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1. INTRODUCTION AND PRELIMINARIES

1.1. Introduction

Let R and S be associative rings with identity, and R-Mod, Mod-R,
S-Mod, and Mod-S denote respectively the categories of unital left R-,
right R-, left S-, and right S-modules. M consistently denotes, unless
otherwise specified, a left R-module and N a left S-module.

Let (rUs, sV 1, J) be a Morita context with the trace ideals 7 and J,
L(R) the lattice of all the Gabriel topologies on R-Mod containing the
trace ideal I, and L(S) the lattice of all Gabriel topologies on S-Mod
containing the trace ideal J.

In 1980, A.1. Kasu [3, Theorem 1] proved that

THEOREM A. Between L(R) and L(S), there exists a lattice isomorphism
H:L(R)>1t+ H(t)=1"€L(S).

From now on, we write (1, 7’) € (L(R), L(S)) for this case. In the process
of the proof, he also got the following key and significant result
[3, Lemma 9].

THEOREM B. (1) If M is 1,-free and injective in R-Mod, then
Hom (U, M) is also injective in S-Mod, and
(2) if N is t,-free and injective in S-Mod, then Homg(V, N) is also
injective in R-Mod,

where t,, T, denote respectively the Gabriel topologies determined by I and J

(¢f [2])-
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In Section 2 of this paper, a more general result is obtained, which can
be regarded as a generalization of Theorem B and is stated as follows:

THEOREM 2.8. Let (14, 1)), (1,5, 75) € (L(R), L(S)).

(1) If M is t\-free, then Hom (U, E (M))= E_(Hom (U, M)) and
is ti-free, and

(2) if N is t\-free, then Hom(V, E.(N)) = E. (Homg(V, N)) and is
T,-free,
where E_ (M), E_(Homg(V, N)) denote the t,-injective envelopes of M,
Homg(V, N), resp., and E(N), E (Hom (U, M)) the ts-injective envelopes
of N, Hom (U, M), resp.

In 1974, B. J. Miiller proved the following result, which generalized the
well-known Morita Theorem [2, Theorem 3]:

THeOREM C. The functors Hom (U, —) and Hom(V, —) induce an
equivalence between categories

TIL: TJL7

where L and _ L denote respectively the quotient categories with respect to
1, and 1,.

Also in Section 2, this result is utilized and extended (see 2.5 and 2.6).

See T. Kato [ 1] for the original versions of Theorems B and C.

In 1979, T.Kato and K. Ohtake got a dual version of Theorem C
[4, Theorem 2.5]:

THEOREM D. The functors — @ o U and — @ sV induce a category
equivalence

K,~K,,

where K, = {C|CeMod-R, C® [ = Cg canonically}, K ;= {D| D e Mod-S,
S®sJ= D canonically}.

In Section 3, first the author succeeds in defining a new concept of a dual
full subcategory K, in Mod-R of L, proving that it is just a generalization
of the concept of K, and K,. Then the following fact, which generalizes
Theorem D, is obtained.

THEOREM 3.11. Let

K. 03={Cr | Cis 1 -divisible and t,-flat },
K. 1= 1{Ds| D is t\-divisible and t-flat };
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then the functors — Q) p U, — X s V induce an equivalence

K o1 = Koy

Jor any (z,, 1), (12, 15) € (L(R), L(S)).
1.2. Preliminaries

We introduce some concepts, definitions, and necessary knowledge for
this paper as follows.

DerINITION 1.1, Let zUg, ¢V be bimodules. A Motita context is a set
(rUs, sVg; I, J) with the following conditions:
(1) There exist bimodule homomorphisms (called pairings)
(-2 U®sV—-R,
[, V®:U-S,

with the image of (-, —) being the ideal 7 and that of [—, —] the ideal J.
(2) For all w, w'eU, v,v' eV, (u,v)u’ =ulv,u'], [v,u]v =v(u,v’)
hold. T and J are called the trace ideals of the context.

