J. Differential Equations 252 (2012) 2222-2265

Contents lists available at ScienceDirect

Journal of Differential Equations DIENa

www.elsevier.com/locate/jde

Strong solutions of the compressible nematic liquid crystal
flow

Tao Huang?, Changyou Wang ®*, Huanyao Wen

@ Department of Mathematics, University of Kentucky, Lexington, KY 40506, USA
b School of Mathematical Sciences, South China Normal University, Guangzhou 510631, PR China

ARTICLE INFO ABSTRACT

Article history: We study strong solutions of the simplified Ericksen-Leslie system
Received 6 May 2011 modeling compressible nematic liquid crystal flows in a domain
Revised 21 July 2011 £ c R3. We first prove the local existence of a unique strong

Available online 17 August 2011 solution provided that the initial data po, ug,dp are sufficiently

regular and satisfy a natural compatibility condition. The initial

Keywords: X N N .
Compressible fluid density function po may vanish on an open subset (i.e. an
Nematic liquid crystal flow initial vacuum may exist). We then prove a criterion for possible
Strong solutions breakdown of such a local strong solution at finite time in terms
Blow-up criterions of blow up of the quantities lollLeerge and HVd”L?L,?"'

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Nematic liquid crystals are aggregates of molecules which possess same orientational order and
are made of elongated, rod-like molecules. The continuum theory of liquid crystals was developed
by Ericksen [10] and Leslie [19] during the period of 1958 through 1968, see also the book by de
Gennes [9]. Since then there have been remarkable research developments in liquid crystals from
both theoretical and applied aspects. When the fluid containing nematic liquid crystal materials are
at rest, we have the well-known Ossen-Frank theory for static nematic liquid crystals, see Hardt,
Kinderlehrer and Lin [13] on the analysis of energy minimal configurations of nematic liquid crystals.
In general, the motion of fluid always takes place. The so-called Ericksen-Leslie system is a macro-
scopic continuum description of the time evolution of the materials under the influence of both the
flow velocity field u and the macroscopic description of the microscopic orientation configurations d
of rod-like liquid crystals.
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When the fluid is an incompressible, viscous fluid, Lin [20] first derived a simplified Ericksen-
Leslie equation modeling liquid crystal flows in 1989. Subsequently, Lin and Liu [21,22] made some
important analytic studies, such as the existence of weak and strong solutions and the partial regular-
ity of suitable solutions, of the simplified Ericksen-Leslie system, under the assumption that the liquid
crystal director field is of varying length by Leslie’s terminology or variable degree of orientation by
Ericksen’s terminology.

When the fluid is allowed to be compressible, the Ericksen-Leslie system becomes more com-
plicate and there seems very few analytic works available yet. We would like to mention that very
recently, there have been both modeling study, see Morro [29], and numerical study, see Zakharov and
Vakulenko [39], on the hydrodynamics of compressible nematic liquid crystals under the influence of
temperature gradient or electromagnetic forces.

This paper, and the companion paper [18], aims to study the strong solutions of the flow of com-
pressible nematic liquid crystals and the blow-up criterions.

Let 2 C R? be a domain. We will consider the simplified version of Ericksen-Leslie system mod-
eling the flow of compressible nematic liquid crystals in £21:

P+ V- (pu) =0, (11)
pu¢+ pu-Vu+ V(P(p)) = Lu—Vd - Ad, (1.2)
di +u-Vd= Ad+ |Vd|*d, (1.3)

where p:£2 x [0,+00) — R! is the density function of the fluid, u: £ x [0, +c0) — R> represents
velocity field of the fluid, P = P(p) represents the pressure function, d: £2 x [0, +00) — S2 represents
the macroscopic average of the nematic liquid crystal orientation field, V- is the divergence operator
in R3?, and £ denotes the Lamé operator:

Lu=pAu+ (u+2r)Vdivu,

where @ and A are shear viscosity and the bulk viscosity coefficients of the fluid respectively that
satisfy the physical condition:

w>0, 2u+31>0. (14)

We refer to the readers to consult the recent preprint [7] by Ding, Huang, Wen and Zi for the deriva-
tion for the system (1.1)-(1.3) based on the energetic-variational approach. Throughout this paper, we
assume that

P :[0, +00) — Ris a locally Lipschitz continuous function. (1.5)

Notice that (1.1) is the equation of conservation of mass, (1.2) is the equation of linear momentum,
and (1.3) is the equation of angular momentum. We would like to point out that the system (1.1)-(1.3)
includes several important equations as special cases:

(i) When p is constant, Eq. (1.1) reduces to the incompressibility condition of the fluid (V - u =0),
and the system (1.1)-(1.3) becomes the equation of incompressible flow of nematic liquid crystals
provided that P is an unknown pressure function. This was previously proposed by Lin [20] as a
simplified Ericksen-Leslie equation modeling incompressible liquid crystal flows.

! Through the energy variational approach presented by [7], we know that the induced stress force by the director field d in
the right-hand side of (1.2) should be —V - (Vd ® Vd — %llez]h), where (Vd ® Vd);j = od  0d for 1 <i,j <3 and I3 is the

X T 0x;j
identity matrix of order 3. However, it is not hard to check that —V - (Vd ® Vd — ; |Vd|*I3) = —Ad - Vd. For the incompressible
nematic liquid crystal flow, since the body force term V - (%\lez]b) = V(%llez) can be absorbed into the term VP of a
unknown pressure function P, in the literature that the induced stress force by d is frequently written by V - (Vd ® Vd).
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(ii) When d is a constant vector field, the system (1.1)-(1.2) becomes a compressible Navier-Stokes
equation, which is an extremely important equation to describe compressible fluids (e.g., gas
dynamics). It has attracted great interests among many analysts and there have been many im-
portant developments (see, for example, Lions [27], Feireisl [11] and references therein).

(iii) When both p and d are constants, the system (1.1)-(1.2) becomes the incompressible Navier-
Stokes equation provided that P is a unknown pressure function, the fundamental equation to
describe Newtonian fluids (see, for example, Lions [26] and Temam [35] for survey of important
developments).

(iv) When p is constant and u = 0, the system (1.1)-(1.3) reduces to the equation for heat flow of
harmonic maps into S2. There have been extensive studies on the heat flow of harmonic maps
in the past few decades (see, for example, the monograph by Lin and Wang [24] and references
therein).

From the viewpoint of partial differential equations, the system (1.1)-(1.3) is a highly nonlinear
system coupling between hyperbolic equations and parabolic equations. It is very challenging to un-
derstand and analyze such a system, especially when the density function o may vanish or the fluid

takes vacuum states.
In this paper, we will consider the following initial condition:

(0, u,d)|t=0 = (o, Uo, do), (1.6)
and one of the three types of boundary conditions:

(1) Cauchy problem:

2=R3 and p, uvanish at infinity and d is constant at infinity (in some weak sense). (1.7)

(2) Dirichlet and Neumann boundary condition for (u,d): £2 c R? is a bounded smooth domain, and

od
u, —
av
where v is the unit outer normal vector of 952.

(3) Navier-slip and Neumann boundary condition for (u,d): 2 c R? is bounded, simply connected,
smooth domain, and

=0, (1.8)
Y]

=0, (1.9)
82

od
u-v,(Vxu)xv, —
av

where V x u denotes the vorticity field of the fluid.

To state the definition of strong solutions to the initial and boundary value problem (1.1)-(1.3),
(1.6) together with (1.7) or (1.8) or (1.9), we introduce some notations.

We denote
/fdx: / fdx.
Q

For 1 <r < oo, denote the L" spaces and the standard Sobolev spaces as follows:
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U'=1'(2), D={uell (2):|V*u|, <o},
Wk,r — Lr m Dk,l" Hk — Wk,Z Dk — Dk,2
D§ = {u e L® |[Vull 2 < oo, and satisfies (1.7) or (1.8) or (1.9) for the part of u},

Hy=120D).  llullper = |V¥u] .
Denote
Qr=£2 x[0,T] (T >0),

and let
1 t
D(u) = E(Vu + (Vu)')
denote the deformation tensor, which is the symmetric part of the velocity gradient.

Definition 1.1. For T > 0, (p, u, d) is called a strong solution to the compressible nematic liquid crystal
flow (1.1)-(1.3) in £2 x (0, T], if for some q € (3, 6],

0<pecC((o, T;WHnHY), p ec(0,T];L*NLY);
ueC([0,T; D* N DY) NL*(0,T; D*%), u;e€L*(0,T: DY), /purel™®(0,T;L?);
vd e C([0,T1; H*) N L?(0,T; H?), dreC([0, T, H')NL*(0,T; H?), |d|=1 inQr;

and (p, u, d) satisfies (1.1)-(1.3) a.e. in £2 x (0, T].
The first main result is concerned with local existence of strong solutions.

Theorem 1.2. Assume that P satisfies (1.5), po >0, po € W9 N H' N L! for some q € (3, 6], ug € D> N D},
Vdg € H? and |dg| = 1 in 2. If, in additions, the following compatibility condition

Lug — V(P(po)) — Adg - Vdo = /pog for some g € LZ(Q, R3) (1.10)

holds, then there exist a positive time To > 0 and a unique strong solution (p, u, d) of (1.1)-(1.3), (1.6) to-
gether with (1.7) or (1.8) or (1.9) in £2 x (0, To].

We would like to point out that an analogous existence theorem of local strong solutions to
the isentropic? compressible Navier-Stokes equation, under the first two boundary conditions (1.7)
and (1.8), has been previously established by Choe and Kim [5] and Cho et al. [4]. A byproduct of
Theorem 1.2 yields the existence of local strong solutions to a larger class of compressible Navier-
Stokes equations under the Navier-slip boundary condition (1.9), which seems not available in the
literature. We would also mention that, after completing this work, we receive a preprint by Chen
et al. [3] in which they proved the existence of local strong solution to (1.1)-(1.3) under the Dirichlet
boundary condition on (u,d), when £ = A and P =aP?, by fixed point arguments.

We would like to comment that it is a standard fact that the local existence of a unique strong
solution to the incompressible nematic liquid crystal flow (i.e. p =1 and V - u = 0) holds for any
initial data (ug,do) € (D2 N D) x H3(£2, $?) with V-ug = 0. It is readily seen that this local existence

2 Le. P=ap? for some a>0and y > 1.
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of strong solutions to the incompressible nematic liquid crystal flow is closely related to Theorem 1.2
when we consider the slightly compressible nematic liquid crystal flow, i.e. o0 — 1llw1anyin < 1
is sufficiently small. In fact, the compatibility condition (1.10) clearly holds in this case.

In dimension one, Ding et al. [8] have proven that the local strong solution to (1.1)-(1.3) under
(1.6) and (1.8) is global. For dimensions at least two, it is reasonable to believe that the local strong
solution to (1.1)-(1.3) may cease to exist globally. In fact, there exist finite time singularities of the
(transported) heat flow of harmonic maps (1.3) in dimensions two or higher (we refer the interested
readers to [24] for the exact references). An important question to ask would be what is the main
mechanism of possible break down of local strong (or smooth) solutions.

Such a question has been studied for the incompressible Euler equation or the Navier-Stokes equa-
tion by Beale, Kato and Majda (BKM) in their pioneering work [1], which showed that the L°°-bound
of vorticity V x u must blow up. Later, Ponce [31] rephrased the BKM-criterion in terms of the defor-
mation tensor D(u).

When dealing with the isentropic compressible Navier-Stokes equation, there have recently been
several very interesting works on the blow-up criterion. For example, if 0 < T, < 400 is the
maximum time for strong solution, then (i) Huang et al. [15] established a Serrin type criterion:
limryr, ([ divull;i o 7.0y + ll/PUlls.1:0r) = 00 for 2+ 2 <1, 3 <r < oo; (ii) Sun et al. [34], and
independently [15], showed that if 70 > A, then limryT, | 0llL>(0,T;150) = 00; and (iii) Huang et al.
[16] showed limTTT* ”D(U)HL](O,T;PQ) = oQ.

