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1. INTRODUCTION AND PRELIMINARIES 

1.1. Introduction 

Let R and S be associative rings with identity, and R-Mod, Mod-R, 
S-Mod, and Mod-S denote respectively the categories of unital left R-, 
right R-, left S-, and right S-modules. M consistently denotes, unless 
otherwise specified, a left R-module and N a left S-module. 

Let tRUSy s R V ; Z, J) be a Morita context with the trace ideals Z and J, 
L(R) the lattice of all the Gabriel topologies on R-Mod containing the 
trace ideal Z, and L(S) the lattice of all Gabriel topologies on S-Mod 
containing the trace ideal .Z. 

In 1980, A. I. KaSu [3, Theorem l] proved that 

THEOREM A. Between L(R) and L(S), there exists a lattice isomorphism 

H: L(R) 3 z t-+ H(z) = z’ E L(S). 

From now on, we write (r, r’) E (L(R), L(S)) for this case. In the process 
of the proof, he also got the following key and significant result 
[ 3, Lemma 91. 

THEOREM B. (1) Zf A4 is z,-free and injective in R-Mod, then 
Hom,( U, M) is also injective in S-Mod, and 

(2) if N is r,-free and injective in S-Mod, then Hom,( V, N) is also 
injective in R-Mod, 

where z,, tJ denote respectively the Gabriel topologies determined by Z and J 
(4 C21). 
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In Section 2 of this paper, a more general result is obtained, which can 
be regarded as a generalization of Theorem B and is stated as follows: 

THEOREM 2.8. Let (z,,?,), (~,,z;)E (L(R),L(S)). 

(1) I f  M is t,$ee, then Hom,(U, E,,(M))gE,;(Hom,(U, M)) and 
is r;-free, and 

(2) tf  N is t’,-free, then Hom,(L’, E,,(N)) ~E~,(Horn,( V, N)) and is 
T ,-free, 

where E,,(M), E,,(Hom,( V, N)) denote the r,-injective envelopes of M, 
Hom,( V, N), resp., and E,;(N), E,;(Hom,( U, M)) the z;-injective envelopes 
of N, Hom,( U, M), resp. 

In 1974, B. J. Miiller proved the following result, which generalized the 
well-known Morita Theorem [2, Theorem 31: 

THEOREM C. The functors Hom.( U, -) and Hom,( V, -) induce an 
equivalence between categories 

where T,L and .,L denote respectively the quotient categories with respect to 
5, and TV. 

Also in Section 2, this result is utilized and extended (see 2.5 and 2.6). 
See T. Kato [ 1 ] for the original versions of Theorems B and C. 
In 1979, T. Kato and K. Ohtake got a dual version of Theorem C 

[4, Theorem 2.51: 

THEOREM D. The jiinctors - OR U and - as V induce a category 
equivalence 

K, = K,, 

where K, = {C 1 C E Mod-R, C OR I g C, canonically}, K, = {D I D E Mod-S, 
SOS J E D canonically}. 

In Section 3, first the author succeeds in defining a new concept of a dual 
full subcategory K, in Mod-R of ,L, proving that it is just a generalization 
of the concept of K, and K,. Then the following fact, which generalizes 
Theorem D, is obtained. 

THEOREM 3.11. Let 

K [r,,q] = {CR I c is r,-divisible and tz-flat}, 

4 ri,r;l = {D, 1 D is z;-divisible and &-at}; 
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then the functors - Q R U, - OS V induce an equivalence 

K, r1.rzl - - ~,~;%~;I 

for any (z,, 6 1, (z,, ~2 E CUR), US)). 

1.2. Preliminaries 

We introduce some concepts, definitions, and necessary knowledge for 
this paper as follows. 

DEFINITION 1.1. Let R U,, S R V be bimodules. A Motita context is a set 
(RUSY s V,; Z, J) with the following conditions: 

(1) There exist bimodule homomorphisms (called pairings) 

(-, -): Ugs V+ R, 

[-, -1: VOR u+ s, 

with the image of (-, -) being the ideal I and that of [-, -1 the ideal J. 

(2) For all u, U’E U, v, V’E V, (u, v)u’=u[u, u’], [u, u]v’=v(u, o’) 
hold. I and J are called the trace ideals of the context. 