DErFINITION 1.2. A nonempty set 7 of left ideals of R is called a Gabriel
topology on R if it satisfies conditions T1, T2, T3, and T4 (for details,

cf. [5]).
DeriNITION 1.3. A hereditary torsion theory on R-Mod is a pair (T, F)
of classes of modules of R-Mod with the following conditions:

(1) T is closed under submodules, quotient modules, direct sums,
and extensions.

(2) F={F|FeR-Mod, Hom (T, F)=0, for all TeT}.
PROPOSITION 1.4. There is a bijective correspondence between Gabriel
topologies on R and hereditary torsion theories on R-Mod given by

t—(T,, F,), (T,F )= 15,

where .= {F|Fe R-Mod, Homg(R/a, F)=0 for all aet}, and T, =
{T|TeR-Mod; Vte TIaet, ar=0}, 1.1 = {a|R/aeT}.

By the correspondence, we consistently write = (T, F) or 1=(T,, F,)
for both 7 and the corresponding hereditary torsion theory (T, F).

ProrosiTioON 1.5. If (T, F) is a hereditary torsion theory, then F is closed
under submodules, direct products, extensions, and injective envelopes.
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ProposiTION 1.6. A4 pair (T, F) of classes of modules of R-Mod is a
hereditary torsion theory if and only if it can be cogenerated by an injective
module E; ie., T={T|Homg(T, E)=0}, F={F|Fs[] E}.

DermNiTiON 1.7, (1) M is said to be t-torsion if MeT,,
(2) M is said to be t-free if MeF,,
(3) M is said to be t-injective if Hom gx(R, M} - Homg(a, M) =0 is
exact under the canonical homomorphism for all ae 1,
(4) M is said to be 1-closed if it is both 7-free and z-injective.

ProPOSITION 1.8. For any Me R-Mod, there is a largest submodule
T. (M) of M such that TM)eT,, and M/T (M)eF,.

ProposiTioN 1.9. (1) For any Me R-Mod, we can get a t-closed
module T(M), called the module of quotient of M, and also it can be
considered as a T(R)-module.

(2) There is a natural R-homomorphism @, : M — (M) with
ker @, =T.(M), Cok @,,€T,, and M is t-closed if and only if ®,, is an
isomorphism.

(3) The full subcategory L of all t-closed modules is called the
quotient category with respect to 1, and it also can be considered as a full
subcategory of T(R)-Mod.

(4) For any M e R-Mod, 1(M)=1t(M/T (M)).

DeFINITION 1.10. (1) ©(M)={M'|M’' is a submodule of M, and
M/M' is t-torsion }.

(2) A rt-injective envelope of M is an essential monomorphism
M — M, such that M, is t-injective and Met(M,); from now on, the
1-injective envelope of M is denoted by E,(M).

ProrosiTiON 1.11. (1) If M is t-free, then E (M) =T(M).

(2) EM) can be considered as a submodule of E(M), the injective
envelope of M, and E (M)/M =T (E(M)/M).

2. EQUIVALENCE OF QUOTIENT CATEGORIES

In Theorem A, the lattice isomorphism H is defined as follows: If t =1,
then H:T=1, Tyomuu, 5y =1, Where 17, denotes the Gabriel topology
cogenerated by the injective module E, and Tyomuw.r by the injective
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module Hom (U, E). H ™' is defined similarly by the symmetry of a
Morita context.

Now we start our main work of this section with the following useful
lemmas.

LEmMMA 2.1, Let (1, 1') e (L(R), L(S)); then

(1) a left ideal b of Set’ if and only if Ubet(U) for any
U'et(gU), and
(2) aleft ideal a of Ret if and only V'aet' (gV) for any V' et (V).

Proof. (1) ber if and only if S/b is t'-torsion, i.e, Hom(S/b,
Homg(U, E,))=0 by Theorem B, where E, denotes an injective R-module
cogenerating 7. But E,. e L, U'Set(zxU), Homg(S/b, Homgy(U, E.)) =
Homg(S/b, Hom g(U'S, E.})) @ Hom x(U'S® ¢ S/b, E,)=Hom 4 (U’'S/U'SH, E,)
=Hom (U'S/U'b, E.).

