S. Gotchev, L. Recoder-Núñez, M-embedded subspaces of certain product spaces, Topology Appl. 155 (17-18) (2008) 2188-2195.
- [10] W.W. Comfort, S. Negrepontis, Chain Conditions in Topology, Cambridge Tracts in Mathematics, vol. 79, Cambridge University Press, Cambridge–New York, 1982, reprinted with errata sheet, 2008.
- [11] H. Corson, Normality in subsets of product spaces, Amer. J. Math. 81 (1959) 785-796.
- [12] R. Engelking, On functions defined on Cartesian products, Fund. Math. 59 (1966) 221-231.
- [13] R. Engelking, General Topology, revised edition, Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, Berlin, 1989.
- [14] L. Gillman, M. Jerison, Rings of Continuous Functions, Van Nostrand, Princeton, 1960.
- [15] I. Glicksberg, Stone-Čech compactifications of products, Trans. Amer. Math. Soc. 90 (1959) 369-382.
- [16] M. Hušek, Continuous mappings on subspaces of products, in: Symposia Mathematica, vol. 17, Istituto Nazionale di Alta Mathematica, 1976, pp. 25-41.
- [17] R.H. McDowell, Extension of functions from dense subsets, Duke Math. J. 25 (1958) 297-304.
- [18] N. Noble, C-embedded subsets of products, Proc. Amer. Math. Soc. 31 (1972) 613-614.
- [19] N. Noble, M. Ulmer, Factoring functions on Cartesian products, Trans. Amer. Math. Soc. 163 (1972) 329-339.
- [20] R. Pol, E. Pol, Remarks on Cartesian products, Fund. Math. 93 (1976) 57-69.
- [21] D. Shakhmatov, No upper bound for cardinalities of Tychonoff c.c.c. spaces with a G_{δ} -diagonal exists (an answer to J. Ginsburg and R.G. Woods' question), Comment. Math. Univ. Carolin. 25 (1984) 731–746.
- [22] M. Ulmer, Continuous functions on product spaces, PhD thesis, Wesleyan University, Middletown, CT, USA, 1970.
- [23] M. Ulmer, C-embedded Σ -spaces, Pacific J. Math. 46 (1973) 591–602.