DEFINITION 1.2. A nonempty set t of left ideals of R is called a Gabriel 
topology on R if it satisfies conditions Tl, T2, T3, and T4 (for details, 
cf. [S]). 

DEFINITION 1.3. A hereditary torsion theory on R-Mod is a pair (T, F) 
of classes of modules of R-Mod with the following conditions: 

(1) T is closed under submodules, quotient modules, direct sums, 
and extensions. 

(2) F = (J’ FE R-Mod, Hom,( T, F) = 0, for all TE T}. 

PROPOSITION 1.4. There is a bijective correspondence between Gabriel 
topologies on R and hereditary torsion theories on R-Mod given by 

t t-+ (T,, F,), CT, F 1 I-+ ~(T,F), 

where F,= (FIFE R-Mod, Hom,(R/a, F) =0 for all air}, and T,= 
{TITER-Mod; VtETkEt, at=O}, z~~,~)=(cY(R/uET). 

By the correspondence, we consistently write r = (T, F) or z = (T,, F,) 
for both z and the corresponding hereditary torsion theory (T, F). 

PROPOSITION 1.5. If (T, F) is a hereditary torsion theory, then F is closed 
under submodules, direct products, extensions, and injective envelopes. 
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PROPOSITION 1.6. A pair (T, F) of classes of modules of R-Mod is a 
hereditary torsion theory if and only if it can be cogenerated by an injective 
module E; i.e., T= {T(Hom,(T, E)=O}, F= {FlFqnE}. 

DEFINITION 1.7. (1) M is said to be r-torsion if ME T,, 

(2) M is said to be r-free if ME F,, 

(3) M is said to be r-injective if Hom,(R, M) + Hom,(a, M) + 0 is 
exact under the canonical homomorphism for all a E t, 

(4) M is said to be r-closed if it is both r-free and z-injective. 

PROPOSITION 1.8. For any ME R-Mod, there is a largest submodule 
T,(M) of M such that T,(M)gT,, and M/T,(M)gF,. 

PROPOSITION 1.9. (1) For any ME R-Mod, we can get a z-closed 
module t(M), called the module of quotient of M, and also it can be 
considered as a ?( R)-module. 

(2) There is a natural R-homomorphism @,,,: M + z(M) with 
ker QM = T,(M), Cok QM E T,, and M is z-closed if and only if GM is an 
isomorphism. 

(3) The full subcategory ,L of all z-closed modules is called the 
quotient category with respect to z, and it also can be considered as a full 
subcategory of Z( R)-Mod. 

(4) For any ME R-Mod, z(M) = Z(M/T,(M)). 

DEFINITION 1.10. (1) t(M) = {M’) M’ is a submodule of M, and 
M/M’ is r-torsion}. 

(2) A r-injective envelope of M is an essential monomorphism 
M + M, such that M, is r-injective and ME z(M,); from now on, the 
r-injective envelope of M is denoted by E,(M). 

PROPOSITION 1.11. (1) Zf M is r-free, then E,(M) g 5(M). 

(2) E,(M) can be considered as a submodule of E(M), the injective 
envelope of M, and E,( M)/M = T,( E( M)/M). 

2. EQUIVALENCE OF QUOTIENT CATEC~RIES 

In Theorem A, the lattice isomorphism H is defined as follows: If z = zE, 
then H: r = rEw rHomRtU,E, = r’, where rE denotes the Gabriel topology 
cogenerated by the injective module E, and rHomR(U,E) by the injective 
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module Hom,( U, E). H -’ is defined similarly by the symmetry of a 
Morita context. 

Now we start our main work of this section with the following useful 
lemmas. 

LEMMA 2.1. Let (T, z’) E (L(R), L(S)); then 

(1) a left ideal b of SE z’ if and only if U’b E t( R U) for any 
U’ E z( R U), and 

(2) a left ideal a of R E z if and only V’a E T’( s V) for any V’ E z’( s V). 

Proof: (1) b E z’ if and only if S/b is T’-torsion, i.e., Hom,(S/b, 
Hom,( U, E,)) = 0 by Theorem B, where E, denotes an injective R-module 
cogenerating z. But E, E ,L, U’SE z(~ U), Hom,(S/b, Hom,( U, E,)) g 
Hom,(S/b,Hom,(U’S,E,))~Hom.(U’SO,S/b,E,)rHom,(U’S/U’S6,E,) 
= Hom,( U’S/U’b, E,). 

