
Computers and Mathematics with Applications 60 (2010) 541–562

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

Modeling of decentralized linear observer and tracker for a class of
unknown interconnected large-scale sampled-data nonlinear systems
with closed-loop decoupling property
Jason Sheng-Hong Tsai a,∗, Nien-Tsu Hu a, Po-Chuan Yang a, Shu-Mei Guo b, Leang-San Shieh c
a Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC
b Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC
c Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204-4005, USA

a r t i c l e i n f o

Article history:
Received 16 September 2009
Received in revised form 7 May 2010
Accepted 7 May 2010

Keywords:
Observer
Tracker
Large-scale system
Observer/Kalman filter identification
Digital redesign

a b s t r a c t

A novel low-order modeling of decentralized linear observer-based tracker is presented
in this paper for a class of unknown interconnected large-scale sampled-data nonlinear
systems with closed-loop decoupling property. The appropriate (low-)order decentralized
linear observer is determined by the off-line observer/Kalman filter identification (OKID)
methodology and has been further improved based on the digital-redesign approach. Then
the decentralized digital-redesign tracker with the high gain property is proposed, so that
the closed-loop systemhas the decoupling property. The proposed approach is quite simple
and effective for the complicate interconnected large-scale sampled-data system with
known or unknown system.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, the decentralized control of interconnected large-scale systems has been one of the popular research
topics in control theory. Large-scale systems, such as transportation systems, power systems, communications systems, etc.,
are essential features of our modern life [1,2]. Many works on the subject have appeared in [3], and various methods have
been used to deal with this problem. Among these methods, the well-known methodology is called decentralized adaptive
control method, which was proposed by Ioannou [4] in 1986, and first showed that interconnections even though weak
can make a decentralized adaptive controller unstable. From then on, a large amount of decentralized adaptive techniques
have been developed in [5–17]. However, the methods [5–17] are based on the known system and known interconnections.
When the system equation and interconnections cannot be obtained, the previous methods cannot be used any more. As a
result, the proposed method for the unknown large-scale system is discussed later.
In this paper, low-order modeling of decentralized linear observer and tracker for a class of (unknown) interconnected

large-scale sampled-data nonlinear systems with closed-loop decoupling property is proposed. First, the appropriate
(low-)order decentralized linear observer for the sampled-data nonlinear system is determined by the off-line observer/
Kalman filter identification (OKID) method [18]. The OKID method is a time-domain technique that identifies a discrete
input–output mapping in the general coordinate form by using known input–output sampled data, through an extension of
the eigensystem realization algorithm (ERA), so that the order-determination problem existing in the system identification
problem can be solved. Then, each subsystem of the large-scale system is identified as a linear model.
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Furthermore, the above observer has been improved based on the digital-redesign approach [19]. The digital-redesign
approach is to pre-design an analog controller for the original analog plant and then carry out the digital redesign for the
pre-designed analog controller without losing the high-performance tracking purpose. The observer-based digital-redesign
tracker is a closed-loop controller with the state-feedback gain Kd and the feed-forward gain Ed used to control the plant to
trace the desired trajectory. Sequentially, the decentralized digital-redesign trackerwith the high-gain property is proposed,
so that the closed-loop system has the decoupling property. And the proposed approach is quite simple and effective for the
complicate large-scale sampled-data nonlinear system with known or unknown system equation.
There aremany digital-redesignmethods reported in literature; however,most digital-redesign techniques are implicitly

retained the closed-loop stability and are based on the approximation techniques, in which the discrete system matrix of
the original closed-loop analogue control system is approximately estimated and used to develop the digitally redesigned
controller by state matching. Because the dimension of the input is generally less than state, the stability of the closed-loop
system is not always assured [20]. One of those popular digital-redesign methods is the Tustin (bilinear) transformation.
Based on Tustin’s approach, the closed-loop stability may become unstable if sampling time is set too large. Recently, the
reported results on the stability analysis of digital redesign such as [21–24] have been proposed so that the closed-loop
controlled system is stable and longer sampling time is feasible by linear matrix inequality approach.
The rest of the paper is organized as follows. The problem description is given in Section 2. In Section 3, the

observer/Kalman filter identification (OKID) method is introduced which is used to obtain the global behavior linear models
of the subsystem in the interconnected large-scale system. Section 4 presents the improved observer-based digital-redesign
tracker. And the design procedure is listed in Section 5. The simulations of linear/nonlinear systems are illustrated in
Section 6 to demonstrate the methodology proposed in this paper.

2. Problem description

Consider the unknown nonlinear system consisting of N inter-connected MIMO subsystems shown as

Σi : ẋi(t) = fi(xi(t))+ gi(xi(t))

[
ui(t)+

N∑
j=1,j6=i

hij(xj(t − τij))

]
, (1a)

yi(t) = Cixi(t), (1b)

where i = 1, 2, . . . ,N , ui(t) ∈ <pi is the input, yi(t) ∈ <mi is the output and xi(t) ∈ <ni is the state vector to the ith
subsystem at time t . fi(·) ∈ <ni×ni and g(·) ∈ <ni×pi are nonlinear functions of the states xi(t) of Σi. The interconnected
terms hij(·) : <ni → <

pi(j 6= i) between subsystems corresponding to the disturbances on the subsystem Σi due to
subsystemsΣj which represent the unknown nonlinear functions of the states xj(t), and τij represent the time delays of the
interconnections form Subsystem j to Subsystem i.
First, the appropriate (low-)order decentralized linear observer for the sampled-data nonlinear system is to be

determined by the off-line observer/Kalman filter identification (OKID) method. Here, the OKID method can be applied
to identify each subsystem as its linear model and the individual observer gain can also be obtained. Then, in order to
overcome the effect ofmodeling error on the identified linearmodel of each subsystem, an improved observerwith high gain
property based on the digital-redesign approach will be developed to replace the identified observer by OKID. Sequentially,
the decentralized digital-redesign tracker with the high gain property shown in Fig. 4 will be proposed, so that the closed-
loop system has the decoupling property and well-tracking performance.

3. Observer/Kalman filter identification

In this section, the OKID formulation are derived to compute the system Markov parameters Yk = CGk−1H and the
observer gain Markov parameters Y 0k = CG

k−1F form the observer Markov parameters Y k = CG
k−1
H . Then, the combined

system and observer gain Markov parameters Υk are used to construct a Hankel matrix. Finally, the constructed Hankel
matrix is used to obtain the system and observer matrices [G,H, C, F ] by ERA.