When dealing the heat flow of harmonic maps (1.3) (with u = 0), Wang [37] obtained a Serrin
type regularity theorem, which implies that if 0 < T, < 400 is the first singular time for local smooth
solutions, then limryr, [|Vdll 2 1100y = 0.

When dealing with the incompressible nematic liquid crystal flow, Lin et al. [25] and Lin and
Wang [23] have established the global existence of a unique “almost strong” solution® for the initial-
boundary value problem in bounded domains in dimension two, see also Hong [14] and Xu and Zhang
[38] for some related works. In dimension three, for the incompressible nematic liquid crystal flow
Huang and Wang [17] have obtained a BKM type blow-up criterion very recently, while the existence
of global weak solutions still remains to be a largely open question.

Motivated by these works on the blow-up criterion of local strong solutions to the Navier-Stokes
equation and the incompressible nematic liquid crystal flow, we will establish in this paper the fol-
lowing Elow—up criterion of breakdown of local strong solutions under the boundary condition (1.1)
or (1.2).

Theorem 1.3. Let (p, u, d) be a strong solution of the initial boundary problem (1.1)-(1.3), (1.6) together with
(1.7) or (1.8). Assume that P satisfies (1.5), and the initial data (pg, uo, do) satisfies (1.10). If0 < T, < +o0 is
the maximum time of existence and 7. > 9A, then

Tim (I leo.7i0%) + 1Vdll30,1:1%9)) = 00- (111)

We would like to make a few comments of Theorem 1.3.

Remark 1.4. (a) Since we can’t yet prove Lemma 4.2 for the Navier-slip and Neumann boundary con-
dition (1.9), it is unclear whether Theorem 1.3 remains to be true under the boundary condition (1.9).

(b) Motivated by the Beale-Kato-Majda criterion on Navier-Stokes equations (see [1,31,16]), it is
also a natural question to seek other blow-up criterions of (1.1)-(1.3) involving the vorticity filed of
fluids. In [18], we obtained such a blow-up criterion of (1.1)-(1.3) under the initial condition (1.6) and
the boundary condition (1.7) or (1.8) or (1.9) in terms of u and Vd that is valid for all P satisfying (1.5)

3 That has at most finitely many possible singular time.

4 1t is unclear to the authors whether there exists connection between the blow-up criterion on the incompressible nematic
liquid crystal flow obtained by Huang and Wang [17] and the blow-up criterion stated in Theorem 1.3 for the compressible
nematic liquid crystal flow, even for slightly compressible cases.
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and all u, A satisfying (1.4): if 0 < T, < +o0 is the maximum time of existence of strong solutions,
then

TliTrR(”D(u) |11 012100 + IVl 20 7:1)) = +00.

However, the techniques involved in [18] are much different from Theorem 1.3, due to the estimates
of both |||l e e and arbitrarily high integrability of Vd in terms of HD(U)HLg L and ||Vd||L$L;°-

(b) For compressible liquid crystal flows without the nematicity constraint (|d| = 1),> Liu and Liu
[28] have recently obtained a Serrin type criterion on the blow-up of strong solutions under Dirichlet
conditions on (u,d), when £ = uA and P =ap?.

(c) It is a very interesting question to ask whether there exists a global weak solution to the
initial-boundary value problem of (1.1)-(1.3) in dimensions at least two. In dimension one, such an
existence has been obtained by Ding et al. [6].

Now we briefly outline the main ideas of the proof, some of which are inspired by earlier works on
the isentropic compressible Navier-Stokes equations by [4,34,16]. To obtain the existence of a unique
local strong solution to (1.1)-(1.3), under (1.6) and (1.7) or (1.8) or (1.9), we employ Galerkin’s method
that requires us to establish a priori estimate of the quantity

| o) ”Hmwlﬂ + | vu® ||L2 + [ Voue® ||L2 + ||V2d(t) ||L2’ 3<q<6

for strong solutions (o, u,d) in the form of a Gronwall type inequality. See Theorem 2.1. It may be
of independent interest that we establish W29-estimate for the Lamé equation under the Navier-slip
boundary condition, see Lemma 3.1.

Notice that (1.1)-(1.3) are much more complicate that compressible Navier-Stokes equations, due to
the super critical nonlinearity |Vd|2d in the transported heat flow of harmonic map equation (1.3) and
the strong coupling nonlinear term Ad - Vd in the momentum equation (1.2). To prove the blow-up
criterion (1.11) of Theorem 1.3 in terms of p and Vd, a critical step is to establish the LfOLZ—estimate
of Vp. From the continuity equation (1.1), this requires that the Lipschitz norm of velocity field u, or
IV2u(t) || q is bounded in L!, which in turns requires. This is done in several steps:

(1) We show that under the condition 7u > 92, the bound of (Iplleerge + ||Vd||L?L;c) and Eqgs. (1.2)
and (1.3) can yield both a high integrability and a high order estimate of u and Vd, i.e. both
(||p%u||L?oL§ + ||Vd||L?cL§) and (||Vu||L?oL3 + ||V2d||L?oL§) are bounded. See Lemma 4.2.

—
N
~

Utilizing the L®L5-bound of p5u and Vd, we manage to establish that V3d is bounded in L°L2
and Vu is bounded in L?W,}‘q + L{°(BMOy). To achieve it, we adapt the approach, due to Sun
et al. [34], by decomposing u = w+ v, where v € Hé(Q) solves the Lamé equation Lv = V(P (p)).
One can prove that Vv € L°(BMOy) by the elliptic regularity theory. The difficult part is to
show that V2w e L?Lz for 3 < q < 6. In order to obtain this estimate, we first establish that
(||\/ﬁu||L§cL§ + ||th||L[ooL§) and (||V1'1||L?L§ + ||dtt||L§L§) are bounded by viewing (1.2) as an evo-
lution equation of the material derivative &t = u; + u - Vu and performing second order energy
estimates of both Egs. (1.2) and (1.3). Then we employ W?29-estimate of the Lamé equation to
control |V2w/||1q. The details are illustrated by Lemma 4.4 and Corollary 4.5.

(3) We show that ||V p||;2nq is bounded by an argument similar to [34, §5]. Then we apply W29-
estimate of the Lamé equation again to control ||V2u||LrooL)z( and ||u||L?CD§,q. See Lemma 4.6, Corol-

laries 4.7, and 4.8.

5 The right-hand side of Eq. (1.3) is replaced by Ad + f(d) for some smooth function f:R> — R3, e.g. f(d) = (|d|> — 1)d.
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It is interesting to notice that during the proof of both the existence of a unique local strong
solutions and the blow-up criterion for strong solutions, specific forms of the pressure function P(p)
play no roles and it is the local Lipschitz regularity of P that matters.

The paper is written as follows. In Section 2, we derive some a priori estimates for strong solutions
or approximate solutions via Galerkin’s method. In Section 3, we prove both the local existence by
Galerkin’s method and uniqueness of strong solutions. In Section 4, we discuss the blow-up criterion
of strong solutions and prove Theorem 1.3.

2. A priori estimates

In the section, we will derive some a priori estimates for strong or smooth solutions (p, u, d) to
(1.1)-(1.3) on a bounded domain, associated with the initial condition (1.6) and the boundary condi-
tion (1.8) or (1.9), provided that the initial density function has a positive lower bound, pg > § > 0.
All these a priori estimates we will obtain are independent of § > 0 and the size of the domain
when £2 = Bg (R >1) is a ball in R3, which are the crucial ingredients to prove the local existence of
strong solutions to (1.1)-(1.3) when we allow the initial data oo > 0 and unbounded domain £2 = R3.
Although these estimates may have their own interests, we mainly apply them to the approximate
solutions to (1.1)-(1.3) that are constructed by Galerkin’s method.

Throughout the paper, we denote by C generic constants that depend on | 0olly1anginLt
||u0||Dsz[1], IVdo| g2, and P, but are independent of § > 0, the solutions (p,u,d) and the size of

domain when £ = Bg (R > 1) is a ball in R3. We will also use the obvious notation

k
I xanenx, = D1+ lx;
i=1

for Banach spaces Xj, 1 <i<k and k=2,3. We will use A <B to denote A < CB for some constant
generic C > 0.

Let (p,u,d) be a strong solution of (1.1)-(1.3) in §£2 x (0,T] (or the approximate solutions
(™, u™,d™) of (1.1)-(1.3) constructed by Galerkin’s method in Section 3.2 below). For simplicity,
we assume 0 < T <1.For0 <t <T, set

2®:= sup ([p® | awia +[Ve© |2+ [VAUO ]2 + [V |y +1). 1)

AN

The main aim of this section is to estimate each term of @ in terms of some integrals of &. In
Section 3 below, we will apply arguments of Gronwall’s type to prove that @ is locally bounded.
Throughout this section and Section 3, we will let F to denote the set that consists of monotonic
increasing, locally bounded functions M from [0, +00) to [0, +00) with M(0) = 0, which are indepen-
dent of § and the size of £2. The reader will see that the exact form of M € F is not important and
may vary from lines to lines during the proof of the lemmas.
Now we state the main theorem of this section.

Theorem 2.1. There exists M € F such that forany 0 <t < T, it holds

t
D (t) < exp|:CM(,00, uo, do) + C/M(di(s))ds:|, (2.2)
0

where

Lug — V(P (pg)) — Adp - Vdg
N

M(po, tp, do) =1+ H (2.3)

Lz.
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The proof of Theorem 2.1 is based on several lemmas. We may assume P(0) = 0. Observe that (1.5)
implies that the Lipschitz norm

Bp(R) = | P’”Lm([o g [0, +00) = [0, +00) is monotonic increasing and locally bounded.
(2.4)

Lemma 2.2 (Energy inequality). There exists M € F such that for any 0 <t < T, it holds

t t
/(p|u|2+|Vd|2)dx+f/[|w|2+|Ad+|w|2d| Jdx < C+/M @(s))d (2.5)
2 0

Proof. Here we only sketch the proof for the boundary condition (1.9). Multiplying (1.2) by u and
integrating over £2, using Au = Vdivu —V x (V x u) and (1.1), and applying integration by parts
several times, we obtain

,0|u|2dx+/(,u|V><u|2+(2,u+k)|divu|2)dx=/P(p)divudx—/u-Vd~Addx.
(2.6)

2dt

Since £2 is assumed to be simply connected for the boundary condition (1.9), we have (see [36]):
IVullpz SIV x ull2 + |ldivu| 2, Yue H'(2) withu-v=00n352. (2.7)
This and (1.4) imply

/(mvxu|2+(2u+x)|divu|2)dx /;/(|V><u| + |divul?) /qul dx. (2.8)

By Cauchy inequality, we have

‘/P(,o)divudx <

%/|Vu|2dx+C/|P(p)|2dx. (2.9)

Multiplying (1.3) by Ad + |Vd|2d and integrating over £2, using integration by parts and the fact that
|d| =1 we obtain

2dt/mﬂ dx+/|Ad+|Vd|2d| dx—/u vd - Addx. (2.10)

Combining (2.6), (2.8), (2.9), and (2.10) together, we obtain

jt (plul® +|vd| )dx+/<—|Vu| +|Ad + |Vd|*d| ) /|P(p)| dx.  (211)
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To estimate the right-hand side of (2.11), first observe that by (2.4) we have®