Hence Hom,(S/b, Hom,(U, E,)) = 0 o Hom,( U’S/U’b, E,) = 0 o 
U’b E z( R U’S) o U’b E z( R U) since U’S E z( R U). 

(2) By the symmetry of a Morita context. 

LEMMA 2.2. Let (t, 7’) E (L(R), L(S)); then 

(1) if M is r-free, then Hom,( U, M) is z/-free, and 

(2) if N is Y-free, then Hom,( V, N) is r-free. 

Proof: (1) For any b E T’, Hom.(S/b, Hom,( U, M)) g 
Hom,( U/Ub, M), but M is z-free and Ub E T(~U) by Lemma 2.1, hence 
0 = Hom,( U/Ub, M) g Hom,(S/b, Hom,( U, M)); i.e., Hom,(U, M) is 
T/-free. 

(2) By the symmetry. 

We also need to note the fact that zI(zJ) is the least element in 
L(R)(L(S)) and z~= {ala is a left ideal of R) (?= {b/b is a left ideal of 
S}) is the greatest element in L(R)(L(S)), so if A4 is z-free (or r-injective) 
for some 5 E L(R), then M is z,-free (r,-injective); if N is ?-free (r’-injective) 
for some z’ E L(S), then N is r,-free (z,-injective). 

Now, we prove the generalization of Theorem B and Theorem C. 

THEOREM 2.3. Let (tl, T;), (tZ, T.;)E (L(R), L(S)). 

(1) If M is T,-free and r,-injective, then Hom,( U, M) is r;-free and 
z;-injective. 

(2) If N is s’,-free and T;-injective, then Hom,( V, N) is z,-free and 
z,-injective. 
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Proof. By Lemma 2.2 and the symmetry, it suffices to prove that 
Hom,( U, M) is r;-injective. 

Let f be an S-homomorphism from b to Hom,( U, M), where b E r;. 
From f, we can get an R-homomorphism G’ from Uh to M, defined by 
G’(ub) =f(b)(u), where ub E Ub. 

G’ is clearly R-linear, and also G’ is well-defined, for if ub = 0, 
then (u’, u’) G’(ub) = G’((u’, u’) ub) = f(b)((u’, u’)u) = f(b)(u’[u’, u]) = 
([u’, u]f(b))(u’)=f([u’, u]b)(u’)=f([u’, ub])(u’)=O, where U’E U, UE I’, 
i.e., ZG’(ub) = 0, but RM is z,-free, hence r,-free, so G’(ub) = 0. 

On the other hand, b or;, so Ub~r,(,u) by Lemma 2.1, and since M 
is z,-injective, G’ can be extended to an R-homomorphism G from U to M. 

Now define an S-homomorphism g from S to Hom,(U, M) by st-+sG 
for any s E S; then g is a desired extension off: 

COROLLARY 2.4. Let z1 =zI, z2 = zR; then z’, = TV, ~b = ?. From the 
theorem above, we get Theorem B again. 

In particular, if I= R, J= S, then any R-module R M is z,-free and any 
S-module ,N is r,-free, and the result is just the well-known fact that the 
equivalence between module categories preserves the property of injectivity 
of a module. 

Combining Theorem 2.3 with Theorem C, we have the following 
Corollary 2.5 and Theorem 2.6. 

COROLLARY 2.5. Let z, = 22 = z, then we get: The finctors Hom,( U, -), 
and Hom,( V, -) induce an equivalence: 

for any (T,T’) E (L(R), L(S)). 

See T. Kato [ 1, Theorem 21 for the original version of Corollary 2.5. 
In particular, take z = r,; then z’ = zJ. This is just Theorem C. More 

generally, we have: 

THEOREM 2.6. Let 

c~~,~~IL= {RMIM is ~~-free and z,-injectiue}, 

c+r;,L= {&IN is t;-free and z;-injectiue}; 

then the functors Hom,( U, -), HomJ V, -) induce an equivalence 

Cr,.dL = cr;,T;lL 
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In [3], A. I. KaSu has also proved the following lemma (cf. T. Kato [l, 
Lemma 51 for the original version). 

