Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

Applied Mathematical Modelling 36 (2012) 3289-3298

Contents lists available at SciVerse ScienceDirect

Applied Mathematical Modelling

journal homepage: www.elsevier.com/locate/apm

The positive almost periodic solution for Nicholson-type delay systems
with linear harvesting terms ™

Xingguo Liu?, Junxia Meng >*

2 College of Business Administration, Hunan University, Changsha, Hunan 410082, PR China
b College of Mathematics, Physics and Information Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China

ARTICLE INFO ABSTRACT
Article history: In this paper, we study the existence and exponential convergence of positive almost peri-
Received 28 April 2011 odic solutions for a class of Nicholson-type delay system with linear harvesting terms.

Sgieli"ed in revised form 24 September Under appropriate conditions, we establish some criteria to ensure that the solutions of

Accepted 29 September 2011 this system converge locally exponentially to a positive almost periodic solution. Moreover,
Avail[; ble onlingl 3 October 2011 we give an example to illustrate our main results.
© 2011 Elsevier Inc. All rights reserved.

Keywords:

Positive almost periodic solution
Exponential convergence
Nicholson-type delay system
Linear harvesting term

1. Introduction

In [1], to describe the models of Marine Protected Areas and B-cell Chronic Lymphocytic Leukemia dynamics that belong
to the Nicholson-type delay differential systems, Berezansky et al. [1] considered the dynamics of the following autonomous
Nicholson-type delay systems:

X} (t) = —a1x1(t) + b1xa(t) + c1%1 (t — T)e ™1 (D) (1)
X, (t) = —@yXa(t) + baxy (t) + Coxp(t — T)e 220, ’
with initial conditions:
X() = ¢i(). s [-T.0, 0 >0, (12)

where ¢; € (([-7,0], [0,+c0)), a;, b;, ¢; and 7 are nonnegative constants, i =1, 2.
Furthermore, Wang et al. [2] showed the existence and exponential convergence of positive almost periodic solutions for
the following non-autonomous Nicholson-type delay systems:
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Xy (t) = —on ()1 (t) + By (£)X2(t) + f: C1j(E)x%1 (£ — Tyj(£))e MO mO),
= (1.3)
Xy (t) = =0 (0)X2(t) + By (£)X1(t) + 2; Coj ()Xt — Tyj(t))e PO,
j=

where o;, B, i, Vi Tij - R' — (0,+00) are almost periodic functions, and i=1,2,j=1,2,...,m.
Recently, assuming that a harvesting function is a function of the delayed estimate of the true population, Berezansky
et al. [3] proposed the Nicholson’s blowflies model with a linear harvesting term:

X (t) = —0x(t) + px(t — 7)e" ™D _Hx(t — ), 6,p,7,a,H, 0 € (0,+00), (1.4)

where Hx(t — ¢) is a linear harvesting term, x(t) is the size of the population at time t, P is the maximum per capita daily egg
production, 1 is the size at which the population reproduces at its maximum rate, ¢ is the per capita daily adult death rate,
and 7 is the generation time. Moreover, Berezansky et al. [3] pointed out an open problem: How about the dynamic behav-
iors of the Nicholson’s blowflies model with a linear harvesting term.

Now, motivated by Berezansky et al. [1], Wang et al. [2], Berezansky et al. [3] a corresponding question arises: How about
the existence and convergence of positive almost periodic solutions of Nicholson-type delay differential systems with linear
harvesting terms. The main purpose of this paper is to give the conditions to ensure the existence and convergence of po-
sitive almost periodic solutions of the following non-autonomous Nicholson-type delay systems with linear harvesting
terms:

Xi(6) = —ou (6 () + Br(E)xa(8) + f} C1j(E)X1 (£ — Tyj(£))e M ey ()
fa
—Hy () (t — 0:(1)), i (1.5)
(1) = —0a(O%(0) + B0 () + 1 eyt - Tyj(0))e )
£

—Hy ()x2(t — 0(1)),
where o;, S, Hi, 64, G, 7ij, Tij : R' — [0,+00) are almost periodic functions, and i=1, 2,j=1, 2,...,m.
For convenience, we introduce some notations. Throughout this paper, given a bounded continuous function g defined on
R', let g* and g~ be defined as
g =infg(t), g =supg(D).
€

teR

It will be assumed that

>0, B >0, ¢; >0, r,-:max{m_ax{‘ciy}.,ai*}>0, i=1,2. (1.6)

1<j<m

o
Denote by R"(R"}) the set of all (nonnegative) real vectors. Let
€ = C([=r1,0L,R") x C([-r2,0,R") and C. = C([-r1,0LR.) x C([-r5,0,RL).