Ipllee + [ PO 1o + [ PO | 1 s < CP + CBp(lIplle)® < M(@) (2.12)

for some M € F. It follows from (1.1) and Sobolev’s inequality that

t
f!P(p)lzdx:/\P(po>|2dx+2f/ P(p)P'(p)(—pdivu — Vp - u)dxdt
0
t
<C+ c/ Be(loli) ([ P(o)] 51Vl + [P 2ol ) I Vull 2 ds
0

t
<C+fM(cb(s))dsgc+M(¢(t)) (213)
0
as M(®(s)) is increasing and t < 1. Substituting (2.13) into (2.11) and integrating over [O,t]
yields (2.5). O
Now we want to estimate ||Vu(t)||fq1 in terms of @ (t).
Lemma 2.3. There exists M € F such that for 0 <t < T, it holds
[Vu®) |, <M(@®). (2.14)

Proof. By the standard HZ?-estimate of the Lamé equation with respect to the boundary condition
(1.7) or (1.8) or (1.9), (2.12), and Hélder’s inequality, we have

IVull?, SILullf, + 1Vulf
Slpuel® + llou - Vul®, + [V (P(0) |2, + 1Ad - VdI%, + [ Vull?,
S ol lIv/ouell?, + ol ullfs I Vul?s + B3 (lolle) 1V ol
+llAad|F 1VdlZs + 1Vull?,
SM(®) (14 |ullZs I Vul?s) + CllAd| 2 1 Vd]| % (2.15)
for some M € F. By the interpolation inequality, Sobolev’s inequality,” we obtain

lullfs I Vullfs < CIVull?, | Vully. (2.16)

6 When 2 = By for R > 1, one can the independence of C with respect to R as follows:

ol Bgy < mMaxllplie s, () < Cmax|pllwiaeg, ) < Clolwiagy)-
X€Bg X€Bg

7 When £2 = By for R > 1, by simple scalings, one has

||fHL5(BR) < C(Ri1 Hf”LZ(BR) + ”vf”LZ(BR)) < C”f”Hl(BR)-
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Similar to (2.16), by (2.5), we obtain

1A% (VA% < I Ad] 2l Ad]l s [ V]2,

2
SIAdIE VA, + 1Ad)2, [ V2] S M(®) (217)

~

for some M € F. Substituting (2.16), (2.17) into (2.15), and using (2.5) and Cauchy’s inequality, we
have

1
IVull2, < 5||Vu||f,1 +M(2(1))
for some M € F. This gives (2.14) and completes the proof. O

Now we want to estimate || ,/ou¢|l;2. More precisely, we have

Lemma 2.4. There exists M € JF such that forany 0 <t < T, it holds

t t
/p|ut|2dx+//|Vut|2dxds<CM(po,uo,do)—i-/M((D(s))ds. (2.18)
2 00 0

Proof. Differentiating (1.2) with respect to t, we have®

puse + pu - Ve + peitg + peit - Vu + pug - Vu + V(P(p)),
= Q2u+MVdivue — uV x (V x ug) — V- (Vde ® Vd + Vd @ Vd; — Vd - VdeI3). (2.19)

Multiplying (2.19) by u;, integrating the resulting equations over 2, and using (1.1) and integration
by parts, we have

1d .
Ea/p|ut|2dx+/((ZM—H»)ldlvutIz+M|V x ue|?) dx
:—Z/puut-Vutdx—/,o[qu-utdx—/pu[~Vu-utdx+/P’(p)ptdivutdx

5
+ /(th ®Vd+Vd®Vd —Vd-Vd; I3) : Vurdx = lei. (2.20)
i=1

By Hdlder’s inequality, Sobolev’s inequality, (2.12), and (2.14), we have
| S IVuelzllvoucll 2 llvoeullie
SIVuclizliveuedlz Vel IVull g S M@) [ Vuell 2 (2.21)

for some M € F.

8 Here we have used the fact that Ad - Vd =V - (Vd ® Vd — }|Vd|T3), where Vd ® Vd = (dy, -dy;)1<ij<3 and Iz is the
identity matrix of order 3.
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By (1.1), Holder’s inequality, Sobolev’s inequality, (2.12), and (2.14), we have
| = ‘/pu -V(u-Vu-u)dx

=‘/,ou-(Vu-Vu-ut—i—u-VVu-uH—qu-Vut)dx

2 2 2
S lple ulZsIVul s Vuel 2 + ol lull?s | v2u| - luel s

+ IR o lull s I Vullfs | /puel 2
SM@)(1+ [ Vel 2) (2.22)

for some M e F. For II3, by (2.14) we have

5] S IVellee v/ ouell 2 I Vull s lluell s
1 1
S IVe e l/puell 2 IVull L IIVull 5 I Vuell e S M@) [ Vuell 2 (2.23)
for some M e F. For Il4, by (1.1), (2.12), and (2.14) we have
4l < Bp(llpllzee )l oell 2 l1div ue]| 2

SBe(lpll=) (IVoll2llulize + ol lIdivull2) divuell 2
S M(®)|Vuell 2 (2.24)

for some M € F. For II5, by (2.5) we have
NEIBS / IVd||Vd:[|Vue|dx < [[Vue|| 2 VA L ([ Vde || 2
Q
S IVuell2IVd| g2 Ve |l 2

IVl (19l 2 + | V2] ) 1Vl 2 < (C + M(®)) [ Vuell 2 Vdell 2 (2.25)

for some M e F. Substituting (2.21)-(2.25) into (2.20), and using Cauchy’s inequality, we have

1 1
o p|ut|2d><+E/|Vut|2dx<E/|Vut|2dx+1\/1(qb)+(C+1\/1(cz>))||wt||§2 (2.26)

for some M € F, where we have used the following inequality due to [36]: if (i) either £2 is simply
connected and u - v =0 on 32 or (ii) u =0 on 3£2,° then

IVuellz S divuelz + IV X ugll2. (2.27)
By (2.26), we have
d 2 1 2 2
i oluel®dx + ol [Vue|* dx S M(®) + (C + M(®)) || Vde|l7,. (2.28)

9 In fact, in this case, the inequality (2.27) is an equality.
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Differentiating (1.3) with respect to x, we have
Vd; — VAd = V(|Vd*d) — V(u - Vd). (2.29)

From (2.29), we have!?

IVdell 2 S IIVu- V2 + |Ju- V2d| o + IVAd| 2 + V[P + | Vd - V2d||
S IVl Vil 2 + lullys [ V2| 5 + IV AdIz + (14 ] V2d] ) + 1Vdll | V2]
SVl VUl + IVull 2| V2] + VA + (14 [ V2] ) + 1Vl | V2] 2
<M(®) +1 (2.30)

for some M € F.
Substituting (2.30) into (2.28), and using Cauchy’s inequality, we have

d 1
& p|ut|2dx+E/|Vut|2dx<M(<P)+C (2.31)

for some M € F. Integrating (2.31) over (0, t), and using (1.2), and (1.10), we have

t

t
/plut|2dx+//|Vu[|2dxdsgC/p|ut|2dXIt:0+/M(¢'(s))ds+C
0

0 £
t
<CM(po.uo.do) + [ (@) ds
0
for some M € F. This completes the proof. O

As an immediate consequence of Lemma 2.4, we obtain an estimate of |Vu] 2.

Lemma 2.5. There exists M € JF such that for 0 <t < T, it holds
t
/Wu(t)\zdxg CM(po,uo,do)—f—/M(@(s))ds. (2.32)
0

Proof. By Cauchy’s inequality, Lemma 2.2, Lemma 2.3, and Lemma 2.4, we have

t

/|Vu|2(t)dx:/|Vu0|2dx+2//Vu-Vutdxds
0

10" Here we also use the Sobolev’s inequality: ||Vd||1= (@) < C|IVd|ly2 (g and the fact that C can be chosen independent of R
when 2 =By for R > 1.
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t t
<C+//|Vu|2dxds+//|Vu[|2dxds
02 02

t
<CM(po,uo,do)+/M(<D(s))ds
0

for some M € F. This completes the proof. O

Lemma 2.6. There exists M € F such that for 0 <t < T, it holds
t
lo® ] yiawre < exp{CM(po,uo,dw +C / M(¢(s))ds}. (2.33)
0

Proof. It follows from [4, p. 249, (2.11)] that

t
10O |1 wra < ool Awra exp{c f IVullginpia ds}. (2.34)
0

By W24-estimate of the Lamé equation under either Dirichlet boundary condition (1.8) or the Navier-
slip boundary condition (1.9) (see Lemma 3.1 below), (1.2), and Sobolev’s inequality, we have

192ull 0 < loullia + llpu - Vulia + [ V(P(0)) | ;o + IIVd - Adlla

4
=Y _III;. (2.35)
i=1

If g =6, then by Sobolev’s inequality we have
Iy < llpllees luells < @I Vuell 2. (2.36)

If g € (3, 6), then by Holder’s inequality and Sobolev’s inequality, we have

6—q 1-8=a
I < ”'OHLSGqu luells < ||,0||L?q o010 ™ VUl 2 S @[ Ve, (237)

where we have used the fact that [ pdx = [ podx. From (2.36) and (2.37), we have that for q € (3, 6],
I <@ Vue| 2. (2.38)
For IIl,, if q € (3, 6], then by similar arguments, Lemmas 2.2 and 2.3, we have
I S @[ VulZ, < M(®) (2.39)
for some M € F. For IlI3 and Ill4, if q € (3, 6], then we have

I3 + 114 < CBp ([l plli=) IV ol + 1 VlIF2 < M(P) (2.40)
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for some M € F. Substituting (2.38), (2.39) and (2.40) into (2.35), we have
IV2ul 0 S @1Vucll2 + M(®) < [[Vuel?, + M(®) (2.41)

for some M € F. Integrating (2.41) over (0, t), and using Cauchy’s inequality and (2.18), we have

t t
/”VzuHLq < CM(po,uo,do)+/M(¢(s)) ds. (242)

Substituting (2.14) and (2.42) into (2.34), we have

lo® |41 awra <exp[CM<p0,uo,do)+C/M(q><s>)ds]

for some M € F. This completes the proof. O

Lemma 2.7. There exists M € F such that forany 0 <t < T, it holds
t
2
|v2d|7, +/ IVde||?, ds < C + / M(®(s)) ds. (2.43)
0

Proof. Multiplying (2.29) by Vd; and integrating over §2, using integration by parts and %—‘if =0 on
952, we obtain

1d
IVdell?, + EE||Aa!||'fz = /[V(|Vd|2d) — V(u-Vd)]Vd; dx
1
< 5||th||f2 +C/|V(|Vd|2d)]2dx+C/]V(u : Vd)|2dx.
Thus we have
d
Vel + 1A, §/|V(|Vd|2d)|2dx+ [|V(u -vd)|* dx. (2.44)
Similar to the proof of (2.30), we obtain
2 d 2
Vdell7> + 7 [Ad]I7, < M(®) (2.45)

for some M € F. Integrating (2.45) over (0,t) and applying W22-estimate of Eq. (1.3), we have

t
||v2d||L2 /||th||L2ds ||V2do|L2 /M @(s))d c+/1v1 @(s))d
0

This completes the proof. O
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Lemma 2.8. There exists M € F such that for 0 <t < T, it holds

t t 4
| V3|7, +/||v2dt|yf2 ds < (CM(,oo,uo,do)+/M(d5(s))ds> . (2.46)
0 0

ode _

Proof. Multiplying (2.29) by VAd;, integrating over 2, using %' =0 on 352 and integration by parts,

we obtain

1d
I Ade )12, + Eanvmu%z = /[V(u -vd) — V(|Vd|*d)] - VAd; dx

= %/[V(u -vd) — V(|vd|*d)] - VAddx

—f%[V(u-Vd)—V(Wtﬂzd)] -VAddx. (2.47)