3.1. Basic observer equation

The discrete-time state-space model of a multivariable linear system can be represented in the following general form:

x(k+ 1) = Gx(k)+ Hu(k), (2a)
y(k) = Cx(k), (2b)

where x(k) ∈ <n, y(k) ∈ <p and u(k) ∈ <m are state, output, and control input vectors, respectively, and G ∈ <n×n,
H ∈ <n×m and C ∈ <p×n are system, input, and output system matrices, respectively. Assuming zero initial condition
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x(0) = 0, system (2) for k = 0, 1, 2, . . . , l can be written explicitly as

x(0) = 0; y(0) = 0,
x(1) = Hu(0); y(1) = CHu(0),
x(2) = GHu(0)+ Hu(1); y(2) = CGHu(0)+ CHu(1),
...

x(l) =
l∑
i=1

Gi−1Hu(l− i); y(l) =
l∑
i=1

CGi−1Hu(l− i). (3)

Eq. (3) can be grouped in a matrix form to yield

y = YU, (4a)

where

y = [ y(1) y(2) · · · y(l) ], (4b)

Y = [ CH CGH · · · CGl−1H ], (4c)

and

U =


u(0) u(1) u(2) · · · u(l− 1)
0 u(0) u(1) · · · u(l− 2)
0 0 u(0) · · · u(l− 3)
...

. . .
. . .

. . .
...

0 0 0 · · · u(0)

 , (4d)

y ∈ <p×l, Y ∈ <p×ml, U ∈ <ml×l, p is the number of outputs, l is the number of data samples and m is the number of
inputs. Eq. (4a) is amatrix representation of the relationship between the input and output time histories. Matrix Y contains
all the Markov parameters CH, CGH, . . . , CGl−1H to be determined. Matrix U is a block upper-triangular input matrix.
When the states of system are inaccessible, an observer is usually applied to estimate the states from the information of

input and output. Therefore, add and subtract the term Fy(k), the observer of system (2) can be rewritten as

x(k+ 1) = Gx(k)+ Hu(k)+ Fy(k)− Fy(k)
= (G+ FC)x(k)+ Hu(k)− Fy(k)

= Gx(k)+ Hv(k), (5)

whereG = G+FC,H = [H,−F ], v(k) =
[
u(k)
y(k)

]
, and F is an n×p arbitrarymatrix that can be used tomake the desired stable

matrix G. In fact, system (5) is an observer equation if the state x(k) is considered as an observer state vector. Therefore, the
Markov parameters of system (5) will be referred to as the observer Markov parameters. System (5) development can be
interpreted by the viewpoint of [25], to place all the eigenvalues of G at the origin, i.e., a deadbeat observer. This provides
that CG

k
H = 0 for k ≥ q. When using real data including noise, the eigenvalues of G are in fact placed such that CG

k
H ≈ 0

for k ≥ q, where q is a sufficiently large integer. Note that v(k) is the input vector to the new observer-augmented system (5)
and is composed of the nominal system (2) with inputs and outputs.
The above derivation is to be assumed zero initial conditions x(0) = 0. For nonzero initial conditions x(0) 6= 0, the

following approach should be used. From system (5), it is easy to show that

x(k+ 1) = Gx(k)+ Hv(k),
x(k+ 2) = Gx(k+ 1)+ Hv(k+ 1)

= G
2
x(k)+ GHv(k)+ Hv(k+ 1),

...

x(k+ q) = Gx(k+ q− 1)+ Hv(k+ q− 1)

= G
q
x(k)+ G

q−1
Hv(k)+ G

q−2
Hv(k+ 1)+ · · · + Hv(k+ q− 1). (6)

Then, the measurement equation (2b) can be rewritten as

y(k+ q) = Cx(k+ q)

= CG
q
x(k)+ CG

q−1
Hv(k)+ CG

q−2
Hv(k+ 1)+ · · · + CHv(k+ q− 1). (7)
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Eq. (7) for k = 0, . . . , l− q, can be written as

y = CG
q
x+ YV , (8a)

where

y = [y(q) y(q+ 1) · · · y(l)] ∈ <m×(l−q+1), (8b)

x = [x(0) x(1) · · · x(l− q)] ∈ <l−q+1, (8c)

Y = [CH CGH · · · CG
(q−1)

H] ∈ <m×(p+m)q, (8d)

and

V =


v(q− 1) v(q) · · · v(l− 1)
v(q− 2) v(q− 1) · · · v(l− 2)
v(q− 3) v(q− 2) · · · v(l− 3)

...
...

. . .
...

v(0) v(1) · · · v(l− q)

 ∈ <(p+m)q×(l−q+1). (8e)

Note that the first term in the right-hand side of (8a) represents the effect of the preceding q − 1 time steps, where G
q

is sufficiently small and all the states in x are bounded [25], so (8a) can be approximated by neglecting the first term CG
q
x,

such that

y = YV . (9)

This has the following least-squares solution:

Y = yV
+
, (10)

where V
+
= V

T
[VV

T
]
−1 is the pseudo-inverse matrix of V . Here, the data length l should be chosen as a sufficiently large

integer such that [VV
T
]
−1 exists.

To solve for Y uniquely, all the rows of V must be linear independent. Furthermore, to minimize any numerical error
due to the computation of the pseudo-inverse, the rows of V should be chosen as independently as possible. As a result, the
maximum value of q is the number that maximizes the number (p + m)q ≤ (l − q + 1) of independent rows of V . The
maximum qmeans the upper bound of the order of the deadbeat observer. The lower bound of qmust be chosen such that
mq ≥ n, wherem is the number of outputs and n is the order of the system. Obviously, q can be smaller than the true order
of the system for a multiple output system. For a single output system, the number qmust be greater than or equal to the
true order of the system.

3.2. Computation of observer Markov parameters

The observer Markov parameters Y k = CG
k−1
H include the system Markov parameters Yk = CGk−1H and the observer

gain Markov parameters Y 0k = CG
k−1F . The system Markov parameters and the observer gain Markov parameters are used

to combine a Hankel matrix.