LEMMA 2.7. (1) If A4 is tl-free, and e: M -+ M, is an essential 
monomorphism, then so is Hom,J U, e): Hom,( U, M) + Hom,( U, M,). 

(2) If N is T,-free, and e’: N + N1 is an essential monomorphism, then 
so is Hom,( I’, e’): Hom,( V, N) --) Hom,( V, N,). 

By the lemma above, Theorem A is equivalent to the following: 

(1) If M is t,-free, E(M) is the injective envelope of RM, then 

Hom,( U, E(M)) E E(Hom,( U, M)), 

where the latter is the injective envelope of Hom,(U, M) in S-Mod. 

(2) If N is z,-free, E(N) is the injective envelope of .YN; then 

Hom,( I’, E(N)) g E(Hom,( I’, N)), 

where the latter is the injective envelope of Hom,( V, N) in R-Mod. But we 
claim that the following more general fact is also true. 

THEOREM 2.8. For any (z,, z;), (z,, 7;)~ (L(R), L(S)), 

(1) if M is tl-free, then Hom,( U, E,,(M)) z E,;(Hom,( U, M)), and 

(2) if N is z;-free, then Hom,( V, E,;(N)) zEJHom,( V, N)), where 
E,,, E,; denote the z,-injective, +injective envelopes, resp. 

First of all, we prove the following useful lemmas. 

LEMMA 2.9. Let (z, 7’) E (L(R), L(S)); then 

(1) if U’ is a submodule of RU, then U’ E z(~ U) o 
[V, U’] E T’ = z’(S), and 

(2) if V’ is a submodule of sV, then V’ES’(~V)~(U, V’)EZ=T(R). 

Proo$ (1) [V, U’] E 5'0 S/c V, U’] is r/-torsion o Hom,(S/[ I’, U’], 
Hom,( U, E,)) = 0 o Hom,(U/U[ V, U’], E,) = Hom,JU/IU’, E,) = 0 
(U[V, U’] = (U, V) U’=ZU’)oZU’Ez(U)o U’EZ(U) since IVET 
for any T E L(R), where E, denotes the injective R-module cogenerating T. 

(2) By the symmetry. 

LEMMA 2.10. For any (T, T')E (L(R), L(S)), 

(1) ifM~z(M~), then Hom,(U, M)Et’(Hom,(U,M,)), and 

(2) if NE z’(N,), then Hom,( V, N)E r(Hom,( I’, N,)). 
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Proof. (1) Hom,( U, M) is clearly a submodule of Hom,( U, M,). Let 
fEHom,(U, M,), f-‘(M)= U’; then Zf(U’)=f(ZU’)=f((U, I’) U’)= 
f(U [V, U’])=([V, U’]f)(U)cM, i.e., [V, U’]fcHom,(U, M). But 
M,/M is r-torsion, so U/U’ is r-torsion, and by Lemma 2.9, [I’, U’] E z’, 
i.e., Hom,( U, M,)/Hom,( U, M) is ?-torsion, and hence Hom,( U, M) E 
z’(Hom,(U Ml)). 

(2) By the symmetry. 

Proof of Theorem 2.8. (1) M is essential in E,,(M), so Hom,( U, M) 
is essential in Hom,( U, E,,(M)) by Lemma 2.7. A4 is r,-free, and E(M) and 
E,,(M), as submodules of E(M), are also r ,-free. Therefore, by Theorem 2.3 
and Lemma 2.10, Hom,( U, E,,(M)) is r;-injective and Hom,( U, M) E 
r;(Hom,( U, E,,(M))). So Hom,( U, E,,(M)) E E,;(Hom,( U, M)) by the 
definition. 

(2) By the symmetry. 

If M is r,-free, then t*(M) z E,,(M) and Hom,( U, M) is also r;-free, 
and’ hence E,;(Hom,( U, 44)) s t;(Hom,( U, M)), so we have 

COROLLARY 2.11. For any (z, r’) E (L(R), L(S)), 

(1) if M is r-free, then Hom,( U, f(M)) E ?(Hom,( U, M)), and 

(2) if N is T’-free, then Hom,( I’, t’(N)) 2 f(Hom,( V, N)). 