Now we need to estimate the second term of right side as follows:

9
—/E[V(u.w{)] -VAddx:—f[Vut-Vd—i—Vu-th—i—ut-Vzd—i—u-Vzd[]-VAddx

4
=Y V.. (2.48)
i=1

By Holder’s inequality and Sobolev’s inequality, we have
V1] S IVuell 2Vl < [V Al 2 S IVl 2l VA5, < M®@) + ([ Vuell? (2.49)

for some M € F.
By Hoélder’s inequality, Sobolev’s inequality, (2.14), (2.30) and Young's inequality, we obtain

V2] S VUl sl Vel 311V Ad]l 2
SVl | Vdell g |V Ad] 2
SIVull | V2de | 2 IV Ad] 2 + VUl | Vel 21V Adl 2

<e| V2|7, + M(®) (2.50)

for some M € F.
By Holder’s inequality, Sobolev’s inequality and Cauchy’s inequality, we obtain

V3] < lluellgs | V2| 5 11V Ad]l 2

SIVuell2 | V2| 1 IV A 2 S M(@) + [ Vug |7, (2.51)

for some M € F.
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By Hélder’s inequality, Sobolev’s inequality, (2.14) and Cauchy’s inequality, we obtain
2 2
V4 S llullse [ V2de|| 2 IVAdI 2 S VUl | Ve || 2 VA2
2
<e| V2| + M (@)

for some M € F.
Combining (2.48), (2.49), (2.50), (2.51) and (2.52), we obtain

d
—/ S [V V] VAddx < 2¢ |V2de|| > + ClIVuell?, + M(@)

for some M € F.
By Leibniz’s rule and the fact |d| =1, we have

0 2
/5 (IVd|“d)] - VAddx
S

/|Vd|2|th|+|th||V2d|+|Vd||V2dt\+|Vd|[V2d\|dt|]|VAd|dx

[V
[
i Vi.

2237

(2.52)

(2.53)

(2.54)

By Holder’s inequality, Sobolev’s inequality and (2.30), Cauchy inequality, and Young inequality, we

obtain

V1l S IVdI2 [ Vdell 21V Ad] 2 S VA2 [ Vel 21V Ad]L 2 < M(@),
IVal S IVde 6| V2d 5 IV Al S Vel | V3] 5
S O(|V2e| o + Vel 2) < e V2de |7, + M(@),
V3] S IVd| || V2de | 2 IV Ad]l 2
< IVl | V2| IV AN 2 < €] V2de |2, + M (@),
IVal S lldell s 1Vl | V2d | 5 [V Ad] 2

S ldellgr 1Vl gz [ V2| 1 IV Al 2 S dell g M(D)
for some M € F. Notice that
ldell 2 S 1Al 2 + VA2, + lu - Vdll 2 S VA2, + llull sl Vd] s +1
SIVAIFy + IVull 2| Vdll g +1 5 @.
Thus by (2.30), (2.58) and (2.59), we have

V4l < M(®P)

(2.55)

(2.56)

(2.57)

(2.58)

(2.59)

(2.60)
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for some M € F. Combining (2.54), (2.55), (2.56), (2.57) and (2.60), we have

[ v (vara)]- vadax< 26|V |, + M) 260)

for some M € F.
Putting (2.53) and (2.61) into (2.47), we obtain

1d d
I Ade |7, + Ea||VAd||f2 <3 /[V(u -vd) — V(|Vd|*d)] - VAd dx

+4e | V2dc |2, + CIVuel?, + M(®) (2.62)

for some M e F. Integrating (2.62) over (0,t), using H* (k = 2, 3) estimate of the elliptic equations,
and choosing ¢ small enough, we have

t
|Vl + [ vl aas
0
< /|V(u - Vd) — V(|Vd|2d)||VAd|dx+/|V(u0 -Vdo) — V(| Vdo|*do) ||V Ado| dx

t t
+ ||V3do||f2 +/ IVuel?, ds—i—/M(cD(s))ds. (2.63)
0 0

For the first term of right side of (2.63), we have
/|V(u -vd) — V(|Vd|*d) ||V Ad| dx

gf(|Vu||Vd|+ |ul|V2d| + |Vd[® + |Vd||V2d|)|V Ad| dx

4
=) Vi (2.64)
i=1
By Holder’s inequality, Nirenberg's interpolation inequality, (2.5), and Young’s inequality, we obtain

VI S IVl [ Vull 2V Adl 2 S IV V) 1 Vull2 |9 Adl o

< IIVdII,?T,l IVull2 ]| V3d] 2 + ||v3d||fz||Vu||Lz

<e|V3d|% + C(IVdIZ, 1Val?, + [ Vulf,), (2.65)
VIl S Il | V2] 2 IV Adlz < 19ulz | 9% 5 9%, 92

< IVule | V2] o 9+ Va2 9l

<el[ V3|l + IVl (19ul, + 1vul), (266)

VIsl S VA3 IV AdIle S VA3 [ V3] 2 < e V3d]7, + ClvdS,, (2.67)
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and
Vgl S IVdlli~ | V2] . IV AdI2 S 11 19 [92d] [ 93]
SUVALE [%d) 2 [F2d]  + [ 9] % |92
<e|[ V2 + c(vand, |V + [ vl ). (268)

Combining (2.64), (2.65), (2.66), (2.67) and (2.68), we obtain
/|V(u -Vd) — V(|Vd*d) ||V Ad| dx

3
<4e|V3d|}, + vl 2, (IVull?, + | V2d]) ) + €| V2d |2 (1vul%, + [ Vuly)

+C(Ivdl®, + [ V2d|S, + Ivuld,)

¢ 4
<4e|| V3|2 + (CM(,OO, uo, do) + / M(@(s)) ds) (2.69)
0

for some M € F, where we have used Lemma 2.2, Lemma 2.5, and Lemma 2.7 in the last step.
Substituting (2.69) into (2.63), choosing ¢ small enough, and using (2.18), Cauchy’s inequality,
Lemma 2.5 and (2.43), we have

t t 4
|v3d|)?, +/HV2dt||i2 ds < (CM(pO,uo,do)—I—/M((D(s))ds)
0 0

for some M € F. This completes the proof. O

Proof of Theorem 2.1. It is readily seen that the conclusion follows from (2.18), (2.32), (2.33), (2.43)
and (2.46). O

3. Proof of Theorem 1.2
3.1. W>P-estimate

In this subsection, we give a proof of W2-P-estimate of the Lamé equation on a simply connected,
bounded, smooth domain with the Navier-slip boundary condition, which is needed in our proof of

Theorem 1.2. We believe that such an estimate may have its own interest.

Lemma 3.1. For any simply connected, smooth bounded domain 2 C R3,1 < p < +o0o0, and f € LP(2, R3),
Ifu e H' N H2(2,R3) is a weak solution of

Lu=f in§2,
u-v=(Vxu)yxv=0 onas2. (3.1)
Then u € W2P(£2), and there exists C > 0 depending on p, §2, and £ such that

|¥2u]| ,p < CIf e + IVul 2] (32)
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Proof. By the duality argument, we may assume 1 < p < 2. Since u-v =0 on 952, it follows from
Bourguignon and Brezis [2] that

IV2ul,, S|Vdivw]|, + | Vicurtlw)], + VullLe. (33)

Also, since £2 is simply connected and (V x u) x v =0 on 3%2, it follows from Von Wahl [36] that

[V (curlw)||,, <CIIV x curlu|jip + |V - (curlu) |, = C||V x (curlu)]|

|LP |LP

1
< ;[H[ZUHLP +Qu+n|Vdivw|,,]
SIvdivay |, + 1 f e (3.4)

Now we estimate ||V (divu)|[;p by the duality argument: for p’ = p%l,

[vdivu)|,, ngup{ /V(divu) -gdx: ge C®(2,R%), lgl,y = 1}.

For any g € C®°(£2, R3), with lgll,»» =1, by Helmholtz’s decomposition theorem (see Fujiwara and
Morimoto [12] and Solonnikov [33]), there exist G € C®(2) "W -P'(£2) and H € C®(2) NLP (2, R3)
such that

g=VG+H, divH=0 in,

oG
— =g-v onas,
av
Gl + I HI L < Cligll =C.

Thus we have
/ V(divu)-Hdx=0
so that

/V(divu)-gdx:fV(divu)-(VG—i—H)dx:fV(divu)-Vde

. 1 1
=/<V(dlvu)—2M+}Lf>-Vde+2'u+k/f-Vde

__H
20+ A

1
= /f'VGdX,
21+ A

1
/Vx(curlu)~Vde+2M+A/f~Vde

where we have used

/V x (curlu) - VG =0,
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since div(V x (curlu)) =0 in £2 and (curlu) x v =0 on 3£2. The above inequality implies

’/V(divu)-gdx Sl VG < ClIfllee.

Taking supremum over all such g's, we obtain

|Vdivw)||,, <Cllflw.
It is clear that this, with the help of (3.3) and (3.4), implies (3.2). O
3.2. Existence

In this subsection, we will first consider that £2 ¢ R? is a bounded domain, and then employ
Galerkin’s method to obtain a sequence of approximate solutions to (1.1)-(1.3) under (1.6) and (1.8)
or (1.9) that enjoy a priori estimates obtained in Section 2, which will converge to a strong solution to
(1.1)=(1.3). The existence of strong solutions for the Cauchy problem on R3 follows in a standard way
from a priori estimates by the domain exhaustion technique, which will be sketched at the end of this
subsection.

To implement Galerkin’s method, we take the function space X to be either

(i) for the Dirichlet boundary condition (1.8), X := H} N H?(£2,R®) and its finite dimensional sub-
spaces as

X™:=span{¢',...,¢"}, m>1,

where {¢™} C X is an orthonormal base of H!(£2), formed by the set of eigenfunction of the Lamé
operator under the boundary condition u =0 on 9£2; or
(ii) for the Navier-slip boundary condition (1.9),

X:={ueH*(2,R*): u-v=(Vxu) xv=00n32},
and its finite dimensional subspaces as
X™:=span{¢',...,¢"}, m>1,

where {¢™} C X is an orthonormal base of H!(£2), formed by the set of eigenfunction of the Lamé
operator under the Navier-slip boundary condition u-v = (V x u) x v =0 on 9£2. By the W2P-
estimate of Lamé equation under (1.8) or (1.9) (see Lemma 3.1), we see that {¢"} c W2P(§2) for any
1<p<+oo.

Now we outline Galerkin’s scheme into several steps:

Step 1 (Modification of initial data). For § > 0, let p§ = po + 8, d3 = do, and uj € X be the unique
solution of

Lud —V(P(p§)) — Ado - Vdo =/ plg in 2, (3.5)
uy=0; or ud-v=(Vxu))xv=0 onds. (3.6)
By the W2-2-estimate of Lamé equation, it is not hard to show that

. 5 _
Eli%r}r”uo—uonx_o.
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Step 2 (mth approximate solutions). Fix § >0 and 3 <q<6.Form>1 and some 0 <T =T(m) <
~+o00 to be determined below, we let

m

ug' =D (U5, d)

k=1

and look for the triple
pmec(0, T W nH),

um(x,0) = > uf (O¢(x) € C([0, T]; W9 N H?),
k=1
d™ e C([0, T]; H*(2, 5?))

solution of the following problem

P+ V- (p"u™) =0,
(:OmuT7 ¢k) + /,L(V xu™, V¢l<) +Q2p+ )\)(V -u™, Vd)k)
=—(pMu™-Vu™ @) — (V(P(p™)), ) — (Ad™ - Vd™  ¢y) (1 <k<m),
A +u™ . Vd™ = Ad™ + [Vd™[*d™, (3.7)
(P™ u™. ")}, _o = (5. up'. do).

adm ad™m
(um,w) =0, or (um-v,(qum) XV, )

av

The existence of a solution (p™,u™,d™) to (3.7) over §2 x [0, T(m)] for some T(m) > 0 can be
obtained by the fixed point theorem, similar to that on the compressible Navier-Stokes equation
by Padula [30] (see also [5]). Here we only sketch the argument. First, observe that for any given
0<T <400 and u™ e C([0, T]; W29 N H?), it is standard to show that there exist

(1) a solution p™ € C([0, T]; W19 N H) of (3.7); along with p™|i—o = p{.