3.2.1. System Markov parameters
To recover the system Markov parameters in Y from the observer Markov parameters in Y , partition Y such that

Y =
[
CH CGH · · · CG

(q−1)
H
]

,
[
Y 1 Y 2 · · · Y q

]
, (11a)

where

Y 0 = 0,

Y k = CG
k−1
H =

[
C(G+ FC)k−1H −C(G+ FC)k−1F

]
,
[
Y
(1)
k −Y

(2)
k

]
for k = 1, 2, 3, . . . . (11b)

The system Markov parameters CH of the system can be reformulated as

Y1 = CH = Y
(1)
1 . (12a)

To obtain the system Markov parameters CGH , first consider the product Y
(1)
2 as

Y
(1)
2 = C(G+ FC)H = CGH + CFCH = Y2 + Y

(2)
1 Y1.
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Hence, one has

Y2 = CGH = Y
(1)
2 − Y

(2)
1 Y1. (12b)

Similarly, to obtain the system Markov parameters CG2H , consider the product Y
(1)
3

Y
(1)
3 = C(G+ FC)

2H

= CG2H − (CF)CGH − C(G+ FC)F(CH)

= Y3 + Y
(2)
1 Y2 + Y

(2)
2 Y1

Then, one has

Y3 = CG2H = Y
(1)
3 − Y

(2)
1 Y2 − Y

(2)
2 Y1. (12c)

By induction, the general relationship between the system Markov parameters Yk and the observer Markov parameters
Y k is

Y0 = Y 0 = 0, (13a)

Yk = Y
(1)
k −

k∑
i=1

Y
(2)
i Yk−i for k = 1, 2, . . . , q, (13b)

Yk = −
q∑
i=1

Y
(2)
i Yk−i for k = q+ 1, . . . ,∞. (13c)

3.2.2. Observer gain Markov parameters
To identify the observer gain F , first recovers the sequence of parameters as follows:

Y 0k = CG
k−1F for k = 1, 2, 3, . . . . (14a)

In terms of the observer gain Markov parameters. In fact, the first parameter of Eq. (14a) in the sequence is

Y 01 = CF = Y
(2)
1 . (14b)

The next parameter in the sequence is obtained by considering Y
(2)
2

Y
(2)
2 = CGF = (CGF + CFCF)

= Y 02 + Y
(2)
1 Y

0
1 .

Then, one has

Y 02 = CGF = Y
(2)
2 − Y

(2)
1 Y

0
1 . (14c)

Similarly, one gets

Y
(2)
3 = CG

2
F = (CG2F + CFCGF + CGFCF) = Y 03 + Y

(2)
1 Y

0
2 + Y

(2)
2 Y

0
1 .

Then, one has

Y 03 = CG
2F = Y

(2)
3 − Y

(2)
1 Y

0
2 − Y

(2)
2 Y

0
1 . (14d)

The general relationship can be summarized as follows:

Y 01 = CF = Y
(2)
1 , (15a)

Y 0k = Y
(2)
k −

k−1∑
i=1

Y
(2)
i Y

0
k−i for k = 2, 3, . . . , q, (15b)

Y 0k = −
q∑
i=1

Y
(2)
i Y

0
k−i for k = q+ 1, . . . ,∞. (15c)
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3.3. Eigensystem realization algorithm

TheHankelmatrix Ĥ(k−1) from the combined observerMarkovparameters is associatedwith the systemandobserver as

Ĥ(k− 1) =


Υk Υk+1 · · · Υk+β−1
Υk+1 Υk+2 · · · Υk+β
...

...
. . .

...
Υk+α−1 Υk+α · · · Υk+α+β−2

 , (16)

where α ≥ 0 and β ≥ 0 are sufficiently large arbitrary integers and Υk = [ Yk Y 0k ] = [ CG
k−1H CGk−1F ]. When

the combined observer Markov parameters are determined, the eigensystem realization algorithm (ERA) method is used to
obtain the desired discrete system realization [G,H, C, F ] through singular value decomposition (SVD) of the Hankelmatrix.
The ERA processes the factorization of the block data matrix in Eq. (16), started for k = 1, using the singular value

decomposition Ĥ(0) = V
∑
ST , where the columns of matrices V and S are orthonormal and

∑
is a rectangular matrix of

the form as follows

∑
=

[∑
ñ

0

0 0

]
, (17)

where
∑
ñ = diag[σ1, σ2, . . . , σnmin , σnmin+1, . . . , σ̃n ] contains monotonically non-increasing entries σ1 ≥ σ2 ≥ · · · ≥

σnmin ≥ σnmin+1 ≥ · · · σ̃n ≥ 0. Here, some singular values (σnmin+1, . . . , σ̃n) are relatively small (σnmin+1 � σnmin) and
negligible in the sense that they contain more noise information than system information. In order to construct the low-
order observer of the system, lets define

∑
nmin
= diag[σ1, σ2, . . . , σnmin ]. In other words, the reduced model of order nmin

after deleting singular values (σnmin+1, . . . , σ̃n) is then considered as the robustly controllable and observable part of the
realized system with an acceptable closed-loop performance. Simultaneous realizations of the system and observer by the
ERA are given as

G =
−1/2∑
nmin

V Tnmin Ĥ(1)Snmin

−1/2∑
nmin

, (18a)

[
H F

]
= First (m+ p) columns of

1/2∑
nmin

STnmin , (18b)

C = First p rows of Vnmin

1/2∑
nmin

. (18c)

For system identification, SVD is very useful in determining the systemorder. In practice, the primary purpose of applying
the OKIDmethod is that the constructed observer satisfies the least-squares solution or acts the input–outputmap the same
as a Kalman filter. If the data length is sufficiently long and the order of the observer is sufficiently large, the truncation error
is negligible [18].
The procedure of performing the off-line system identification scheme to obtain both system and observer gain Markov

parameters of the OKID model is given as follows, and the flowchart is illustrated in Fig. 1.

(i) Compute the observer Markov parameters. Choose a value of q that determines the number of observer Markov
parameters from the given set of input–output data, and then compute the least-squares solution of the observer
Markov parameter matrix Y in (10).

(ii) Recover system and observer gain Markov parameters. Based on the observer Markov parameters identified in (i), use
(13) and (15) to determine the combined system and observer gain Markov parameters. Moreover, set up the Hankel
matrix Ĥ(0) and Ĥ(1) as shown in (16).

(iii) Realize a state-space model
[
G, H, C

]
and the corresponding observer gain F in (18) from the identified sequence

of the system and observer gain Markov parameters by using the ERA method.

3.4. Relationship to Kalman filter

Let system Eq. (2) be extended to include process and measurement noise described as

x(k+ 1) = Gx(k)+ Hu(k)+ w(k), (19a)
y(k) = Cx(k)+ v(k), (19b)
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Fig. 1. Flowchart of the OKID.

wherew(k) is the process noise assumed to be Gaussian, zero-mean and white with the covariance matrix Q and v(k) is the
measurement noise satisfies the same assumption as w(k) with a different covariance matrix R. The sequences w(k) and
v(k) are independent of each other. Then, a typical Kalman filter for system (19) can be written as

x̂(k+ 1) = Gx̂(k)+ Hu(k)+ Kεr(k), (20a)

ŷ(k) = Cx̂(k), (20b)

where x̂(k) is the estimated state, K is the Kalman filter gain, and εr(k) is defined as the difference between the real
measurement y(k) and the estimated measurement ŷ(k). Combination of systems (19) and (20) yields

x̂(k+ 1) = Gx̂(k)+ Hu(k)+ K [y(k)− Cx̂(k)]

= G̃x̂(k)+ H̃ṽ(k), (21a)

where G̃ = G− KC, H̃ = [ H, K ], ṽ(k) =
[
u(k)
y(k)

]
.