3. DUALITY OF QUOTIENT CATEGORY 

In this section, from any quotient category ,L on R-Mod, we define its 
dual, which is a full subcategory K, on Mod-R, and it is proved that if 
(r, r’) E (L(R), L(S)), then the functors - OR U, and - OS V induce an 
equivalence between K, and K,,, which generalizes the work of T. Kato and 
K. Ohtake in [4]. 

We recall that for any Gabriel topology r on R-Mod, the corresponding 
quotient category is 

.L = ( RMI A4 is both r-free and r-injective}. 

By forming a “Horn-Tensor” dual contrast to the ,L, we can define the 
following: 

DEFINITION 3.1 [S]. A CE Mod-R is said to be t-divisble if 
CQR R/a = 0, i.e., C = Ca for any a E t. 
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DEFINITION 3.2. A CE Mod-R is said to be r-flat if CQR f is a 
monomorphism for any f E r-Mon, where 

r-Mon = {f 1 f is a monomorphism in R-Mod, and Cok f is z-torsion}. 

DEFINITION 3.3. K, = {M, 1 M is both r-divisible and r-flat} is called 
the dual full subcategory of ,L in Mod-R. 

About the three concepts above, we have the following facts. 

LEMMA 3.4. The following conditions on a bimodule sC, are equivalent: 

(1) C, is z-divisible. 

(2) -For any f ET-Monl,, C@,f is an epimorphism, where r-Mon(, = 
(f ) f is an injection from a to the ring R, a E r}. 

(3) C@,M=Ofor any MET,. 

(4) For any f E t-Mon, COR f is an epimorphism. 

(5) For any NE Mod-S, NO, C is T-divisible. 

(6) For any NE S-Mod, Hom,( C, N) E F,. 

(7) Hom,(C, E) E F,, where E is an injective cogenerator of S-Mod. 

Proof We only prove that (1) o (7) and omit the others. If E is an 
injective cogenerator of S-Mod, then for any a E r, COR Rja = 00 
Hom,(C@, R/a, E)=OoHom,JR/a, Hom.(C, E))=OoHom,(C, E)EF,. 

LEMMA 3.5. The following conditions on a bimodule ,C, are equivalent: 

(1) C, is .r-flat. 

(2) For any f Ez-Monl., C@,f is a monomorphism. 

(3) Hom,(C, E) is z-injective, where E denotes an injective cogener- 
ator of S-Mod. 

Proof: ( 1) * (2) obviously. 

(2)*(3) IfO-+C@,a+C@,R+C@,R/a-+O is exact for aEr, 
then O+Hom,(C@, R/a, E)-+Hom,(C@, R, E)+Hom,(C@, a, E)+O 
is also exact, i.e., O+Hom,(R/a, Hom,(C, E))+Hom,(R, Hom,(C, E))+ 
Hom,(a, Hom,(C, E)) + 0 is exact. Hence Hom,(C, E) is r-injective. 

(3) j (1) If Hom,(C, E) is r-injective, then by the generalized Bear 
criterion, for any f E r-Mon, from an exact sequence 0 + M’ L M + 
Cok f --t 0, we get another exact sequence 0 + Hom,(Cokf, Homs(C, E)) 
+ Hom,(M, Homs(C, E)) + Hom,(M’, Hom,(C, E)) -+ 0, i.e., 0 + 
Hom,(C@. Cokf, E) -+ Hom,(C@, M, E) -+ Hom,(C@, M’, E) -+ 0, so 
we have O+C@RM’+C@RM+C@RCokf +Oexact, i.e., C, is r-flat. 
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LEMMA 3.6. The following conditions on a bimodule .CR are equivalent: 

(1) C,EK,. 
(2) COR f is an isomorphism for any f E r-Mon. 
(3) C z C @ R a canonically for any Q E 7. 

(4) For any NEMod-S, N@, CEK,. 

(5) For any NE S-Mod, Hom,(C, N) E .L. 

(6) Hom,(C, E) E: .L, where E is an injective cogenerator of S-Mod. 

Proof From Lemmas 3.4 and 3.5, we can easily get all the results 
above. 

Now we start to prove that K,= K,,, K,= KIJ. 

LEMMA 3.7. 

x,L = { RM( Hom,(l, M) z M canonically}, 

.,L = { ,N( Hom,(J, N) z N canonically}. 

Proof See [2]. 