(2) 0 <ty < T, depending on u™ and ||do| 3, and a solution d™ e C([0, tm], H3(£2, %)) of (3.7)3
along with d™|,—g =dp and 351—‘:"|39><[0’tm] =0.

It is well known (cf. [30,5] or Lemma 2.5 in Section 2) that

=0.
32x[0,T]

382 x[0,T]

t
oM(x, ) > 8exp<—/||Vum ||Loc ds) >0, (x,t)eQr. (3.8)
0

The coefficients ) (t) can be determined by the following system of m first order ordinary differential
equations: 1 <k <m,

m t
> (0" i i)l =Fk<u}n(f),/uf"d5,f); ul (0) = (uf, pr). (3.9)

i=1 5

where Fj denotes the right-hand side of (3.7),. Since p™ is strictly positive, the determinant of the
m x m matrix (o™i, Pr)1<ikgm iS positive. Hence we can reduce (3.9) into

ap =Gl bl 0), B =ul;  ul0)=(uj, ),  bp(0)=0, (310)
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where Gy is a regular function of uf", bj". Therefore, by the standard existence theory of ordinary
differential equations, we conclude that there exists a 0 < Ty < t; and a solution uk’”(t) to (3.9),
which in turn implies the existence of solutions p™,d™ of (3.7); and (3.7)3 on the same time interval.

Step 3 (A priori estimates). We will show that there exist 0 < Top < 400 and C > 0, depending
only on the norms given by the regularity conditions on P and the initial data oo, ug, and dg, but
independent of the parameters 8, m, and the size of the domain 2, such that there exists M € F so
that for any m > 1, (™, u™,d™) satisfies:

t
cb"’(t)<exp[c/\/t(pg,ug,d‘S +C/M (@™(s))d } 0<t<To, (311)
0

where @™(t) is defined by (2.1) with (p, u, d) replaced by (p™,u™,d™) and ./\/l(pg, ug,dg) is defined
by (2.3) with (po, uo, do) replaced by (o3, ud, d3).

Since the argument to obtain (3.11) is almost identical to proof of Theorem 2.1, we only briefly
outline it here:

First, it is easy to see (3.7); holds with ¢ replaced by u™. By multiplying (3.7)3 by (Ad™ +
|[Vd™|>d™) and integrating over $2 and adding these two resulting equations, we can show that
there is an M € F such that the energy inequality (2.5) holds with (p,u,d), M, and & replaced
by (o™, u™, d™), M, and ®™.

Second, since (3.7), implies

LU =Py (p™u™ + V(P(p™)) + Vd" - Ad™), (312)

where Pr(u) = Y10, (U, dr)¢k : X — X™ is the orthogonal projection map, we can check that the
same argument as Lemma 2.3 yields that exists M € F so that

| VU™ < M(@™(®), 0<t< Ty (313)

Third, by differentiating (3.12) w.r.t. t, multiplying the resulting equation with uf", integrating
over 2, and repeating the proof of Lemma 2.4, we obtain that there exists M € F such that for

any m>1,
t t
/pm}u;”|2+/fyw;"|2 gC[M(pg,ug‘,dg)+/M(q>m(s))ds:|. (3.14)
02 0

Fourth, similar to the proof of Lemma 2.5 and Lemma 2.6, we have that there exists M € F such that
forallm>1,

t
|vum(?, < C[M(pg,ug,dg) +/M(q§m(s))dsi|, (3.15)
0
and

t
Hpm ||H1mw1vq < Cexp{C[M(,og, uom,dg) + / M(¢m(s))ds:| } (3.16)
0
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Fifth, by differentiating (3.7)3 w.r.t. x and multiplying by Vd[" (and VAd[" respectively) and integrat-
ing over 2, we can use the same argument as Lemma 2.7 and Lemma 2.8 to show that there exists
M € F such that for all m > 1,

t t
|v2dm |2, +/||th'" |2, ds < c[1 +/M(q§m(s))ds:|, (317)
0 0
t t 4
|v3d™ |7, + / | v2d |2, ds < <CM(pg,u'g;,dg)+ f M(q)m(s))ds) . (3.18)
0 0

It is readily seen that combining all these estimates together yields (3.11) with Ty replaced by T,
and ug) replaced by u'.

Step 4 (Convergence and solution). By the definition of ug, M given by (2.1), and the condition
(1.10), we have

M(p§.ud.d)) =1+ ligll 2.
and
C
[ M(pp, g, do) — M(pg, ug, do)| < 5 |ug' = ugf 4o >0, asm— oc.
Thus there exists N = N(§) > 0 such that
M(p§. uf. d)) <2+ gllz. ¥m>N. (3.19)

It follows from (3.19), (3.11), and Gronwall’s inequality (see, for example, [4, p. 263] or [32, Lemma 6])
that there exists a small Ty > 0, independent of § and m, such that

sup @™ (t) < Cexp(Cligll2), Vm =M. (3.20)
0<t<Ty

By virtue of (3.20), we obtain that for any m > M,

sup (Vo |3 + 1™ o + 190" [ + 17 [ + [ V" [ 2)
0<t<Ty
To
+ /(HUm 520 + [ V052 + [ V2™ | + [ V27 |2) < Cexp(Cligl).  (3:21)
0

Based on the estimate (3.21), we can deduce that after taking subsequences, there exists (0°, u®, d®)
such that
p™ — p® weak® in L*(0, To; whin Hl), u™ —~u® weak* in L*(0, To; DN Dz),
u™ —~u’ weakin L?(0, To; D*9), u® ~u! weakinL?(0, To; D),
oy \/;uf weak* in L(0, T; L?),
d™ —~d® weak* in L(0, To; D' N D?) and L?(0, To; D*),
d" ~d° in LZ(O,T;HZ) and weak* in L“(O,T;Hl).
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By the lower semicontinuity, (3.21) implies that for 0 <t < Ty, (0%, u?,d%) satisfies

sup (/0% s + 10 yraey + V6 [ + 2 s + 96 2)
0<t<To

To
+ f(l!u“ [p20 + 1Vul 152 + V4|2 + | V2 | 12) < Cexp(CligI). (3.22)
0

Furthermore, it is straightforward to check that (p u®, d®) is a strong solution in [0, To] of (1.1)-(1.3)
under the initial condition (o°, u?,d®)|—o = (3. uo,dg) and the boundary condition (1. 8) or (1.9).
Since To > 0 is independent of 8, (p?,u’,d’) satisfies (3.22), p§ — po in W9 N H!, ud — ug in
D'ND?, and dg =dy, the same limiting process as above would imply that after taking a subsequence
510, (p®,u®, d® converges (weakly in the corresponding spaces) to a strong solution (p,u,d) of
(1.1)—(1.3) on £ x [0, To] along with (1.6) and (1.8) or (1.9).

For the Cauchy problem on R3, we proceed as follows. For R 1 oo, it is standard (cf. [24]) that
there exists df € H3(R?, $?) such that df = ng outside Bz for some constant ng € S and

lim |Vd§ — Vdo| 2 g3, = 0- (3.23)

Now we let uf € Hj(Bg) N H?(Bg) be the unique solution of
Lug — V(P(po)) — Ad§ - Vd§ = /pog on Bg,ug|,, =0, (3.24)

where g € L(R®) is given by (1.10). Extending uf to R3 by letting it be zero outside Bg. Then it is
not hard to show that for any compact subset K ¢ R3,

I%iTn;OHVug — Vo] 1 4, = 0. (3.25)

By the above existence, we know that there exists To > 0, independent of R, and a strong solution
(pR, uk, dR®) of (1.1)-(1.3) on By x [0, Tg] of (1.1)-(1.3), under the initial and boundary condition:

=0. (3.26)

(P gy = oo uff)s (5.5
R IR /9B ,x[0.T]

Furthermore, (o, u®,dR) satisfies the estimate:

sup (I oPula 1o s + 965 s+ 1aF s + 190 )

\\O
To

4 [ o+ 1V I+ 197 + | V2 1) < ComplClgl?,).  (27)
0

with C > 0 independent of R. It is readily seen that (3.27), (3.23), and (3.25) imply that after taking a
subsequence, we may assume that (o®, uR, d®) locally converges (weakly in the corresponding spaces)
to a strong solution (p,u,d) of (1.1)-(1.3) on R3 x [0, Tg] under the initial condition (1.6) and the
boundary condition (1.7). This completes the proof of Theorem 1.2.
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3.3. Uniqueness

In this subsection, we will show the uniqueness of the local strong solutions obtained in Theo-
rem 1.2.

Let (pi,uj,d;) (i =1,2) be two strong solutions on £ x (0, T] of (1.1)-(1.3) with (1.6) and ei-
ther (1.7), or (1.8), or (1.9). Set p = py — p1, U =uy — u1,d =dp —dy. Then we have

Ot+ Wi -V)p+u-Vpr+ pdivuy 4+ p1divi =0,
p1ile + pruy - Vil + V(P (p2) — P(p1))

= Lil — p(uy + Uy - Vup) — pril - Vuy — Ad - Vdy — Ady - Vd,
di — Ad=Vd - (Vdy + Vdy)di + |Vdy|>d — 1 - Vdy — 17 - Vd,

(3.28)

with the initial condition:

(0,u,d)—0=0, x€2,

and the boundary condition:

i, —
av

Multiplying (3.28); by u, integrating over £2, and using integration by parts, we have

=0.
a0

_ _ ad
=0, or(u-v,(Vxu)xv,—
av

082

1d

o p1|ﬂ|2dx+/((2u+k)|divﬂ|2 + 1|V x i|?) dx

:—/,B(u2t+u2-Vuz)-ﬁdx—/mﬁ-Vuz-ﬁdx+/(P(p2)—P(,o]))divﬁdx
+/(va.vw2.a+va.Vd2.Vﬁ)dx—fAd1.va.ﬁdx.

Observe that

|P(p2) — P(o1)| < Be(llprlli + [l o211 151 < CI1.

Hence, by Holder’s inequality and Cauchy’s inequality, we have

S @ p1|ﬁ|2dx+/((2u+k)|divﬁl2+M|V x u[%) dx

— —_ =2 p— P
SII,OIILglluszuz-Vuz||L6||u||L6+IIVuzlle/qul dx+ lIpll2ldivi] 2
2

+ 1Vl 2 | V22| 3 16 + [V 21 Vo o [Vl 2 + ([ Ada 3 VAl 2 1l s
S PN 3 lluze +uz - Vua o | Va2 + ||Vuz||w1,q/p1|ﬁ|2dx

+Ipl2 IdivEl 2 + V)2 [Vl
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<e/|Vﬁ|2dx+C[||r>||j%||uzt+uz-Vuznfs

+ ||Vuz||W1.q/m|ﬂ|2dx+ 1217, + ||Vc'i||iz].