If x{(t) is defined on [to — 17,0) with o, o € R' and i = 1, 2, then we define x, € Cas x, = (x!,x2) where x(0) = x;(t + 0) for all
6 €[-r;,0] and i=1, 2. A matrix or vector A > 0 means that all entries of A are greater than or equal to zero. A> 0 can be
defined similarly. For matrices or vectors A and B, A > B (resp. A> B) means that A— B > 0 (resp. A — B> 0). For vector
X =(x1,X2) € R?, we let |X| denote the absolute-value vector given by |X| = (|x1],|x2|), and define |X|| = max;<;<a|Xi|.

The initial conditions associated with system (1.5) are of the form:

Xo =@, @ =(@1.¢;) €C. and ¢;(0) >0, i=1,2. (1.7)

We write x(to, @ )(x(t; to, )) for a solution of the initial value problem (1.5) and (1.7). Also, let [to,7(¢)) be the maximal right-
interval of existence of x(to, ®).

The remaining part of this paper is organized as follows. In Section 2, we shall give some notations and preliminary
results. In Section 3, we shall derive new sufficient conditions for checking the existence, uniqueness and local exponential
convergence of the positive almost periodic solution of (1.5). In Section 4, we shall give some example and remark to
illustrate our results obtained in the previous sections.

2. Preliminary results

In this section, some lemmas and definitions will be presented, which are of importance in proving our main results in
Section 3.
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Definition 2.1 (See [4,5]). Let u(t):R' — R" be continuous in t. u(t) is said to be almost periodic on R', if for any ¢ > 0, the set
T(u,e) = {:|u(t + &) — u(t)| < & for all t € R'} is relatively dense, i.e., for any ¢ > 0, it is possible to find a real number I = (&) > 0,
such that for any interval with length I(¢), there exists a number ¢ = §(¢) in this interval such that |u(t + &) — u(t)| < ¢, for all
teR

Definition 2.2 (See [4,5]). Let x € R" and Q(t) be a n x n continuous matrix defined on R'. The linear system
X (t) = Q()x(t) (2.1)

is said to admit an exponential dichotomy on R! if there exist positive constants k, o, projection P and the fundamental solu-
tion matrix X(t) of (2.1) satisfying

IX(OPX 7 (s)|| < ke ™ forall t > s,

IX(H)(I = P)X(s)]| < ke ™Y for all t <s.
Set
B = {@|p = (¢,(t), p,(t)) is an almost periodic function on R'}.

For any ¢ € B, we define induced module | ¢||; = sup,q ||@(t)|, then B is a Banach space.

Lemma 2.1 (See [4,5]). If the linear system (2.1) admits an exponential dichotomy, then almost periodic system
X(t) = Q(t)x +g(t) (2.2)

has a unique almost periodic solution x(t), and

X(t) = / t X(6)PX ' (s)g(s)ds — /t X1 — PIX 7 (5)g(s) ds. (2.3)

Lemma 2.2 (See [4,5]). Let c(t) be an almost periodic function on R' and

1 t+T
Mici] = lim — ci(s)ds >0, i=1,2,...,n
T—+00 t
Then the linear system
X(t) = diag (—c1(€),~C(0), ..., —Ca(€))X(1)

admits an exponential dichotomy on R'.