The measurement equation becomes

y(k) = ŷ(k)+ εr(k) = Cx̂(k)+ εr(k). (21b)

Systems (5) and (21) are identical when F = −K and εr(k) = 0, and so are Markov parameters. In practice, any observer
satisfying a least-squares solution will produce the same input–output map as a Kalman filter does, provided that the data
length is sufficiently long and the order of theHankelmatrix is sufficiently large, so that the truncation error is negligible [18].
Therefore, when the residual εr(k) is a white sequence of the Kalman filter residual, the observer gain F converges to the
steady-state Kalman filter gain K such that F = −K .

4. The prediction-based digital redesign

4.1. Linear quadratic analog tracker design

Consider a linear quadratic analog system described as

ẋc(t) = Axc(t)+ Buc(t), (22a)
yc(t) = Cxc(t), xc(0) = x0, (22b)
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Fig. 2. Observer-based linear quadratic analog tracker.

which is assumed to be both controllable and observable, xc(t) ∈ <n, uc(t) ∈ <m and yc(t) ∈ <p. The optimal quadratic
state-feedback control law is to minimize the following performance index:

J =
∫
∞

0

{
[ Cxc(t)− r(t) ]T Q [Cxc(t)− r(t) ] + uTc (t)Ruc(t)

}
dt, (23)

with Q ≥ 0 and R > 0. This optimal control is given by

uc(t) = −Kcxc(t)+ Ecr(t). (24)

Then, the resulting closed-loop system becomes

ẋc(t) = (A− BKc)xc(t)+ BEcr(t), (25)

where the analog feedback gain Kc ∈ <m×n and the forward gain Ec ∈ <m×m form = p are

Kc = R−1BTP, (26)

Ec = −R−1BT [(A− BKc)−1]TCTQ . (27)

Here, r(t) is a reference input or desired trajectory, and P is the positive definite and symmetric solution of the following
Riccati equation as

ATP + PA− PBR−1BTP + CTQC = 0. (28)

The closed-loop system (25) is asymptotically due to the property of LQR (23) design.

4.2. Observer-based linear quadratic analog tracker design

Consider the situation that the system state of system (22) cannot all be measured. Then, one can take advantage of the
observer to estimate the unmeasured system state. Consider the linear observable continuous-time system in Fig. 2, which
is described as follows

˙̂xc(t) = Ax̂c(t)+ Buc(t)+ Lc[yc(t)− Cx̂c(t)], (29)

where x̂c(t) is the estimate of xc(t) and Lc ∈ <n×p is the observer gain.
To demonstrate that the proposed dynamical system (29) is indeed an observer, it is necessary to show that it

manufactures an estimate x̂c(t) that is close to the actual state xc(t), i.e., x̂c(t) ≈ xc(t). First, let the estimation error be

x̃c(t) = xc(t)− x̂c(t), (30)

which implies

˙̃xc(t) = ẋc(t)− ˙̂xc(t). (31)

Substituting (22), (29) and (30) into (31) yields

˙̃xc(t) = (A− LcC )̃xc(t), (32)
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which contrasts (25) and (32) with r(t) = 0. One can see that

(A− LcC)T = AT − CT LTc . (33)

This has the same structure as a state-feedback controller (25). With the dual property of linear system, the optimal
observer gain Lc can be found from designing the optimal control gain Kc . It means that the same theory one have developed
for selecting the analog-feedback gain Kc can be used to select the observer gain Lc as follows

Lc = PoCTR−1o , (34)

where Po is the symmetric and positive definite solution of the following Riccati equation as

APo + PoAT − PoCTR−1o CPo + Qo = 0, (35)

in which Qo ≥ 0 and Ro > 0 with appropriate dimensions.
It is well known that the high-gain (analog) controller/observer induces a high quality performance on trajectory tracking

design/state estimation, and it also can suppress systemuncertainties such as nonlinear perturbations, parameter variations,
modeling errors and external disturbances. For these reasons, the sub-optimal analog controller and observer with a high-
gain property is adopted in our approach. The high-gain property controller can be obtained by choosing a sufficiently
high ratio of Q to R in (28) so that the system output can closely track the pre-specified trajectory. However, the high-
gain property of the analog tracker usually yields large control signals, which might cause the system actuator to saturate
and give unsatisfactory system response. To overcome this difficulty, the tracker is redesigned based on the advanced
digital-redesign technique equipped with a suitably large sampling period and zero hold, which yields an equivalent digital
controller but with a low gain, without possibly losing the high quality performance. However, a large sampling period
usually induces a degradation of the tracking performance. Therefore, in general, a suitable compromise between the pre-
specified performance and the selections of the sampling time Ts, weighting matrices (Qo, Ro) in (35) and (Q , R) in (28)
should be considered. For simplicity in discussion, we neglect the actuator saturation problem in this thesis.

4.3. Digital redesign of the linear quadratic analog tracker

The continuous-time state-feedback controller is

uc(t) = −Kcxc(t)+ Ecr(t), (36)

where Kc ∈ <m×n and Ec ∈ <n×m have been designed to satisfy some specified goals, and r(t) ∈ <m is a desired reference
input vector. Thus, the analogously controlled system is

ẋc(t) = Acxc(t)+ BEcr(t), xc(0) = xc0 = x0, (37)

where Ac = A− BKc . Let the state equation of a corresponding discrete-time equivalent model be

ẋd(t) = Axd(t)+ Bud(t), xd(0) = xd0 = x0, (38)

where ud(t) ∈ <m is a piecewise-constant input vector, satisfying

ud(t) = ud(kTs), for kTs ≤ t < (k+ 1)Ts,

and Ts > 0 is the sampling period. Then, the discrete-time state-feedback controller is given by [17] as

ud(kTs) = −Kdxd(kTs)+ Ed r∗(kTs), (39)

where

Kd = (Im + KcH)−1KcG, (40)

Ed = (Im + KcH)−1Ec, (41)

r∗(kTs) = r(kTs + Ts), (42)

G = eATs , (43)

H = (G− In)A−1B for nonsingular A, (44a)

H =
[
TsIn + A

(Ts)2

2!
+ A2

(Ts)3

3!
+ · · ·

]
B for singular A, (44b)

Kd ∈ <m×n is a digital state-feedback gain, Ed ∈ <m×m is a digital feed forward gain, and r∗(kTs) ∈ <m is a piecewise-constant
reference input vector determined in terms of r(kTs) for tracking purpose. Thus, the digitally controlled closed-loop system
becomes

ẋd(t) = Axd(t)+ B [−Kdxd(kTs)+ Edr∗(kTs)], (45)

where xd(0) = xd0, for kTs ≤ t < (k+ 1)Ts.
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Remark 1 (Sampling Period Selection). It is noted that the mapping of a continuous-time system to its corresponding
discredited system can be one-to-one if the selected sampling period satisfies the sampling theorem [26]. However, if a
sampling period that violates the sampling theorem is selected, then the satisfactory state-matching will not be achieved.
Hence, it is suggested to choose Ts such that Ts < min( π/ Im(λ(A−BKc))) and Ts < min( π/ Im(λ(A− LcC))), where Im( · )
denotes the imaginary part of ( · ), to obtain an acceptable state-matching performance.