Thus, by choosing € sufficiently small, we have
d
— p1|ﬂ|2dx+/|Vﬁ|2dx
dt
<C|:||ﬁ||i%||U2t+U2’VU2||f6+||VU2||WM1/,01|E|2dX+||K_)||i2+||Va||%2i|~ (3:29)
Multiplying (3.28); by 2p, integrating over £2, and using integration by parts, we have
d [ _ _ _ . . -
a/lpldeSflpu-szldX+/|p|2(|dlvu1|+IdIVUzI)dx+/|pp1 divu|dx
SUPIIY o2z N1l s + (ldivug ||z + Ildivuzlle)/|ﬁ|2dx+ ol 2 ldivall 2
S Pl IVEl 2 + (Idivu e + IIdivuzllwl,q)/lﬁlzdx
SIpNz(ldivi] 2 + 1V x @l 2) 4+ (Idivur e + [divua i) / P dx
<e [ IVaP dx Cellpl, + C(1divunlyna + divuzlwea) [ 1pPdx. (330
for any € > 0. Similarly, we have
d [ _3 1 — 30 ) 1
5 | P17 xS [ P2 Vo |dx+ [ P12 (Jdivus| + [divusl) dx+ [ |2 px divit] dx
_ 1 _
S oI Vo2l 2l s
L2
. . _.3 _
+ (Idivuy [z + IlchvuzllLoo)/lpl2 dx + IIPIILZ% Idivall 2]l p1lle

Sl

~

Dl

[on N N R ST

_ . . _, 3
IV 2 + (Idivies [y o+ [1divi )y / 151 dx

[N

_ . . _3
125 IVl 2 4 (I1divur llwig + IICIIVUzII\,vl.q)/I,OI2 dx. (3.31)

A
Dl
Nlw

1
Multiplying (3.31) by || o]/ ?;, and using Cauchy’s inequality, we have

3
L2

d _ _ _ . . _
d—upnz; S1PN 3 IVl + (Idivurllye + Idivuallye) 12125
t L2 L2 L2

3t C(IIdivur g + ||divu2||wl,q)||l_7||i%~ (3.32)

<6/|Vﬁ|2dX+Cell,5||2
L
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Multiplying (3.28)3 by —Ad, integrating over £2, and using integration by parts and Cauchy’s inequal-
ity, we have

1d - _
—— [ |vdj?dx /Adzdx
2dtf| Pdx+ [ |Ad|
SVl 2| Ad] 2| Vda + Vdi || + ([ Ad] 2| Vd2 |6 [1d]l 6

+ [ Ad| 2 I s V2l 3 + 1A 2 [[ur |z | V[l 2
SVl 2| Ad] 211Vda + Vdi || g2 + | Ad]| 21| Vda |17, V]l 2

_ _ 1 1 - _

+1Ad 2 IVEll 2 Vdall 2 1 Vdall s + | Adl 2 [ Vu g | V]l 2
S IAdl2 )Vl 2 + |Ad] 2 V] 2

1 - - _
< 5 IAdIE + CIVAIE, + ClIValE,.

This gives

d - . - _
a/|Vd|2dx+/|Ad|2dx<C||Vd||i2+C||Vu||f2. (3.33)
2 2

Multiplying (3.29) by 3C, putting the resulting inequality, (3.30) and (3.32) to (3.33), and taking € > 0
small enough, we have

d _ _ _ - _
a(scn\/_p]uniz + ||p||j% +1p12 +11Vd|2,) +C/ |Vii|® dx

< IIﬁIIi% luae +uz - Vua % + ||VU2||W1,q/,01|ﬁ|2dX+ 12112, + IVd|I 7

+(||divu1”W1~q+”divu2”WLQ)/|ﬁ|2dX+”[_)”i + (Idivurllwia +|Idivuzllwl,q)llﬁlli

3 3
2 2

< (luae + uz - Vuz s + VUt e + [Vuz e + 1)
- (3CIV/prill?, + ||ﬁ||j3 + 1212, + 1VdlI2,). (3.34)

2
By (3.34), Gronwall's inequality, and (pg, ifg, dg) =0, we have

t

Iv/Pril?, + IIﬁIIi% + 1217, + 1VdIlZ, +// |Vii|® dxds = 0. (3.35)
02

This yields
(p, i, Vd) =0. (3.36)
To see d = 0, observe that after substituting (3.36) into (3.28)3, we have
de=|Vdz’d,  dle=o=0.

This implies d = 0. This completes the proof. O
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4. Proof of Theorem 1.3
Let 0 < T, < oo be the maximum time for the existence of strong solution (p,u,d) to (1.1)-(1.3).

Namely, (o, u,d) is a strong solution to (1.1)-(1.3) in £ x (0, T] for any 0 < T < T,, but not a strong
solution in £2 x (0, T,]. Suppose that (1.11) were false, i.e.

T

. 3

lim TSE}; <||p||LOO(OYT;LOO) +fy| Vd(©) || dt) = Mp < 00. (4.1)
* 0

The goal is to show that under the assumption (4.1), there is a bound C > 0 depending only on
Mo, po, Ug, do, and T, such that

sup [ max (I lyis +lpelir) + (Il + IVulln) + (Il + 1Vdle) | < €. (42)
St<T=1=4

and
Ty
[ (el B + uli2sq + Idell2, + 11Vd]|25) de < C. (43)
0

With (4.2) and (4.3), we can then show without much difficulty that T, is not the maximum time,
which is the desired contradiction.
The proof is based on several lemmas.

Lemma 4.1. Assume (4.1), we have

Ty

f/|v2d|2dxdr<c. (4.4)

0 R
Proof. To see (4.4), observe that (4.1) implies fo * ||Vd||%oo dt < Mg so that

Ty

//|Vd|4dxdt<M0-< sup /|Vd|2dx>
0<t<Ty

0
Ty
< M0|: [ [P axde+ [ (ooluol? + IVdolz)dXi|
0

where we have used (2.11) in the last step. Applying (2.11) again, this then implies

Ty Ty Ty
//|Ad|2dxdt://|Ad+|Vd|2d|2dxdt+//|Vd|4dxdt

0 0 0
T

<(1+Mo)[//|P(,0)|2dxdt+f(,00|uo|2+|Vd0|2)dx}-
0



2250 T. Huang et al. / ]. Differential Equations 252 (2012) 2222-2265

Since

[P(p)| < Br(llpll=)lpl < Clpl,

we have, by the conservation of mass and (4.1),

T,

2
[[1p@) P arde<cr. sup tpluion <c.
. 0<t<T,

Thus the standard L2-estimate yields (4.4). O

Following the argument by [34], we let v =L"1V(P(p)) be the solution of the Lamé system:

Lv=V(P(p)), (43)
Vlpe =0, orv—0 as|x|— oo (when 2 =R?). '
Then it follows from [34] Proposition 2.1 that
IVl <C|P(p)| e <CBp(Ipli=)llolie <C, 1<q<8, (4.6)
where we have used (4.1) and the conservation of mass in the last step.
Denote w =u — v, then w satisfies
pwy — Lw=pF —Vd- Ad,
Wlt=0 = Wo = Ug — Vo, (4.7)

wlpe =0 or w—0, as|x|]— oo,

where

F=—u-Vu—L7"V(3(P(p))) = —u-Vu+ L7 'Vdiv(P(p)u) — L7'V((P — P'(p)p) divu).
Then we have the following estimate.

Lemma 4.2. Under the assumptions of Theorem 1.3, if A < %", then (p, u, d) satisfies that for any 0 <t < T,

t
/(p|u|5+|Vw|2+|Vd|5+|V2d|2)dx+//(|v3d|2+|V2w|2+|th|2)dxds<C. (4.8)
2 02

Proof. The proof of this lemma is divided into five steps:
Step 1. Estimates of [ |Vw|?dx. Multiplying (4.7)1 by wy, integrating over £2, and using integration
by parts and Cauchy’s inequality, we have

d
o (M|Vw|2+(,u+k)|divw|2)dx+/,olwt|2dx

3
d 1
< IVPFII% +2E/<W®W_ E|Vc1|2113) :Vde—i—C/|Vd||Vd[||Vw|dx=Zli.
i=1
(4.9)
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For I, we have
I SlIvpu - Vul?, + | /oL~ ' Vdiv(P(p)u) Hfz + VoLV ((P(p) — P'(p)p) divu) Hfz

3
=3 h;. (410)
j=1

For 11, by Holder’s inequality, (4.1), Sobolev inequality, interpolation inequality, and (4.6), we have

< lo3ul? 2 12 3 §
I < Hp5u||L5||Vu||L13_o Sesulsivul L Ivul s
1 2 4 6 1 2 4 6
S osulsIVull IV wils + [ p5ul| s IVull 21V vilgs
102 tlozuwlls ¢
Sesulsivul L ([VAw| ), + 1vwli, +1). (411)
Again by [34], Proposition 2.1 and (4.7), we have
|V2w] 2 S IVowelliz + IVEF 2 + IVd - Ad] 2. (412)
Substituting (4.12) into (4.11), and using Young’s inequality, we obtain for any & > 0
I < e(IlVPwell2: + IVPFII2:)
1 5
+C(losuljsIVull?, + IVWIZ, + [ VdlE [ Ad12, + 1). (4.13)
For I13 and Iy3, by [34] Proposition 2.1, (4.1), (2.5), and (1.5), and Sobolev’s inequality, we have
2
I S| P(u|: S leull?;, S lIveult <C. (4.14)
_ / . 2
i3 SIVPIE L7V ((P(e) — P/(p)p) divu) | /s

S|VETIV((P(o) - P'(pp) divu)| 1 < | (P(o) — P'(p)p) Vul 7,
< CBp(Ipll)ll ol Vul?, < CIVul,, (415)

where we have used the Sobolev inequality when 2 = R3, and both Sobolev and Poincaré inequalities
when £2 is a bounded domain.
Putting (4.13), (4.14) and (4.15) into (4.10), and choosing ¢ sufficiently small, we obtain

1 15
I < S IVPweltz + C(| o3 ul s IVulz, + IVWIZ + IVulg, + 1Vl | AdI + 1)
1 15
< S IvPwelitz + (o3 ul s IVulz + IV VIE +1Vullg +1VdlZx | AdIE, +1)
1 1 45
< Enﬁwtniz +C(|p5ulsIVull2, + [Vullf, + IVl Ad1F, + 1), (4.16)

where we have used (4.6) with g = 2. For I3, using Cauchy’s inequality, we have
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1 1
I3 < E/lthIZdX—i—C/-|Vd|2|Vw|2dx<5/|th|2dx+C||Vd||foo/|Vw|2dx. (417)

Substituting (4.16) and (4.17) into (4.9), we obtain

d ) 1
m (VW + (u+ 1) |divw|?) dx + E/mwtﬂdx

d 1, 1 5
gza/<w®w—§|va| 113) tVwdx + || Vdi I,

1 5
+ C(IVAIE= (IVWIZ, + I1AdI2) + | o5 u| s I VullF, + I Vull?, +1). (4.18)

Step 2. Estimates off,olul5 dx. Multiplying (1.2) by 5|u|3u, integrating over §2, and using integration
by parts and Cauchy’s inequality, we have

d
a/,o|u|5dx+/5|u|3(u|w|2Jr(;urx)|clivu|2+3M|V|u||2)d><
1
:/5P(p)div(|u|3u)dx+/5(Vd®Vd— 5|Vd|2]13> div([ulu)
—/15(M + A (divu)|u)®u - Viul

. 45 2
<C<fp|u|3|Vu|+/|Vd|2|u|3|w|)+/5(u+x>|u|3|dwu|2+/Z(u+x)|u|3|wu|| .

By Kato's inequality |Vu|? > |V|u||?, we have

(wwwwwmwuuz

45 A 3 A
> (15 = BEEDY [prout, it - 245 <o

4514+ X 3+
<15u—%>/|u|3|wu||2>0, ifu—$>o.