Hence Homg(S/b, Hom (U, E,)) = 0 <« Hom((U'S/U'b, E,) = 0 <
Ubet(yU'S)y<« Ubet(gU)since U'Set(xU).

(2) By the symmetry of a Morita context.

Lemma 2.2. Let (1, 7)€ (L(R), L(S)); then

(1) if M is 1-free, then Hom x(U, M) is t'-free, and
(2) if N is tv'-free, then Hom(V, N) is t-free.

Proof. (1) For any b e 1, Homg(S/h, Homy(U, M)) =
Hom z(U/Ub, M), but M is 7-free and Ube1(zU) by Lemma 2.1, hence
0=Homx(U/Ub, M)~ Homy(S/b, Homg(U, M)); ie., Homg(U, M) is
7'-free.

(2) By the symmetry.

We also need to note the fact that 7,(zr,) is the least element in
L(R)(L(S)) and t%= {a|a is a left ideal of R} (t5= {b|b is a left ideal of
S}) is the greatest element in L(R)L(S)), so if M is t-free (or t-injective)
for some 7€ L(R), then M is t,-free (7,-injective); if N is t'-free (z'-injective)
for some 1’ € L(S), then N is 7,-free (7,-injective).

Now, we prove the generalization of Theorem B and Theorem C.

THEOREM 2.3. Let (14, 11), (72, 75) € (L(R), L(S)).
(1) If M is 1 -free and t,-injective, then Hom x(U, M) is t\-free and
T5-injective.
(2) If N is t\-free and 15-injective, then Hom(V, N) is 1,-free and
Ty-injective.
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Proof. By Lemma 22 and the symmetry, it suffices to prove that
Hom ,(U, M) is t5-injective.

Let f be an S-homomorphism from b to Homg(U, M), where be 1.
From f, we can get an R-homomorphism G’ from Ub to M, defined by
G'(ub) = f(b)(u), where ub e Ub.

G’ is clearly R-linear, and also G’ is well-defined, for if ub = 0,
then (', v") G'(ub) = G'((u', v') ub) = f(bY(w', v")u) = f(bY'[v',u]) =
([o', ud f(B))(w') = f([v', u]b)u') = f([v', ub])(u') =0, where u' e U, ve V,
ie., IG'(ub) =0, but g M is t,-free, hence 1 free, so G'(ub)=0.

On the other hand, betj, so Ubet,(,U) by Lemma 2.1, and since M
is 7,-injective, G' can be extended to an R-homomorphism G from U to M.

Now define an S-homomorphism g from S to Hom (U, M) by s+ sG
for any s€.S; then g is a desired extension of f.

COROLLARY 2.4. Let 1,=1,, 1,=1%; then t)=1,, th,=1° From the
theorem above, we get Theorem B again.

In particular, if /=R, J=S, then any R-module M is 1,-free and any
S-module ¢N is 7,-free, and the result is just the well-known fact that the
equivalence between module categories preserves the property of injectivity
of a module.

Combining Theorem 2.3 with Theorem C, we have the following
Corollary 2.5 and Theorem 2.6.

COROLLARY 2.5. Let 1,=1,=1, then we get: The functors Hom p(U, -),
and Hom (V, —) induce an equivalence:

L L
for any (7, t') € (L(R), L(S)).

See T. Kato [1, Theorem 2] for the original version of Corollary 2.5.
In particular, take t=71,; then t"=1,. This is just Theorem C. More
generally, we have:

THEOREM 2.6. Let
te.1 = { kM| M is 1,-free and t,-injective},
(.51 L = { sN| N is t-free and vy-injective };
then the functors Hom (U, ), Hom(V, —) induce an equivalence
[fnﬁz]L = [fiJé]L

Jor any (1., 11), (12, 12) € (L(R), L(S)).
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In [3], A. I. Kasu has also proved the following lemma (cf. T. Kato [1,
Lemma 57 for the original version).