4.4. Digital redesign of the observer-based linear quadratic analog tracker

Consider the linear continuous-time observer as follows:

˙̂xc(t) = Ax̂c(t)+ Buc(t)+ Lc[yc(t)− Cx̂c(t)]. (46)

Define the continuous-time error x̃c (t) and discrete-time state estimate error x̃d (kTs) respectively as

x̃c(t) ≡ xc(t)− x̂c(t),

x̃d(kTs) ≡ xd(kTs)− x̂d(kTs). (47)

The aim of digital redesign is to make the discrete-time state estimation error closely match the continuous-time state
estimation error at each sampling instant, such as

x̃d(kTs) ≈ x̃c(t)
∣∣ t=kTs .

Using the duality once again, one can find the discrete-time state estimation error dynamics as follows

x̃d(kTs + Ts) = (G−MN) x̃d(kTs), (48)

where

G = e ATs , (49)

M = (G− In)A−1Lc for nonsingular A, (50a)

M =
[
TsIn + A

(Ts)2

2!
+ A2

(Ts)3

3!
+ · · ·

]
Lc for singular A, (50b)

N = (Im + CM)−1CG. (51)

Further define

Ld = M(Im + CM)−1, (52)

then one has

MN = (G− In)A−1Lc(Im + CM)−1CG = LdCG. (53)

The discrete-time system [26] corresponding to the analog system (22) are shown as

xd(kTs + Ts) = Gxd(kTs)+ Hud(kTs), (54a)
yd(kTs) = Cxd(kTs). (54b)

From (54), one has

CGxd(kTs) = Cxd(kTs + Ts)− CH ud(kTs) = yd(kTs + Ts)− CH ud(kTs). (55)

Substituting (53) into (48) yields

x̃d(kTs + Ts) = (G− LdCG)(xd(kTs)− x̂d(kTs))

= (G− LdCG)xd(kTs)− (G− LdCG)x̂d(kTs). (56)

Substituting (55) into (56), one has

x̃d(kTs + Ts) = xd(kTs + Ts)− x̂d(kTs + Ts)
= [Gxd(kTs)+ Hud(kTs)] − x̂d(kTs + Ts)
= Gxd(kTs)− Ld[yd(kTs + Ts)− CHud(kTs)] − (G− LdCG)x̂d(kTs)

= Gxd(kTs)− Ldyd(kTs + Ts)+ LdCHud(kTs)− (G− LdCG)x̂d(kTs). (57)
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Fig. 3. Prediction-based digital tracker and observer.

From (57), one has

x̂d(kTs + Ts) = (G− LdCG) x̂d(kTs)+ (In − LdC)H ud(kTs)+ Ldyd(kTs + Ts)
= Gd x̂d(kTs)+ Hd ud(kTs)+ Ldyd(kTs + Ts), (58a)

ŷd(kTs) = C x̂d(kTs), (58b)

where

Ld = (G− In)A−1Lc (Im + C(G− In)A−1Lc)−1, (59)
Gd = G− LdCG, (60)
Hd = (In − LdC)H, (61)

G = eATs , (62)

H = (G− In)A−1B for nonsingular A, (63a)

H =
[
TsIn + A

(Ts)2

2!
+ A2

(Ts)3

3!
+ · · ·

]
B for singular A. (63b)

Note that the digital observer (58a) utilizes the future sampled output yd(kTs+Ts) together with the currently estimated
state x̂d(kTs) to compute the future estimated state x̂d(kTs + Ts). In view of practical implementation, the following discrete
observer using currently output yd(kTs) and previous estimated state x̂d(kTs − Ts) to compute the currently estimated state
x̂d(kTs) as follows:

x̂d(kTs) = Gd x̂d(kTs − Ts)+ Hd ud(kTs − Ts)+ Ldyd(kTs), (64a)

ŷd(kTs) = C x̂d(kTs). (64b)

The observer-based digital tracker and observer for the sampled-data linear model are shown in Fig. 3.

5. Design procedure

In this section, the design procedure of the proposed method is listed as the following steps:
Step 1. Perform the off-line observer/Kalman filter identification (OKID) method to determine appropriate (low) orders

of the linear system/observer models and system matrices/observer gain matrix, in the general coordinate form.
Step 2. Transform the obtained discrete-time linear system/observer models to continuous time linear system/observer

models with the appropriate sampling time.
Step 3. Design the linear quadratic analog tracker and the analog observer form the continuous time linear system/

observer models obtained in Step 2.
Step 4. Perform the digital redesign on the linear quadratic tracker and the analog observer obtained in Step 3. The digital

redesign of the observer-based linear quadratic analog tracker is shown in Fig. 4a for Type 1: the interconnected terms go
through zero-order-hold (Z.O.H.) and in Fig. 4b for Type 2: the interconnected terms do not go through zero-order-hold. And
the proposed method is work for both Types.
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Fig. 4a. The decentralized observer-based digital-redesigned tracker for the unknown nonlinear sampled-data system with Type 1 interconnection.

Remark 2. Let the linear case of SubsystemΣ1 in Fig. 4b be

ẋd1(t) = A1xd1(t)+ B1[ud1(t)+ h12xd2(t − τ12)]. (65)

The solutions X1(s) and x1(t) of (65) are respectively given as

Xd1(s) = (sI − A)−1xd1(0)+ (sI − A)−1B1Ud1(s)+ (sI − A)−1B1h12Xd2(s)e−τ12s

and

xd1(t) = eAtxd1(0)+ eAt ⊗ B1ud1(t)+ eAt ⊗ B1h12xd2(t − τ12),

where⊗ denotes the convolution operator. It is not easy to find the corresponding discrete-time model of (65), if the inter-
connected term h12xd2(t−τ12) does not going though the zero-order-hold. However, by the proposed approach, one always
can have the optimal linear discrete-time model by the eigensystem realization algorithm (ERA).