Hence we obtain

d 9 A
m ,0|u|5dx+5min{u, <4M—%>}f|u|3|vm2dx

<C</p|u|3|Vu|dx+/|Vd|2|u|3|Vu|dx>. (419)
Since A < %", we have

o :=5min{u, <4M— w» > 0. (4.20)
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Thus by Cauchy’s inequality, we have

d
— ,0|u|5dx+co/|u|3|Vu|2dx

dt
<C</p|u|3|Vu|dx+/|Vd|2|u|3|Vu|dx>
<%‘)/|u|3|Vu|2dx+c[/p2|u|3dx+/|Vd|4|u|3dx].

Hence by Hélder’s inequality, Sobolev’s inequality, the conservation of mass, (4.1) and Young’s in-
equality, we have

d
. p|u|5dx+C2—°/|u|3|Vu|2dx

§/p2|u|3dx+/|w|4|u|3dx

5 : z : ENT 5 :
5(/,o|u| dx) </p2 dx) +||V(|u|2)||L2(/|Vd| dx)
c 2
<ZO/|u|3|Vu|2dx+C|:1+fp|u|5dx+(/|Vd|5dx> }

Thus by (2.5) we have

d 2
E/p|u|5dx+%0/|u|3|Vu|2dx§/p|u|5dx+([IVd|5dx> +1

§/p|u|5dx+ IVdlj Vs + 1. (4.21)
Step 3. Estimates of [ |Vd|? dx. Differentiating (1.3) with respect to x, we obtain
Vd; — VAd + V(u - Vd) = V(|Vd|*d). (4.22)
Multiplying (4.22) by 5|Vd|>Vd and integrating by parts over §2, we have
%/ |Vd|5dx+5/ |Ad|?|Vd)? dx
= 5/[V(|Vd|2d) —V(u-Vd)]-|VdPvddx — 5/ Ad-V(|Vd]®) - Vddx
g/(|w|5|v2d| +1Vd)” + |Vul|Vd] + |Vd]?|v2d|) dx.

This, combined with Cauchy’s inequality and the fact

|Vd|>=—d - Ad (since |d| =1), (4.23)
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gives
%/|Vd|5dx+5/|Ad|2|Vd|3dx

5/(|Vd|3|v2d\2+|Vd|7+|Vu||Vd|3\v2d|)dx

S IVA | V2[5 + VA2 1Vl + 1VdI3 [ Vull 2 | 92 2

S IVA (V2] + 1Vull?) + 1Vl 1 VdIl3s. (4.24)
By (4.6) and (4.24), we have

%/|Vd|5dx+5/|Ad|2|Vd|3dx
SIVA (V2] + 19WIZ) + 1VdIFe + 1912 [ Va5 (4.25)

Step 4. Estimates of [ |V2d|? dx. Multiplying (4.22) by Vd;, integrating by parts over £2, and using
Cauchy’s inequality, we have

1d
5E/|Ad|2dx+/|th|2dx

:/(V(|Vd|2d) — V(u - Vd)) - Vd; dx

<e|Vde|}, + c/(|w|6 + |Vd|2|v2d\2 + |Vu?|vd)? + |u|2|v2d\2)dx

2 2
<el|Vdi %, + c[nwn%m(nvzdnLZ +1IVul%) + [ |ul?|V2d| dx], (4.26)
where we have used (4.23) to estimate
/|Vd|6dx§ ||Vd||%oo/|V2d|2dx. (4.27)

For the last term on the right-hand side of (4.26), using Nirenberg’s interpolation inequality and
Cauchy’s inequality, we have

12 10
[ P92 d s i | 515y < e viuid s + 5]

L13 3
512 8 2
<e|Viulz |, + vl vl
<e| Vil | +e| V3] + C(1vdlfs + | V3d] 3 +1)

< 55/ ulP|Vul dx + ¢ | V3d| %, + C(| V2|5 +1). (4.28)



T. Huang et al. / . Differential Equations 252 (2012) 2222-2265 2255

By (1.3), H3-estimate for elliptic equations, and (4.27), we have

|V3d] 5, S IVl + [V - Va1 + |V (vdRd) |,

S IVl + VA1 (IVull, + | V2d|12) + 1V s + / jul?|v2d|” dx
< c[nwtniz + VA3 (1VulZ + | V2d] 5) + / |u|2|v2d|2dx}. (4.29)
Substituting (4.29) into (4.28), and choosing ¢ sufficiently small, we have
/|u|2|V2d|2dx
< C[ / [ul?|Vu|?dx + \|v2al||‘L‘2 + & Vd: |12, + [Vdllf (1 Vull?, + | vzdﬂfz) + 1}. (4.30)
Substituting (4.30) into (4.26), using (4.6), and choosing ¢ sufficiently small, we obtain

d
E/|Ad|2dx+/|Vd[|2dx

< c[nwn%x(HdeHfz + [IVul2,) +/ [ul?|Vu|?dx + HVZdH‘L‘Z +1]

4
< c[nwn%w(nvzdnfz +1IVwIZ) + 1Vdf +/|u|3|Vu|2dx+ [v2d| +1}. (431)

Step 5. Completion of proof of Lemma 4.2. Adding (4.21), (4.18), (4.25) and (4.31) together, and choos-
ing ¢ sufficiently small, we obtain

d i 1 1
o [ Pl + 19 WP Gt ldivw 198 + 1adP) dx+ 5 [ plweanr 5 [ 19diPa
d 1
<zaf(w®w— 5|Vd|2113) :dex+C[(||Vu||fz +1)/p|u|5dx||Vu||§z +IVd|f
2 2
+ IVdlF= (IIVdIPs + | V2] 2 + IVWIZ) + VAl (1VdIPs + | V2] 12 + IV WIIZ,)
4
+IVd|If~ + || V2| 2 + 1].
This, combined with Cauchy’s inequality, implies
d 5 2 : 2 5 2 1 2 2
@ (oluP + wIVw|* + (1 + 2)[divw|* + [Vd]’ + | Ad] )dx—}-z plwelcdx+ [ |Vd|“dx

d 1
< 2Ef(w® vd — E|Vd|2113) :Vwdx + C[[|Vul?, + [ Vd]|~

+ (IVull?, + | V2d| 3 + VI3 + 1) (| 05 uls + 1VdI3s + [ V2d[ 2 + 1V wiiZ) +1].
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Integrating over (0, t), and using (4.1), (2.5), we have

t
/(pluls +|Vw|? +|Vd) + |V2d|2)dx+ /[(,0|Wt|2 +|Vd;[?) dxds
0

t
<c[/|Vd|2|v\/v|a!x+f1<(s)(|y,oéu\|f5+||Vw||§2 +1vdls + ||V2d”i2)ds+1}, (4.32)
0

where
K(s) = | Vu)| % + | v2d©) |5 + | vd©) | 1 + 1.

By (4.32) and Young’s inequality, we have

t
/(p|u|5+|vW|2+ IVdP® + yvzd\z)ax+//(p|wt|2+|th|2)dxds
0

t
< %/|Vw|2dX+C|:/|Vd|4dx+/1((s)(”p;u”is+||VW||%2_i_”Vd”?S_i_”vzd”iz)ds_i_l}

0
1
< 5(/|Vw|2dx+[|Vc1|5czzx>
t

+c[/1<(s)(|}p%u||f5 +IVWIZ + VI3 + | V2d|5 ) ds + 1].
0

Thus we obtain

t
/(,0|u|5 +|Vw|? +|Vd) + |V2d|2)dx+//(p|wt|2+ |Vd,|?) dxds
0

t
< C|:1 + / K (| o3us + VWi, + 1vdlSs + HVZdHiz)ds}. (433)
0

By (4.1), (2.5) and (4.4), we know

t
f K(s)ds < C. (4.34)
0

By (4.33), (4.34) and Gronwall’s inequality, we obtain that for any 0 <t < Ty,
t
2
/(p|u|5 + |Vw[? +|Vd]® + |V2d|") dx + f/(,olwtlz +|Vd|?) dxds < C.
0

This completes the proof of Lemma 4.2. O
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Corollary 4.3. Under the same assumptions of Lemma 4.2, we have that for any 2 < q < 6,

O<SUDT (luligs + IVull2 + 1Vdlia + lidell 2) + IVull 20,716 < C- (4.35)
St<Ty

Proof. Combining (4.6) with (4.8), we get
[Vu®] 12 < Vw2 + |90 2 < (436)

The upper bound of supyg;.r, llufl;s follows from (4.36) and Sobolev's inequality. The bound of
SUpogi<r, IIVd|lLa follows from (4.8) and interpolation inequality. For the last term of (4.35), by
Sobolev’s inequality, (4.6) and (4.8), we have

IVullizo, 1.6y S IVWI20,7:18) + IV V20,715
2
S ”V W“ [2(0,T;L2) + ”vw”LZ(O,T;LZ) +1<C.

By Egs. (1.3), (4.8) and Holder’s inequality, we have

sup |ldell2 S sup (IIAdI 2 + VA%, + lu - Vd] )

~

0<t<Ty 0<t<Ty
< sup (JlullsVels) +1<C.
0<t<Ts

This completes the proof. O

Lemma 4.4. Under the same assumptions of Lemma 4.2, (p, u, d) satisfies that for any 0 <t < Ty,
t
NY .
/ (p|a®]" +Vde?) (£) dx + / / (IVal® + deel®) dxds < C, (4.37)
Q 00
where f is the material derivative:

fi=fi4+u-Vf.

Proof. Step 1. Estimates of [ pli(t)|?dx. By the definition of material derivative, we can write (1.2) as
follows,

pu+ V(P(p)) =Lu—Vd-Ad. (4.38)
Differentiating (4.38) with respect to t and using (1.1), we have
plc+ pu- Vi + V(P(p)) + (Vd - Ad);
=L — L(u-Vu) +div[Lu®u — V(P(p)) @ u — (Vd - Ad) @ u]. (4.39)

Multiplying (4.39) by u, integrating by parts over £2 and using the fact & =0 on 952, we obtain
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1£ . 2 . 2 . . 2
S plul*dx+ | (1IVI|* + (u+ 1) divit|?) dx
= /((P(p))tdivil +u® V(P(p)): Vi) dx + u/(div(Au Qu) — A(u-Vu)) - idx

+ (/L+A)/(div(Vdivu ®u) — Vdiv(u - Vu)) -udx+/(u ® (Ad - Vd)) : Virdx

5
+/(th®Vd+Vd®th —Vd-VdI3): Vidx=Y_ Ji. (4.40)
i=1

By Egs. (1.1) and (4.1), we have
Ji= /(— div(P(p)u)divii — (P’ (p)p — P(p)) divudivii + u ® V(P(p)) : Vit) dx
= /(P(p)u -Vdivit+ (P(p) — P'(p)p) divudivit + P(p)(Vu)' : Vit — P(p)u - Vdivil) dx
= /((P(p) —P'(p)p)divudivitdx + P(p)(Vu)' : Vi) dx < [ Vull 2| VL] 2.
By the product rule, we can see
div(Au ® u) — A(u - Vu) = Vi(divuViu) — Vk(VkujVju) —V; (Vkujvku),
so that by integration by parts, we have
Jo= ;L/(Vk(divuvku) — Vi(Viw! Viu) — Vi (V! Viw)) - idx S (Vi) 2 | Va2,

Similarly, since
div(Vdivu ® u) — Vdiv(u - Vu) = Vi (Vju! Vi) — Vi (Vju' Viu!) — Vi (Veu' viud),

we have
Ja= (42 /(Vk(vjufv,-u") — Vi(Viu'Viud) — Vi(Viu' Viud) )ik dx < (| Vi 2 | Vul 2.
By Holder’s inequality, and Corollary 4.3, we have

JaS IVl 2lAd] s [Vl s lulls < IVl 2l Adllgs,

Is < / [Vi||Vd|[Vdldx S Vil 2| Vdell 2| V] L~ .