LemMa 2.7. (1) If M is t,-free, and e: M — M, is an essential
monomorphism, then so is Hom g(U, e): Hom (U, M) - Hom x(U, M,).

(2) If Nist,-free, and ¢': N = N, is an essential monomorphism, then
so is Homg(V, e'): Hom¢(V, N) » Hom(V, N,).
By the lemma above, Theorem A is equivalent to the following:

(1) If M is t,-free, E(M) is the injective envelope of M, then
Hom (U, E(M)) = E(Hom (U, M)),

where the latter is the injective envelope of Hom g(U, M) in S-Mod.
(2) If Nis t,-free, E(N) is the injective envelope of ¢N; then

Homg(V, E(N))= E(Hom(V, N)),

where the latter is the injective envelope of Homg(V, N) in R-Mod. But we
claim that the following more general fact is also true.

THEOREM 2.8. For any (t,, 7)), (15, 75) € (L(R), L(S)),
(1) if M is t\-free, then Homk(U, E (M)) = E.(Hom g(U, M)), and
(2) if N is t\-free, then Homy(V, E(N)) = E,(Homg(V, N)), where

E.,, E., denote the t,-injective, ty-injective envelopes, resp.

121

First of all, we prove the following useful lemmas.

LEMMA 29. Let (z,7')e (L(R), L(S)); then
1)y if U is a submodule of U, then U'et(xU)<+
[V,U]et =1'(S), and
(2) if V' is a submodule of sV, then V'et'(sV)< (U, V')et=1(R).
Proof. (1) [V,U']et < S/[V, U] is t'-torsion <> Homg(S/[V, U'],
Hom (U, E.)) = 0 < Homg(U/U[V, U'], E.) = Homg(U/IU', E,) =0
UV, U=, VYU =1IU')< IU et(U)<> U’ et(U) since IU er(U’)
for any t e L(R), where E, denotes the injective R-module cogenerating t.

(2) By the symmetry.

Lemma 2.10. For any (1, v') e (L(R), L(S)),

(1) if Met(M,), then Hom (U, M)e v (Homg(U, M,)), and
(2) if Net'(N,), then Homg(V, N)e t(Homg(V, N,)).
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Proof. (1) Hom (U, M) is clearly a submodule of Hom 4(U, M,). Let
feHomg(U, M), f~'(M)=U"; then If(U")=fIU)=f((U V)U)=
ULV, U D=V, UMY M, ie, [V,U]f<Homg(U M). But
M /M is t-torsion, so U/U’ is t-torsion, and by Lemma 2.9, [V, U'] e/,
ie., Homz(U, M,)/Hom (U, M) is t'-torsion, and hence Hom gx(U, M)e
T'(Hom (U, M,)).

(2) By the symmetry.

Proof of Theorem 2.8. (1) M is essential in E_(M), so Homg(U, M)
is essential in Hom (U, E,(M)) by Lemma 2.7. M is t,-free, and E(M) and
E_ (M), as submodules of E(M), are also t,-free. Therefore, by Theorem 2.3
and Lemma 2.10, Hom (U, E_(M)) is t5-injective and Homg(U, M)e
t3(Homg(U, E.,(M))). So Homg(U, E.(M))= E (Hom (U, M)) by the
definition.

(2) By the symmetry.

If M is t,-free, then T,(M)~E_ (M) and Hom (U, M) is also t5-free,
and hence E_(Hom (U, M)) = T5(Hom z(U, M)), so we have

COoROLLARY 2.11. For any (1, 1') € (L(R), L(S)),

(1) if M is 1-free, then Hom x(U, T(M)) = 7' (Hom (U, M)), and
(2) if N is t'-free, then Homg(V, T'(N)) = t(Homg(V, N)).