Lemma 2.3. Suppose that there exist two positive constants E;; and E;, such that

+E moocho1 *E moocho1
Ein > Ep, b 2N Sy, b L+ 2~ < En, (24)
% v e % T %V e
BiEn =€y gy, HTEn 1
~F it L S FEp > . , 2.5
o +;o¢ 11€ 'V o > L2 1m,m77fj (2.5)
<j<m
BrEi2 <= Gy gy, HyEx 1
—_— 4 =Epne 3 — == S Ep > ————, (2.6)
o JZ o o min 7y
where i=1,2. Let
C°:={@|p € C,Ep < ¢;(t) < Ey, forall t € [-1;,0], i =1,2}.
Moreover, assume that x(t; to, @) is the solution of (1.5) with ¢ e C°. Then,
Eip < xi(t;to, @) < Eiy, forall t € [to,n(@)), i=1,2 (2.7)

and n(¢@) = +cc.
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Proof. Set x(t) = x(t; to, ) for all t € [to,n()). Let [to,T) C [to,n(¢)) be an interval such that
0<x(t) forall te[ty,T), i=1,2, (2.8)

we claim that

0< Xi(t) < En forall t € [t(),T)7 i= 172 (29)

Assume, by way of contradiction, that (2.9) does not hold. Then, one of the following cases must occur.

Case i: There exists t; € (to, T) such that
X1(t1) =Eq; and O < x;(t) < Ejy forall t € [tp — 13, 1), i=1,2. (2.10)
Case ii: There exists t; € (to,T) such that

Xz(tz) =Ey and 0 < Xi(t) < En forall t € [t() — T,‘,tz), i= 1,2 (211)

If Case i holds, calculating the derivative of x;(t), together with (2.4) and the fact that sup,.ue ™ =1, (1.5) and (2.10)
imply that

0 <X|(t1) = —o1 (E1)X1(E1) + Py (t1)x2(t1) + ZCU (E1)X1 (t1 — Ty(ty))e M E=TE) _ Hy (8% (¢ — 01 (t1))
j=1

< “ 1 /31 E21 “ + l
oc]x](t])+[}1521+z — = —En + 2+ <0,
yl) j=1 OC] /1]

which is a contradiction and implies that (2.9) holds.
If Case ii holds, calculating the derivative of x,(t), together with (2.4) and the fact that sup,.oue™* =1, (1.5) and (2.11)
imply that

m
0 < xy(t2) = —02(t2)X2(t2) + P (t2)x1(t2) + ZCZJ (t2)Xa(ty — Tyj(tz))e 722D — H, (£)%, (t; — 02 (t2))
Jj=1
+ 1 E m C+‘ l
< dzxz(f2)+ﬂ2511+z — =0, Ez1+ﬁ2 H+z 72:7 -] <0,
y2} % j=1 % /Zj e
which is a contradiction and implies that (2.9) holds.
We next show that
Xi(t) > Ep, forall t € (to,n(¢p)), i=1,2. (2.12)

Suppose, for the sake of contradiction, that (2.12) does not hold. Then, one of the following cases must occur.

Case I: There exists t3 € (to,77(¢)) such that
X](t3) :E12 and X,'(t) >E12 forall t € [to—ri,tg), i= 1,2 (213)
Case II: There exists t4 € (to,77(¢)) such that

Xz(t4) =Ey» and X;‘(t) > Ep forall t € [to — 1’,‘71'4)7 i= 172 (214)

If Case I holds. Then, from (2.5), (2.6), (2.9) and (2.13), we get

1
Ep <xi(t) <En, 7§xi(t) = VjEp > pj o > 1, (2.15)
1g)<m)}

for all te€[tg—ruts), i=1, 2, j=1, 2,...,m. Calculating the derivative of x;(t), together with (2.5) and the fact that
min;<,<ue " = ke ", (1.5), (2.13) and (2.15) imply that

0 > X/] (t3) —0 (t3)X](t3) +ﬂ1(t3)X2 t3 +ZCU t3 X1 (t3 — le(t_v,)) ~1j(3)x% (3= T5(03)) H] (t3)X] (t3 01 (t3))
j=1

C
= —o (t3)%1 (t3) + By (t3)Xa(t3) +Z ”+ )yl*jxl(tg — Tyj(t3))e TN EBRE) _H (£3)%:(t3 — 01(t3))

j=1 1Y)
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3)A1(L3 1 ~ _ . ]x1 t (t3) »
(t )X (t )+ﬁ Ex +Z 7 /1]X1(t3 ‘[,'U(t3)) ¥ (3 =T4(3) H*E
j=1 71

1 B E _ HYE
%ma9+m&z+§j LyfEne - Hwn—ul(E +’;”+§j”5e'f“}“>>a
j=1 1] 1 = % 1
which is a contradiction and implies that (2.12) holds.