LEMMA 3.8. K,= K,,, KJ=K,, 

Proof Obviously, K,,c K, from Lemma 3.6(3). If CE K,, then C@, I 
E C canonically, and therefore Hom,( COR 1, W) E Hom,(C, IV), where 
W is an injective cogenerator of Z-Mod. Hence Hom,(Z, Hom,(C, W)) r 
Hom,(C, W) canonically. This means Hom,(C, W) E r,L by Lemma 3.7 
and C E K,, by Lemma 3.6 (6). 

Now we are able to show our main result in this section. 

THEOREM 3.9. Let (z,, 7;), (tZ, 7;)~ (L(R), L(S)); then 

(1) if C is 7,-divisible and z&at, then COR U is 7;-divisible and 
7;-flat, and 

(2) tf D is 7;-divisible and 7;-flat, then DOS V is 7,-divisible and 
7,-flat. 

Proof. (1) If C is r,-divisible, then Hom,(C, W) is r,-free, and if C is 
z,-flat, then Hom,(C, W) is r,-injective, and by Theorem 2.3, Hom,( U, 
Hom,(C, W)) is r;-free and r;-injective, i.e., Hom,(CO, U, W) is z;-free 
and r;-injective. Hence COR U is T’,-divisible and z;-flat. 

(2) By the symmetry. 
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THEOREM 3.10. Let (t, 7’) E (L(R), L(S)); then the functors - OR U, 
- OS V induce an equivalence 

K, N K,,. 

Proof: Let r = z,; then z’ = tJ. Define 

&(-O,U@,V)‘l 
> 

=Cci(ui, ui), 

where~c,QuiOviEC@U@Vand 

$:(-@SvoRU)‘l CdiOviOui =CdiCvt,uil, 
> 

where Cdi@vi@u,~D@V@U. 
These are both natural transformations. It suffices to show that $= is an 

isomorphism if C E K,, and $D is an isomorphism if D E K,, since for any 
(z, r’) E (L(R), L(S)), - @ U: K, + K,,, - 0 V: K,, + K, by Theorem 3.9. 
By the symmetry, however, we only need to prove the former. 

Now C E K,, = Hom,( C, IV) E .,L o Hom,(C, IV) z Hom,(U@, V, 
Hom,(C, IV))r Hom=(C@, U@, V, W) = Cz COR UOs V by 4,. 

Finally, for any other (2, 7’) E (L(R), L(S)), since K, c KT, and K,, E K,, 
the equivalence is obtained immediately from Theorem 3.9. 

Thus we get again T. Kato and K. Ohtake’s result and more in a 
different way. 

However, this can also be proved by combining Theorem 3.9 and their 
Theorem D. 

THEOREM 3.11. Let 

K Cr,,rz, = (C, 1 C is z,-divisible and z,-$‘at}, 

K, Ti,Ti, = {D,] D is t;-divisible and&-flat}; 

then the functors - OR U, - OS V induce an equivalence 

K, r13r21 - - Kb;.T;l 

for w (t,,G), (T2, 4) E W(R), US)). 
We know that if T > ti, then r,L 1 TL. About K, we know it is unlikely 

that K, = K,,. Besides, we have 

THEOREM 3.12. If each a E T is finitely generated projective and T > T, , 
then K,,I K,. 
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First we need to prove the following 

LEMMA 3.13. Zf each a E z is finitely generated projective, R M, E T L, then 
for any NE Mod-S, Hom,(M, N) E K,. 

Proof: If aET‘, then a is finitely generated projective. Hence 
Hom,(M, N) OR a z Hom,(Hom,(a, M), N) (cf. [6]) r Hom,(M, A’), i.e., 
Hom,(M, N) E K,. 

Proof of Theorem 3.12. Zf T > zl, then we can get an E,, q! ,L, 
where E,, is an injective module cogenerating zl. By Lemma 3.13, 
HomAE,, , W E K,, , where W is an injective cogenerator of Mod-Z. 
We claim that Homz(E,,, W) $ K,. If Homz(E,,, W) E K,, then 
Hom,(Hom,(a, E,,), W) g Hom,(E,,, W)@, a g Hom,(E,,, W) for any 
a E T. So we get Hom,(Hom,(a, E,,), W) g Homz(E,,, W) = Hom,(a, E,,) 
g E,, for any a E z, i.e., E,, E ,L, contradicting E,, 4 ,L. 
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