6. Illustrative examples

6.1. A MIMO large-scale unknown linear system

Consider the large-scale unknown system that contains two interconnected two-in-two-out subsystems described as
follows:

Σ1 : ẋ1(t) = A1x1(t)+ B1 [u1(t)+ L12x2(t − τ12)] ; y1(t) = C1x1(t), (66)
Σ2 : ẋ2(t) = A2x2(t)+ B2 [u2(t)+ L21x1(t − τ21)] ; y2(t) = C2x2(t), (67)

where u1(t) =
[
u1,1(t)
u1,2(t)

]
, u2(t) =

[
u2,1(t)
u2,2(t)

]
, x1(t) =

[
x1,1(t)
x1,2(t)
x1,3(t)

]
, x2(t) =

[
x2,1(t)
x2,2(t)
x2,3(t)

]
, A1 =

[
−3 5 9
1 −5 3
−2 8 −2

]
, A2 =

[
−2 1 −2
−2 1 −1
0 −3 −4

]
,

B1 =
[
2 −1
1 0
0 −1

]
, B2 =

[
1 0
−1 −2
−2 0

]
, C1 =

[
0 1 0
0 0 1

]
, C2 =

[
1 0.1 0
0 1 0

]
, L12 =

[
2 0 2
0 2 0

]
, L21 =

[
0 2 0
0 0 2

]
and the initial

condition x1(0) =
[
0
0
0

]
, x2(0) =

[
0
0
0

]
, τ21 = 2× Ts1, τ12 = 3× Ts2, where Ts1 = 0.01 s and Ts2 = 0.02 s.
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Fig. 4b. The decentralized observer-based digital-redesigned tracker for the unknown nonlinear sampled-data system with Type 2 interconnection.

Let the system be excited by the white-noise control force u(t) =
[
u1(t) u2(t)

]T with a zero mean and covariance
diag [cov(u1(t)), cov(u2(t))] = diag

[
0.2 0.2

]
, where the sampling times are Ts1 = 0.01 s and Ts2 = 0.02 s for Subsystem

Σ1 and SubsystemΣ2, respectively. The input–output sampled data are given in Fig. 5.
The identified system and observer gain matrices for SubsystemΣ1 and SubsystemΣ2 are respectively given as

Ĝ1 =

 1.1911 −0.1154 0.0553 0.0186
0.1580 1.0151 −0.0091 −0.1210
−0.1349 −0.0118 0.9068 0.0470
0.0222 0.2306 −0.0590 0.7377

 , Ĥ1 =

−0.0052 0.0032
−0.0094 0.0029
0.0014 −0.0043
−0.0092 0.0027

 ,

Ĉ1 =
[
0.3794 −0.8012 −0.5613 −0.5576
−0.9758 −1.0536 0.6339 −0.4554

]
, F1 =

−2.5749 2.1314
1.8075 0.7548
−0.5690 0.9213
−0.6070 −0.4564

 ,

Ĝ2 =

 1.1530 −0.0175 −0.0657 0.0432
0.0254 1.1083 −0.0542 0.0695
−0.1500 0.1101 0.8802 0.0027
−0.0918 −0.1598 −0.0020 0.8565

 , Ĥ2 =

−0.0122 −0.01450.0030 −0.0123
0.0145 0.0103
0.0060 0.0206

 ,

Ĉ2 =
[
−0.5218 0.9971 0.7799 −0.3849
0.9543 0.5403 −0.3939 −0.7613

]
, F2 =

 1.2978 −2.3511
−2.2092 −1.1693
0.9099 −0.5030
−0.4717 −0.8778

 .
Then, the observer-based outputs compared with the actual system outputs for Subsystem Σ1 are shown in Fig. 6, and

SubsystemΣ2 has similar simulation results.
To overcome the effect ofmodeling error, an improved observerwith the high-gain property based on the digital-redesign

approach has been used in (65), where the observer system matrices and observer gain matrices with digital redesign for
SubsystemΣ1 and SubsystemΣ2 are respectively given as

Gd1 =
(
In − Ld1Ĉ1

)
Ĝ1 =

−0.0864 −0.2293 0.7518 0.0998
−0.0236 0.0480 −0.1313 −0.3993
−0.1202 −0.2523 0.8425 −0.0275
0.0887 0.0415 −0.1406 0.6740

 ,
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a b

Fig. 5. (a) SubsystemΣ1 I/O data for identification, (b) SubsystemΣ2 I/O data for identification.

a b

Fig. 6. (a) The comparison between Subsystem Σ1 output yid11(kTs) and its observer-based output yo11(kTs) by OKID, (b) The comparison between
SubsystemΣ1 output yid12(kTs) and its observer-based output yo12(kTs) by OKID.

Hd1 = (In − Ld1Ĉ1)Ĥ1 =

 0.0026 −0.0039
0.0031 −0.0003
0.0043 −0.0048
−0.0072 0.0027

 , Ld1 =

 0.6650 −0.7153
−0.6536 −0.3058
−0.1978 −0.0436
−0.1880 −0.0046

 ,
with Qob1 = 108 × I4, Rob1 = I2.

Gd2 =
(
In − Ld2Ĉ2

)
Ĝ2 =

−0.0428 −0.0063 0.5397 0.3610
0.0172 −0.0232 −0.3557 0.4824
−0.0608 0.0136 0.8190 0.0137
−0.0150 −0.0342 0.0015 0.7903

 ,

Hd2 = (In − Ld2Ĉ2)Ĥ2 =

 0.0104 0.0139
−0.0021 0.0060
0.0124 0.0098
0.0052 0.0168

 , Ld2 =

−0.4012 0.7495
0.6995 0.3768
0.0892 −0.0244
−0.0526 −0.0895

 ,
with Qob2 = 108 × I4, Rob2 = I2. Then, the comparisons between the actual outputs and their observer-based outputs by
digital redesign for SubsystemΣ1 are shown in Fig. 7, and certainly the results for SubsystemΣ2 are similar toΣ1.
By the identified linear models, the observer-based digital-redesigned tracker can be used to design the decentralized

control as shown in Fig. 8.
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a b

Fig. 7. (a) The comparison between Subsystem Σ1 output yid11(kTs) and its observer-based output yo11(kTs) by digital redesign, (b) The comparison
between SubsystemΣ1 output yid12(kTs) and its observer-based output yo12(kTs) by digital redesign.

Fig. 8. The decentralized observer-based digital-redesigned tracker for the unknown linear sampled-data system with Type 1 interconnection.