3. DuaLiTY OF QUOTIENT CATEGORY

In this section, from any quotient category L on R-Mod, we define its
dual, which is a full subcategory K, on Mod-R, and it is proved that if
(1, 7)€ (L(R), L(S)), then the functors — ®; U, and — ®; V induce an
equivalence between K, and K., which generalizes the work of T. Kato and
K. Ohtake in [4].

We recall that for any Gabriel topology t on R-Mod, the corresponding
quotient category is

L={xM|M is both t-free and t-injective}.
By forming a “Hom-Tensor” dual contrast to the L, we can define the

following:

DerFNITION 3.1 [5]. A CeMod-R is said to be rt-divisble if
C®zR/a=0,1ie, C=Ca for any aer.
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DEFINITION 3.2. A CeMod-R is said to be t-flat if C®zf is a
monomorphism for any f' e 1-Mon, where

7-Mon = { /| f is a monomorphism in R-Mod, and Cok f'is z-torsion }.

DerINITION 3.3. K, = {M|M is both t-divisible and t-flat} is called
the dual full subcategory of L in Mod-R.

About the three concepts above, we have the following facts.

LEMMA 3.4. The following conditions on a bimodule ¢Cy are equivalent:

(1) Cg is t-divisible.

(2) [For any fe1-Mon|,, C®f is an epimorphism, where t-Mon|, =
{f|f is an injection from a to the ring R, act}.

(3) CR®RM=0 for any MeT,.

(4) For any fet-Mon, C®yf is an epimorphism.

(5) For any Ne Mod-S, N® C is t-divisible.

(6) For any Ne S-Mod, Homg(C, N)eF,.

(7) Homg(C, E)eF,, where E is an injective cogenerator of S-Mod.

Proof. We only prove that (1)<>(7) and omit the others. If E is an

injective cogenerator of S-Mod, then for any aet, C®; Rla=0<
Hom(C®  R/a, E)=0<«>Homg(R/a, Hom(C, E))=0<Homg(C, E)eF,.

LEMMA 3.5. The following conditions on a bimodule ;C g are equivalent:

(1) Cgis t-flat.
(2) For any fet-Mon|,, C®yf is a monomorphism.

(3) Homg(C, E) is t-injective, where E denotes an injective cogener-
ator of S-Mod.

Proof. (1)=(2) obviously.

2)=03) f0->C®ra>CRrR—->C®g R/a—0 is exact for aer,
then O-Homgy(C®, R/a, E)»Hom(C® 4 R, E)»Homy(C®, a, E)—-0
is also exact, i.e., 0»>Hom g(R/a, Hom(C, E))—»>Hom y(R, Hom4(C, E))—
Hom z(a, Homg(C, £)) — 0 is exact. Hence Homy(C, E) is t-injective.

(3)=(1) If Homg(C, E) is t-injective, then by the generalized Bear
criterion, for any fet1-Mon, from an exact sequence 0— M’ LM
Cok f — 0, we get another exact sequence 0 —» Hom z(Cok f, Homg(C, E})
— Hom (M, Homg(C, E))—> Homy(M’', Homg(C, E)) >0, ie, 00—
Hom(C®y Cok f, E) > Hom(C®, M, E) - Hom(C®z M', E) > 0, so
we have 0 5> CQrM' > C®r M - C®; Cok f — 0 exact, i.e, Cp is 7-flat.
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LEMMA 3.6. The following conditions on a bimodule ;C g are equivalent:
(1) CreK..
(2) C®gSfis an isomorphism for any f € -Mon.
(3) C=C®ya canonically for any a€.
(4) For any NeMod-S, N®;CeK..
(5) For any Ne S-Mod, Hom4(C, N)e L.
(6) Homg(C, E)e L, where E is an injective cogenerator of S-Mod.

Proof. From Lemmas 3.4 and 3.5, we can easily get all the results
above.

Now we start to prove that K, =K, , K,=K, .

Lemma 3.7.
L= { g M|Hom (I, M) = M canonically},
., L={sN|Homg(J, N)= N canonically}.

Proof. See [2].

Lemma 38 K,=K , K,=K,,.