If Case II holds, we can show that (2.15) holds for all t € [tp — 1, t4),i = 1, 2,j =1, 2,...,m. Calculating the derivative of x,(t),
together with (2.6) and the fact that min;,<,ue " =xe ", (1.5), (2.14) and (2.15) 1mply that

0> X/Z(t‘l) = —O(z(f4)X2(t4) + ﬁz(t4)X1 (t4) + ZCzj(t4)X2(t4 — ‘L'zj(t4)) ~7j(fa)X2 (t4=T55(t4)) Hz(f4)X2(t4 — O'z(t4))
=

(ta),

= —00(t4)X2(ts) + Po(ta)X1(ts) + Z
j=1 2]

73%2 (ta — Toj(ta))e 7282w ) — Hy (t4)%, (tg — 0(ta))

02 (t4)X2(ta) + By Enz +Z 7 Vz;xz(f4—fzj'(f4)) Tl _HiE,,
j=1 12j

—03Xa(ta) + By Ena + Z

E T Cy; Lyt HJE
yZJEZ e )ZJEZI H;EZ] — OC; —Ep +/32 12 +Z —21E21€ /szZI _ B N 07
= 2] o o

2 j=1 72 O(;
which is a contradiction and implies that (2.12) holds.

It follows from (2.9) and (2.12) that (2.7) is true. From Theorem 2.3.1 in [6], we easily obtain #(¢) = +oo. This ends the
proof of Lemma 2.3. O

3. Main results

Theorem 3.1. Let (2.4)-(2.6) hold. Moreover, suppose that

ﬁ{r m CT] m C+ H+
max F+ZaT82+a1, +Z%ez <1, (3.1)

1 j=1

Then, there exists a unique positive almost periodic solution of system (1.5) in the region B* = {¢|¢ € B, Ei» < ¢(t) < Ej;, for all
teRi=1,2}

Proof. For any ¢ € B, we consider an auxiliary system

X (6) = —oa(0)x:1(t) + b1 (H)do () + ZCu( )1 (€ — Tyj(£) ) 7O E=Tu)

=Hi()¢:(t - a1(t)), (3.2)
X%(0) =~ (t)xa(t) + By (0, U+2%U%afwmeW”W>

j
—H;(t) ¢, (t — 02(t)),
Notice that M[o;] > O(i = 1,2), it follows from Lemma 2.2 that the linear system

xy(t) = —on (O)xi (t), (3.3)
X5 (t) = —oa(t)x2(8), .

admits an exponential dichotomy on R. Thus, by Lemma 2.1, we obtain that the system (3.2) has exactly one almost periodic
solution:

X! (t) = (x7 (1), Xz(t))_</ e e du<ﬁ1 )a(s +Zcu )h1(S = Tyj(s ))e"’"f““b‘(””“”H1(5)¢1(501(5)))d5’

1 e du<ﬂz ()i (s +ZC21 )ba(S — Tais ))e""Zj(s)m(sTZ’(S))—HZ(S)Q—I’Z(S—O’Z(S)))dS) 3-4)
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Define a mapping T : B — B by setting
T(4(t)) = x*(t), V¢ €B.

Since B*={¢|¢p € B, Ex, < @{(t) < E, for all t e R, i=1,2}, it is easy to see that B* is a closed subset of B. For any ¢ € B,
from (2.4) and (3.4) and the fact that sup,_,ue™ =1, we have

t ot m 1 t o m 1
x°(t) < / e Jymwd | prp 4 cii(s ds,/ e Jorwdul prp 4 C2i(s) | ds
® < oo Pika Z Vu(s)e () o FaEn Z Vz;‘(s)e (5)

BiEax &~ S BiEn N 1
< — + — =+ —— < (E“,Ez]), forallteR". (35)
( o4 ; O Ye % J; %y Vo€