Putting all these estimates into (4.40), using Young's inequality and Sobolev’s inequality, and
Lemma 4.2 and Corollary 4.3, we have
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/,0|it|2dx+/(,u|vit|2+(M+k)|divil|2)dx

IS

1
2
SIVull 21Vl 2 + IVullZall Vil 2 + Vil 2| Adllys + [ Vil 2 | Vel 2] V]l

Mmoo
< S IVl + C(IVullg, + 1Vulla + 1A, + VL 1 VdilE=)

=

< 3||Vu||§z + C(IVul®y + [ V3d| 7 + 1Vde 121 VdI 2 + 1).

Thus we obtain

d . . 2
m p|u|2dx+u/|w|2dx5||Vu||;‘4+HWHLZ+||th||§z||Vd||§oc+1- (441)

By H>-estimate of elliptic equations, Lemma 4.2, Corollary 4.3, and Nirenberg’s interpolation inequal-
ity, we have

[V2d| 2 S UIVddll2 + llu- Va2 + [IVullVal | o + [ 1Vd][V2d]] 2 + [ VP 2
SVl + lullgs 1Vl s + [Vull 1Vl + [ Vdl s ] V2| 5 + 1
< IVd:lyz + VUl IVul2, + | V2] % | v2d] 2, +1
< %Hv%HLZ +C(IVdell 2 + | VPul 2 +1).
Thus we obtain
IV3d|| 2 SUVdellz + | VPul 2 +1. (442)
By the definition of w, we have
Lw = pll+ Ad - Vd. (4.43)

By H2-estimate of Eqs. (4.43), (4.1), Corollary 4.3, Nirenberg’s interpolation inequality, and (4.42), we
obtain

V2w, S loal® + 1ad- VdI% S | p2ih + Iadi 1 VdI
< lotilf +IAdlzlAdlg S |p2i|f + 1V A2 +1
< lori|% + 1Vdellz + | V2ul o + 1. (4.44)

By interpolation inequality, Corollary 4.3, (4.6) (for ¢ = 6), (4.44), and Cauchy’s inequality, we obtain

IVullly SUVull2 I Vuls S I VullslVullZs
S IVulls (1w + 1VvIZ6) S I Vullys (| V2w +1)
SVl (| o2 ]2 + IVdel2 + [ V2u] 5 +1)
S IVl pza] 3 + 1Vul?s + 1Vl + | V2ul, + 1

< IVullys | p2 it 2 + 1Vdel + | V2u % + 1. (4.45)
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Putting (4.45) and (4.42) into (4.41), we have

d : . .
X ,0|u|2dx+u/ Vil dx S 1Vulls | p2 |2 + 1Al (1Vdlie +1) + | V2u] 2, +1.

(4.46)
Step 2. Estimates of [ |Vd,|?* dx. Differentiating (1.3) with respect to t, we have
de — Ady = 3(|Vd|*d — u - Vd). (4.47)
Multiplying (4.47) by dy, integrating by parts over £2 and using %—ﬂ’flarz =0, we obtain
1d
—— [ |Vdi|? dx dee|? dx
3qi [ v [ ida
:/at(|Vd|2d —u - Vd)dy dx
S/(Ilezldrl +IVdIIVdrI)IdrrIdX+/(IurIIVdI + [u]|Vdy|)|dee | dx
=K1 + K. (4.48)

By Holder’s inequality, Sobolev’s inequality, Corollary 4.3, and Young’s inequality, we have
[K1| < Nldeell 2 IIdrIILGIIVdIIfs + ldecll 21Vl 2 1 V]l Lo
S ldeell 2 (1Vdell 2 4+ 1) + Ideell 2 [|Vde [l 2 [ V]| 1

1
< glldeelZ2 + C(IVAelf; + 1 VdliE VeI +1).

By the definition of i1, Holder’s inequality, Sobolev’s inequality, Corollary 4.3, and Young’s inequality,
we have

IK2| 5/[(|ﬂ|+ |ul|Vul)|Vd| + [u][Vde|]|de| dx
S ldeellz Nl VAl s + lldeell 2 lull s [Vulls 1Vl s + lldell 2 ullps Vel 3
Slldecll 21V 2 + Ndeell 2 (| V2u ] 2 + 1) + el 21 Ve ] 2

1 .
< g||da||iz +C(IVal?, + | V2ulZ + 1vd)% +1).

Putting these two estimates into (4.48), using Nirenberg's interpolation inequality, and Young’s in-
equality, we have

1d ) 3 )
SVl + | V2ul|f + (14 1VdI2) IVde 1% + [Vdl? +1
SNV, + | V2u| 3 + (14 [VdIR) Ve |12, + [ Vde ]2 [ V2de | o +1

1 .
<glvi |5+ CUVaIZ + | V2ul% + (1 + 1VdI2) 1Vde 1% +1). (4.49)



T. Huang et al. / . Differential Equations 252 (2012) 2222-2265 2261

By H?-estimate of Eq. (4.47) and estimates similar to K; and K, we obtain

[Vl 2 < Neelliz + e - Vb 2 + [ (1VdI*d) | 2
S lduellgz + 11 - Vdllgz + |- V) - V| o + llullys | Vdell 3
+ delys 1 VeIl + Vel Vdll s

Slldeell g2 + il s 1V llys + llullys | Vulls | Vdll s + uwfnfz IVdel % + 19l 2 +1
< S 1922+ Cldallyz + 192 + [ T2l + 1962 + 1)
Thus
|V2de ] 12 S Ndeell 2 + IVE 2 + | V2u] 2 + Vel 2 + 1. (4.50)

Substituting this inequality into (4.49), we obtain
d . 2
o [[1vaePax [ 1deP dx S 1Va, + |92l + (14 1V IVAR +1. (451

Combining (4.46) and (4.51), and applying Gronwall’s inequality, we establish the conclusions of
Lemma 4.4. O

By Eq. (4.43) and Lemma 4.4, we obtain the following corollary:
Corollary 4.5. Under the same assumptions of Lemma 4.2, we have that for q € (3, 6],

Jsup (1V2d]z + IVdlie) + 1YWz i + [ VAWl o0y <€ (452)
St<Ts

Proof. By H3-estimate of elliptic equations, (1.3), Lemma 4.4, Corollary 4.3, and Nirenberg's interpo-
lation inequality, we have

[V2d] 2 S 1Vellz + llu - Va2 + |1VullVdl] 2 + 1Vl V2d]] 2 + [ 1VdP ] 2
SlullsIVdl s + [Vull 2 [Vdle + [Vl || V2d]) 5 + 1
1 3 1 1 1
SIVAIL VAR, + | V2|5 [ V2] 2 +1< 5||v3c1||L2 +C.
Hence

sup | V3d|,, <C.
0<t<Ty

By Sobolev’s inequality, this yields

sup [[Vd|l1=~ < C.
0<t<T,

For simplicity, we only consider the case g = 6. By W29-estimate of Eqgs. (4.43), (4.1), and Sobolev’s
inequality, we obtain
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| V2w 6 S llptills + I1Ad - Vdl s < llitllgs + 1A g [ Vdi < V2 + 1.
Therefore, by (4.37), we have

T,

HVZWHLZ(O,T*;LG) g/(nvunfz +1)ds<C. O
0

Following the same argument of [34, Section 5], we have
Lemma 4.6. Under the same assumptions of Lemma 4.2, we have that for q € (3, 6],

sup [[Vplanz <C. (4.53)

0<t<Ty
Corollary 4.7. Under the same assumptions of Lemma 4.2, we have for q € (3, 6],

Sup “ Vzu ||L2 + ||u “LZ(O,T*;DZ"?) < C (4.54)
0<t<Ty,

Proof. By [34, Proposition 2.1], (4.38), (4.1) and Lemma 4.6, we obtain that for r{ =2 or g,
[V2u] Slipilin + [V(PD)] 1 + 1V - Al
Slietln +1Vd - Adlign + VRl (4.55)
When r; =2, (4.1), (4.55), Lemmas 4.2, 4.4, and Corollary 4.5 imply
1.
[V2u] o S o2l + IVdll= | Adl 2 + 1< C.

When r1 =g, for simplicity, we only consider the case ¢ =6. By (4.1), (4.55), Lemma 4.2, Lemma 4.4,
Corollary 4.5, and Sobolev’s inequality, we have

2 .
“V u ||L2(0,T*;L6) 5 ”/O”LOO(O,T*;LOO) ”u”LZ(O,T*;LG) + ()<S?<p]' ”vd”]_oc ”Ad”LZ(O,T*;LG) + 1
S ”Vﬂ“LZ(O,T*;LZ) + ”Ad“Lz(O,T*;Hl) + 1 < C
This completes the proof. O

Corollary 4.8. Under the same assumptions of Lemma 4.2, we have that forry =2 or g,

Ty
sup /(,0|ut|2+|,0t|”)dx+//(|Vut|2+|V2dt|2+|v4d|2)dxdsgc. (4.56)
0<t<Ty

2 0 2

Proof. It follows from (4.1), Lemma 4.4, Sobolev’s inequality, (4.35), and Corollary 4.7 that
24, < .12 ) 2
plul”dx S [ pluldx+ [ plu- Vu|~dx

S ||p||L°°||u||L°°/|VU|2dX+1 SIVullgpr +1<C.
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By (1.1), (4.1), Sobolev’s inequality, (4.35), Lemma 4.6 and Corollary 4.7, we get

el Slledivulis +llu- Vol S leleelldivullpn + lulle Vol
Slelelidivulig + [Vullgi [IVelln <C.

By Lemma 4.4, interpolation inequality, Sobolev’s inequality, (4.35), and Corollary 4.7, we have

T, T, T,
//qutlzdxdsgff|Vﬂ|2dxds+//|V(u-Vu)|2dxds
00 02 02

Ty T
5//|Vu|4dxds+//|u-V2u|2dxds+1
02 02

T« T«
2
5/||Vu||Lz||Vu||iﬂ ds+/||u||%oo/|vzu| dxds +1
0 0 2

T,
§/||Vulli1/|vzu]2dxds+1 <C.
0 2

By (4.50), Lemma 4.4, and Corollary 4.7, we get

Ty

//|V2dt|2dxds <cC.

0

By H*-estimate of Eq. (1.3), we have

3
| V4|7 < lldels + llu - V2, + [ 1VdPd] = Y Li.

i=1

For L1, (4.35) and Lemma 4.4 imply

L S [aff + 1.

2263

(4.57)

(4.58)

(4.59)

For L,, Holder’s inequality, Sobolev’s inequality, (2.5), (4.8), (4.35), Corollaries 4.5 and 4.7, we have

Ly < |l (1Vd] + |V2d] + [V3d]) |72 + [IVul (1Vd] + |92d]) 7, + || V2u] | vd] | 2

S ulld (1VdI% + [ V2|2, + | V3d])5) + 19d12 (IVul% + | V2ul5)
+IVull?, | v2d] < C.

Similarly, for L3, we have

(4.60)
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L3 S IV (3 + [19a1|v2d] |5z + [ V2d[* (172 + 11| v2d] |
S IV VA2, + | V2|5 < C. (4.61)

Substituting (4.59)-(4.61) into (4.58), we have
4 4112 < 2 2
[v4d|. S || V2de] 2 + 1. (4.62)
Integrating (4.62) over (0, t), and using (4.57), we establish Corollary 4.8. O

Proof of Theorem 1.3. By the above estimates, we know that both (4.2) and (4.3) are valid. Hence T,
is not the maximum time for the strong solution (p, u, d). This contradicts the definition of T,. The
proof of Theorem 1.3 is complete. O
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