Proof. Obviously, K, =K, from Lemma 3.6(3). If CeK,, then C® ./
= C canonically, and therefore Hom(C®, I, W)= Hom ,(C, W), where
W is an injective cogenerator of Z-Mod. Hence Hom ¢(1, Hom ,(C, W)) =
Hom (C, W) canonically. This means Hom,(C, W)e L by Lemma 3.7
and CeK,, by Lemma 3.6 (6).

Now we are able to show our main result in this section.

THEOREM 3.9. Let (14, 1}), (15, t3) € (L(R), L(S)); then
(1) if C is t-divisible and t,-flat, then C®r U is 1,-divisible and
t5-flat, and
(2) if D is 1'\-divisible and t-flat, then D®gV is t,-divisible and
T,-flat.

Proof. (1) I Cis t,-divisible, then Hom(C, W) is 1,-free, and if C is
7,-flat, then Hom ,(C, W) is t,-injective, and by Theorem 2.3, Hom 4(U,
Hom_(C, W)) is t}-free and t-injective, i.e., Hom (C® g U, W) is t/-free
and 15-injective. Hence C® U is 1)-divisible and 75-flat.

(2) By the symmetry.
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THEOREM 3.10. Let (z,7')e(L(R), L(S)); then the functors — @z U,
— ®s V induce an equivalence

K,~K..

Proof. Let t=1,; then 7" =1,. Define

P (—RrURs V)1 by ¢C<Z ci®ui®vi)=zci(ui’ v;),

where > ¢, Qu,Q@v,e COU® V and
V(- ®s V@ U)>1 by vy (z d,~®vf®u.-)=zd,«[vi, uil,

where 3 d;®v,@u,e DR VR U.

These are both natural transformations. It suffices to show that ¢, is an
isomorphism if Ce K, and y, is an isomorphism if D e K, since for any
(r, 7')e(L(R), L(S)), —®U:K, - K,, —®V:K, - K, by Theorem 3.9.
By the symmetry, however, we only need to prove the former.

Now C e K,, = Hom_(C, W)e L < Hom_(C, W) = Hom(U® V,
Hom (C, W))=Hom (CRrUR; V, W)= Cx2xCRrURs V by ¢..

Finally, for any other (7, v')e (L(R), L(S)), since K, = K, and K, =K,
the equivalence is obtained immediately from Theorem 3.9.

Thus we get again T. Kato and K. Ohtake’s result and more in a
different way.

However, this can also be proved by combining Theorem 3.9 and their
Theorem D.

THEOREM 3.11. Let
K., = {Cg| Cis t,-divisible and t,-flat },
K. 3= {Ds| D is t)-divisible and t5-flat };

then the functors — @ g U, — @5 V induce an equivalence
Koo =K o

Jor any (1,,71), (15, 72) € (L(R), L(S)).

We know that if 1> 1,, then , L > L. About K, we know it is unlikely
that K, =K . Besides, we have

THEOREM 3.12. If each aet is finitely generated projective and 1> 1,
then K, oK,.
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First we need to prove the following

LemMa 3.13. If each a et is finitely generated projective, Rk M g€ L, then
for any NeMod-S, Homg(M, N)eK..

Proof. 1If aet, then a is finitely generated projective. Hence
Hom (M, N)® z a= Homg(Homg(a, M), N) (cf. [6]) = Homgy(M, N), ie.,
Hom (M, N)eK..

Proof of Theorem 3.12. If t>1,, then we can get an E_ ¢ L,
where E, is an injective module cogenerating 7,. By Lemma 3.13,
Hom (E,, W)€K, , where W is an injective cogenerator of Mod-Z.
We claim that Hom(E,, W) ¢ K.. If Hom,(E,, W) e K, then
Hom_(Homg(a, E, ), W)=Hom(E,, W)@z a=Hom,(E,, W) for any
aet. So we get Hom(Homg(a, E,,), W)= Hom,(E,,, W)= Homg(a, E )
= E, for any a€r, ie, E, € L, contradicting £, ¢ . L.
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