In view of the fact that min;,,ue " = ke, from (2.5), (2.6) and (3.4), we obtain

- "oy (wydu — < 1 —y Ty (s—Ty(s
xX0(t) = ( / e Jomwa (/ﬂEzz+Zc1j(s>y—+vrj¢1<s—ru<s)>e it “”)—H1(5)¢1(S—01(S))>d57
—o0 j=1

1j

ot : m
/ efs“2‘””’”(ﬁzElﬁZCzj(s)yﬂv;j¢z<s—r2f<s>> Ty H2(5)¢z(5—02(5)))d5>

> ﬁl—£22+i 1]E e V1E”_H EH fracﬁ E]zOC +Z ZJE 1€ 1E21—% >(E]2 Ezz) forallteR]. (36)
of o 2 2 o o el

This implies that the mapping T is a self-mapping from B* to B*. Now, we prove that the mapping T is a contraction mapping
on B*. In fact, for ¢, € B*, we get

(SUD I(T(@)(€) = T(¥)(6))11, sup [(T(ep)(t) — T(l//)(f))zl) = <SUD| e L g (5)(, (5) — v (s))

teR teR teR —
+ Z C]j qo] S — TU (s))e’?u(s)‘/’l(s’ﬁj(”)
—1/11(5 = Tyj($))e TN — Hy (5)(p (5 - 01(S))

“nls = ar©)dsl.sup| [ e )1 (5) v (5)
+ Z CZ] (pz S — Ty (s))e*}'zj(5)¢z(3*72j(5))

*‘//2 (s = Tyi(s))e 7267 — Hy (5) (4 (s — 02(S))
—Ya(s — 02(s))))ds])

- <5“p| e [ g ()0 (5) — v (5))

teR —00

T Co(s —72i ()P (S—T2i(s
() + ]:Zl /28 (7i(8) 2 (S — Taj(s))e 75)P2(6- ()
—72i(S) (S — Taj(5))e A2 ) — Hy (5)(py (s — 02(5))
—,(s — 02(5))))ds]). 3.7)
In view of (1.5), (2.5), (2.6), (3.5), (3.6) and (3.7), from sup,.,|'5%| = % and the inequality
[xe™ —ye™| = % X -yl < e—z\x—y| where x,y € [1,+), 0<0<1, (3.8)

we have
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(Stulg [(T(@)(&) = TW)(E)l, sup [(T(@)(t) = T(¥)(1)),1)
€ €
1 o fmmauy o 1 Hy By
< (Bho—vlp+sup [ e b O% e 51,5 = wy(s) = (s = Ty(s)lds + 110 ~ Wl [0 = bl
1 teR —oo j=1 1 2

! — roczu u = 1 H
+sup [ e Jomwd Zczj—zkpz(s—rzj(s))fwz(s—rm( )lds + 2 H<P wnB)

teR J-co

(( +i;‘;+ )w wng,( ngﬁ >||<p w|3> (3.9)

Hence

+ H+ m Hr
IT(@) — TW)ls < max{"” +Z ol ﬁz D CZ} +—22}|<p—¢3-

2
oy ape “1 =

Noting that

+ m C+ H+ C+ H+
max{ﬁ +Z +— ﬁ—2+ 2+—}<1,
o oy e? o 7 %

it is clear that the mapping T is a contraction on B*. Using Theorem 0.3.1 of [7], we obtain that the mapping T possesses a
unique fixed point ¢@* € B*, Tp* = ¢*. By (3.2), ¢* satisfies (1.5). So ¢™ is an almost periodic solution of (1.5) in B*. The proof
of Theorem 3.1 is now complete. [

Theorem 3.2. Let x*(t) be the positive almost periodic solution of Eq. (1.5) in the region B*. Suppose that (2.4)-(2.6) and (3.1)
hold. Then, the solution x(t;ty, @) of (1.5) with ¢ < C° converges exponentially to x*(t) as t — +oc.