The gainmatrices of the observer-based digital tracker (65) for SubsystemΣ1 and SubsystemΣ2 are respectively given as

Kd1 = 102 ×
[
0.4452 −1.0093 −0.4861 −0.3476
2.2748 −0.9496 −1.5068 −0.4948

]
, Ed1 = 102 ×

[
1.0566 −0.0239
2.089 −1.0259

]
,

Kd2 = 102 ×
[
−0.3847 0.5729 0.3057 −0.1043
−0.1130 −0.4530 −0.0745 0.1947

]
, Ed2 = 102 ×

[
0.4823 −0.0541
−0.2438 −0.2199

]
,

with Q1 = 1010 × I2, R1 = I2, Q2 = 1010 × I2, R2 = I2. The reference input is given by r(t) =
[
cos(10t)
cos(10t)

]
, and the output

responses of the large-scale system for Subsystem Σ1 and Subsystem Σ2 are shown in Fig. 9. Here, we only show one of
output responses and the other is similar.
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a b

Fig. 9. (a) Output responses of Type 1 SubsystemΣ1: output y11(t) and reference r11(t), (b) Output responses of Type 1 SubsystemΣ2: output y12(t) and
reference r12(t).

a b

Fig. 10. (a) Output responses of Type 1 Subsystem Σ1: output y11(t) and reference r11(t), (b) Output responses of Type 1 Subsystem Σ2: output y12(t)
and reference r12(t); The unanticipated failure occurs without fault-tolerant control during t = 0.3–0.5 s.

In order to confirm the independence of the control for the two subsystem, the control input ud(kTs) of SubsystemΣ1 is
reduced by multiplying a scalar 0.1 during 0.3 s to 0.5 s in this simulation. Although the control input ud(kTs) of Subsystem
Σ1 is reduced, the tracking performance of Subsystem Σ2 will not be affected by this condition and the results are shown
in Figs. 10 and 11.

6.2. A MIMO large-scale unknown nonlinear system

Consider the large-scale unknown system that contains two interconnected two-in-two-out subsystems described as
follows:

Σ1 : ẋ1(t) = f1(x1(t))+ g1(x1(t)) [u1(t)+ h12(x2(t − τ12))] ; y1(t) = C1x1(t), (68)
Σ2 : ẋ2(t) = f2(x2(t))+ g2(x2(t)) [u2(t)+ h21(x1(t − τ21))] ; y2(t) = C2x2(t), (69)

where u1(t) =
[
u1,1(t)
u1,2(t)

]
, u2(t) =

[
u2,1(t)
u2,2(t)

]
, x1(t) =

[
x1,1(t) x1,2(t) x1,3(t) x1,4(t)

]T , x2(t) = [x2,1(t) x2,2(t) x2,3(t)
x2,4(t)]T .
The first SubsystemΣ1 of the large-scale system is given by two-link robot (Fig. 12), which is described as follows:
The dynamic equation of the two-link robot system can be expressed as follows:

M(q)q̈+ C(q, q̇)q̇+ G(q) = Γ , (70)
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ba

Fig. 11. (a) Output responses of Type 1 Subsystem Σ1: output y21(t) and reference r21(t), (b) Output responses of Type 1 Subsystem Σ2: output y22(t)
and reference r22(t); The unanticipated failure occurs without fault-tolerant control during t = 0.3–0.5 s.

where

M(q) =
[

(m1 +m2)l21 m2l1l2(s1s2 + c1c2)
m2l1l2(s1s2 + c1c2) m2l22

]
, C(q, q̇) = m2l1l2(c1s2 − s1c2)

[
0 −q̇2
−q̇1 0

]
,

G(q) =
[
−(m1 +m2)l1gr s1
−m2l2gr s2

]
, and q =

[
q1 q2

]T , q1, q2 are the angular positions, M(q) is the moment of inertia, C(q, q̇)
includes coriolis and centripetal forces, G(q) is the gravitational force, Γ is the applied torque vector. Here, we use the short
hand notations si = sin(qi) and ci = cos(qi). The nominal parameters of the system are given as the link massesm1 = 5 kg,
m2 = 2.5 kg, the length l1 = l2 = 0.5 m, and the gravitational acceleration gr = 9.81 ms−2. Rewrite (71) in the following
form

q̈ = M−1(q)(Γ − C(q, q̇)q̇− G(q)). (71)

Let x1 and f1(x1) present the state of the system and the nonlinear function of the state x1 respectively. And the notation
is shown as

x1(t) , [x1,1 x1,2 x1,3 x1,4]T = [q1 q̇1 q2 q̇2]T , f1(x1(t)) , [f1,1 f1,2 f1,3 f1,4]T ,

where f1,1 = x1,2, f1,3 = x1,4, [f1,2 f1,4]T = M−1(−C[x1,2 x1,4]T−G), Also let u1 , Γ , whereΓ =
[
Γ1 Γ2

]T . Calculate the
inverse of the matrixM , then one hasM−1 =

[
p11 p12
p21 p22

]
such that g1(x1(t)) =

[
0 p11 0 p21
0 p12 0 p22

]T
. So the dynamic equation

of the two-link robot system can be reformulated as follows

ẋ1(t) = f1(x1(t))+ g1(x1(t))u1(t), (72a)
y1 = C1x1, (72b)

where C1 =
[
1 0 0 0
0 0 1 0

]
and the initial condition x1(0) =

[
0 0 0 0

]T . The second Subsystem Σ2 of the large-scale
system is given by mass-spring-damper system, which is described as follows:
The dynamic equation of the mass-spring-damper system (Fig. 13) can be expressed as follows:

(M1 +∆M1)ÿ1 = fu1 − fK1(x)− fB1(x)+ fK2(x)+ fB2(x)− fC1(x)+ fC2(x)+ d1, (73)
(M2 +∆M2)ÿ2 = fu2 − fK2(x)− fB2(x)− fC2(x)+ d2, (74)

where x ,
[
y1 ẏ1 y2 ẏ2

]T
, the spring forces fK1(x) = K10y1+∆K1y31, fK2(x) = K20(y2−y1)+∆K2(y2−y1)

3, the friction
forces fB1(x) = B10ẏ1 + ∆B1ẏ21, fB2(x) = B20(ẏ2 − ẏ1) + ∆B2(ẏ2 − ẏ1)

2 and the coulomb friction forces fC1 = 0.02sgn(ẏ1),
fC2 = 0.02sgn(ẏ2 − ẏ1). The nominal parameters are given as M1 = 0.25, M2 = 0.2, K1 = 1, K2 = 2 and B1 = 2.2. The
perturbations are given as∆M1 = 0.05 sin(y1),∆M2 = 0.05 sin(y1− y2),∆K1 = 0.1,∆K2 = 0.12,∆B1 = 0.2,∆B2 = 0.15,
d1 = 0.2 sin(3t) exp(−0.2t) and d2 = 0.2 cos(3t) exp(−0.1t).
Let x2 and f2(x2) present the state of the system and the nonlinear function of the state x2 respectively. And the notation

is shown as

x2(t) , [x2,1 x2,2 x2,3 x2,4]T = [y1 ẏ1 y2 ẏ2]T , f2(x2(t)) , [f2,1 f2,2 f2,3 f2,4]T ,
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q2

q1

Γ

Γ1

2

Fig. 12. Two-link robot.