Proof. Set x(t) = x(t; to, ) and y;(t) = x;(t) — x; (t), where t € [ty — 1;, +o0), i =1, 2. Then

Yi(t) = —ou(6)y; () + Br ()2 (t) + X i (6) (X1 (¢ — Ty;(£))e PO y®)
j=
=it =) ) — Hy (0 (= 01(0) (3.10)
Yo(t) = =0 (0)y,(t) + By (t)yq (t) + ZCZJ( ) (X2 (£ — Tyy())e 2T O)
j=1
—X5(t = Ty(t) )e RO — Hy (t)y, (t — 02(1)),
Set
i(u) = —(o —u) + B -&—E:C*—e”r'-i-H+ i uel0,1], i=1,2. (3.11)
Clearly, I'(u), i=1, 2, are continuous functions on [0,1]. In view of (3.1), we obtain
Ii(0) = —o; + B; +Zc;—2+H+ <0, i=1,2,
we can choose two constants 7 >0 and 2 € (0,1] such that
ri(2)=(-o +/3*+Zc,j g€ H e < <0, i=12. (3.12)

We consider the Lyapunov functional

Vi(t) = yi(t)le”,  Va(t) =y, (t)e”. (3.13)
Calculating the upper right derivative of Vj(t)(i=1,2) along the solution y(t) of (3.10), we have

m
DY (Vi(6)) < —ou(D)lys ()|e” + Br(O)lya(E)]e* + D cyj(t)xa (¢ — Tyj(£))e 7wl
=1
— X (£ — Ty(0))e TR - Hy (6)lyy (¢ — 01(0))]e” + Zly, (£)]e*

= | (A= ()1 (O] + B (O (O] + Z Crj() | (£ — Tj(t) )e M ETy(0)
j=1
—X; (t — Ty(t))e OO L Hy(6)]y, (t — o (t))[]e”, forall t > to, (3.14)
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and
D* (Va(t)) < —oa(b) |y, ()|e* + By () |y, (E)le” + Z Coj (E) %2 (£ — T1(£)) e 72 P2t
— X3(t — Tyy(t))e TR et Hz( )2 (t = aa(t)) € + Ay, (£)]e”

= (2= 0a(O) ()] + By (O)] + Z Coj(0)[x2(£ — Ty (0)) TP m )
=1
—X5(t — Ty(t))e RO L Hy(6)]y, (t — oa(t))[]e”, for all t > to.
Let maxi_ 2 {e*0(maXcyr, 1| @;(t) — X; (t)| + 1)} := M. We claim that
Vi(t) = ly;(t)]e* <M forall t >ty, i=1,2.

Otherwise, one of the following cases must occur.

Case 1: There exists T; > to such that

Vi(T1) =M and Vi(t) <M forallte|to—r1;,Ty), i=1,2.
Case 2: There exists T, > ty such that

Vo(T;) =M and Vi(t) <M foralltefto—r,T), i=1,2.

If Case 1 holds, together with (2.7), (3.8) and (3.14), (3.17) implies that

0 < D*(Vy(Ty) = M) = D" (V1 (T1)) < [(4 = oa(T)lys (T1)| + By (Ta)y2(Th)|

+ZCU (T1) %1 (Ty = Tyj(Ty))e M=) — X (Ty — 14;(T))e T N=m@| 4 Hy (Ty) |y (Ty — 04(Th))| e

j=1

T ci(T e (TOX(Tr 11
= [ T T+ BT+ 3 SR T (T = 2y (Tpe- ot
=1

’)) .
=1 (T0x; (Ty = Ty(Ty))e T Csi] 4 Hy (T |y, (Ty — 01(T1))\]€ZT1

m
A . 1 . .
< (2= o (T0))[y1 (T1) [ + By (T1) o (To) e + ZCU(Tl)e—Z V1(Th = Tj(T1)) X muT ) e

+H1(T1) 1 (T1 — 01(Ty)) eHT=orTeran @ < (G — o) + B + Zc* —e/’l + Hl*e”l} M.
Thus,
0< ()v — ch) +B1 + ZCT]e_zem +Hie",
j=1

which contradicts with (3.12). Hence, (3.16) holds.
If Case 2 holds, together with (2.7), (3.8) and (3.15), (3.18) implies that

0 < D*(V(T2) = M) = D" (V2(T2)) < [(4 = 02(T2) Y (T2)| + Ba(T2)ly1 (T2)]

m
+ Z 2 (T2)|%2(T2 — sz(Tz))e*"/'zj(TZ)XZ(TZ*TZJ’(T2)) —x3(T, — sz(]-z))ef“/z,-(Tz)X*(Tszzj(Tz))| + Hy(T3) |y, (T2

j=1

= |t T ATl 4 BT T+ 30 S aTapealT — T s )
j=1

V2
—75i(T2)X5 (T — Toj(T))e 74Tl | 4 Hy (Ty) |y, (T — 0'2(T2))|}€”4'T2

m
A . 1 A A
< (2= 0a(To))y2(T2) €™ + Bo(To) vy (T2) | + €j(T2) 5 2(T2 — Toi(T,)) /T2 T2 ey (T2)
=

+H2(T2)|y2(T2 — 02(Tz))|e)'(T27J2<T2))eL02(T2) < (; — O(i) + [32 ZCZJ o2 e + I‘IJr /r2:| M.
j=1

Thus,

—03(T2))l |e

(3.15)

(3.16)

(3.17)

(3.18)

T

(3.19)

T,

(3.20)
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m
1, )
0< (Z—OCE) -I—,B;-‘r E C;je_zeﬂfz _|_H£re/~r27
j=1

which contradicts with (3.12). Hence, (3.16) holds. It follows that
ly;(t)] < Me™ forall t>t, i=1,2. (3.21)

This completes the proof. O
4. Example and remark
In this section, we give an example to demonstrate the results obtained in previous sections.
Example 4.1. Consider the following Nicholson-type delay system with linear harvesting terms:
X(t) = —(18+cos? t)x(t) + (0.00001 +0.000005 sin t) 3%, (1)
+ €195+ 0.005] sin V2t )x (£ — esinee (),

+ ee-1 (95 + 0005| sin \/§t|)x1 (f _ g2lcos ﬁt\)e—)ﬁ (t—ezmsﬁr\)

— (0.000001 cos? t)e3x (r _ plcos m)

(4.1)
Xt = — <18 +sin? t)xz(t) +(0.00001 + 0.000005 cos? t)e*3x ()
1 oee1 (9.5 + 0.005] cos \/§t|>x2 (t— ez\cosn)em(uez o).
+ ee-1 (95 n 0005| sin \/€t|>X2 (t _ p2lcos ﬁt\)e—xZ (t—eZ\cos ﬁr\)
~ (0.000001 cos* t)ee2xy (£ — €21 3),
Obviously, o =18, of =19, yf =y; =1, =0.00001e*3, g =0.000015¢°, ¢; = 9.5¢*”", ¢ =9.505e*"", H =
0.000001e¢3, r; = max {maxlggm{rgi, a,.*} =e?,
- 2 761 e + e-3 _ e-2
Z _Hje 19 +0.00001e 0.000001e o1, 42)
1 —1 i i 19
+ 2. ¢t te 2. ch e-2 e—2
ﬁlif‘+ —Z— 1:/317 Ziji 0.000015e¢ = + 19.01e ce 3)
L e R . 18
and
Bi <~ Hi 5 L Hi| _0.000016e* 2 +19.01e*?
max{ +Za1e2+ +Z 0(262 o[ 18e <1 (4.4)

where i, j=1, 2. Let E;; =e and Ej; =1 for i = 1, 2. Then, (4.2)-(4.4) imply that the Nicholson-type delay differential system
(4.1) satisfies (2.4)-(2.6) and (3.1). Hence, from Theorems 3.1 and 3.2, system (4.1) has a positive almost periodic solution

x(t)eB ={p|lp €B,1 < @;(t)<e, forall teR, i=1,2}.

Moreover, if ¢ € (°={p|p e C, 1< @{t)<e, for all te[—e?0], i=1,2}, then x(t;t,, @) converges exponentially to x*(t) as
t — +oo.

Remark 4.1. To the best of our knowledge, few authors have considered the problems of positive almost periodic solution of
Nicholson-type delay system with linear harvesting terms. Therefore, all the results in [1-3,8] and the references therein
cannot be applicable to prove that all the solutions of (4.1) with initial value ¢ € C° converge exponentially to the positive
almost periodic solution. Moreover, if H(t) = Hp(t) = 0, we can find that the main results of [2] are special ones of Theorems
3.2 with E;; =e and Ej; = 1 for i =1, 2. This implies that the results of this paper are new and they complement previously
known results.
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