Fig. 13. Mass-spring-damper system.

where

f2,1 = x2,2, f2,2 =
1

(M1 +∆M1)
(−fK1(x2)− fB1(x2)+ fK2(x2)+ fB2(x2)− fC1(x2)+ fC2(x2)+ d1),

f2,3 = x2,4, f2,4 =
1

(M2 +∆M2)
(−fK2(x2)− fB2(x2)− fC2(x2)+ d2),

and g2(x2(t)) =

0 1
(M1 +∆M1)

0 0

0 0
1

(M2 +∆M2)
0

T . Also, let u2 , fu, where fu =
[
fu1 fu2

]T .
So the dynamic equation of the mass-spring-damper system can be reformulated as follows
ẋ2(t) = f2(x2(t))+ g2(x2(t))u2(t), (75a)
y2 = C2x2, (75b)

where C2 =
[
1 0 0 0
0 0 1 0

]
and the initial condition x2(0) =

[
0.5 0 0 0

]T .
Combining the above systems with the nonlinear interconnected terms, the large-scale system can then be shown in

Fig. 4a, where the nonlinear inter-connected terms h12(xd2(t)) and h21(xd1(t)) are given as
[
x2d2,3 cos(xd2,1)
sin2(xd2,2)

]
and

[
x2d1,1

xd1,3 sin(xd1,2)

]
,

respectively. The time delays of the nonlinear interconnected terms are τ21 = 2× Ts1 and τ12 = 3× Ts2, where Ts1 = 0.01 s
and Ts2 = 0.02 s (see Figs. 4a and 4b).
Let the open-loop systembe excited by the control forceu(t)withwhite noise u(t) =

[
u1(t) u2(t)

]T having a zeromean
and covariance diag [cov(u1(t)), cov(u2(t))] = diag

[
0.2 0.2

]
, where the sampling times Ts1 = 0.01 s and Ts2 = 0.02 s for

SubsystemΣ1 and SubsystemΣ2 respectively. We can get input–output sampled data in Fig. 14.
Similar to 1, the identified system and observer by OKID for SubsystemΣ1 and SubsystemΣ2 can be obtained. Then, the

observer-based outputs compared with the actual system outputs for Subsystem Σ1 are shown in Fig. 15, and Subsystem
Σ2 has similar simulation results.
To overcome the effect ofmodeling error, an improved observerwith the high-gain property based on the digital-redesign

approach has been used in (65). Then, the comparisons between the actual outputs and their observer-based outputs by
digital redesign for SubsystemΣ1 are shown in Fig. 16, and certainly the results for SubsystemΣ2 are similar toΣ1.
The gain matrices of observer-based digital tracker (65) for SubsystemΣ1 and SubsystemΣ2 are respectively given. For

Type 1 and Type 2, the reference input is given by r(t) =
[
0.5 sin(t)
0.5 cos(t)

]
and the output responses of the large-scale system for

SubsystemΣ1 are shown in Figs. 17 and 18, respectively. Here, we omit the results of SubsystemΣ2.
In order to confirm the independence of the control for the two subsystems, the control input ud(kTs) of Subsystem Σ1

is reduced by multiplying a scalar 0.02 during 2 s to 4 s in this simulation. Although the control input ud(kTs) of Subsystem
Σ1 is reduced, the tracking performance of Subsystem Σ2 will not be affected by this condition and the results are shown
in Figs. 19–22.
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a b

Fig. 14. (a) SubsystemΣ1 I/O data for identification, (b) SubsystemΣ2 I/O data for identification.

a b

Fig. 15. (a) The comparison between Subsystem Σ1 output yid11(kTs) and its observer-based output yo11(kTs) by OKID, (b) The comparison between
SubsystemΣ1 output yid12(kTs) and its observer-based output yo12(kTs) by OKID.

a b

Fig. 16. (a) The comparison between Subsystem Σ1 output yid11(kTs) and its observer-based output yo11(kTs) by digital redesign, (b) The comparison
between SubsystemΣ1 output yid12(kTs) and its observer-based output yo12(kTs) by digital redesign.
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a b

Fig. 17. (a) Output responses of Type 1 Subsystem Σ1: output y11(t) and reference r11(t), (b) Output responses of Type 1 Subsystem Σ1: output y12(t)
and reference r12(t).

ba

Fig. 18. (a) Output responses of Type 2 Subsystem Σ1: output y11(t) and reference r11(t), (b) Output responses of Type 2 Subsystem Σ1: output y12(t)
and reference r12(t).

a b

Fig. 19. (a) Output responses of Type 1 Subsystem Σ1: output y11(t) and reference r11(t), (b) Output responses of Type 1 Subsystem Σ1: output y12(t)
and reference r12(t); The unanticipated failure occurs without fault-tolerant control during t = 2–4 s.
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a b

Fig. 20. (a) Output responses of Type 1 Subsystem Σ2: output y21(t) and reference r21(t), (b) Output responses of Type 1 Subsystem Σ2: output y22(t)
and reference r22(t); The unanticipated failure occurs without fault-tolerant control during t = 2–4 s.

a b

Fig. 21. (a) Output responses of Type 2 Subsystem Σ1: output y11(t) and reference r11(t), (b) Output responses of Type 2 Subsystem Σ1: output y12(t)
and reference r12(t); The unanticipated failure occurs without fault-tolerant control during t = 2–4 s.

a b

Fig. 22. (a) Output responses of Type 2 Subsystem Σ2: output y21(t) and reference r21(t), (b) Output responses of Type 2 Subsystem Σ2: output y22(t)
and reference r22(t); The unanticipated failure occurs without fault-tolerant control during t = 2–4 s.
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7. Conclusion

A connection between the appropriate (low-)order decentralized linear observer and some class of unknown inter-
connected large-scale sampled-data nonlinear system has been constructed via the observer/Kalman filter identification
method. The OKID method is a time-domain technique that identifies a discrete input–output mapping by using known
input–output sampled data in the general coordinate form, though an extension of the eigensystem realization algorithm
(ERA). Therefore, the appropriate (low) orders of the decentralized observer can be determined. To overcome the effect of
modeling error, an improved observer with the high-gain property based on the digital-redesign approach has been pro-
posed in this paper. Consequently, the digital-redesign-based decentralized tracker with the high-gain property yields the
high performance tracking purpose and the closed-loop system has the property of decoupling, such that when some unan-
ticipated fault occurs in some subsystemwill not affect the tracking performance of other subsystem. The proposed approach
is significantly useful for the class of large-scale sampled-data nonlinear systemswith known or unknown system equation.
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