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The Rado–Horn theorem provides necessary and sufficient condi-

tions for when a family of vectors can be partitioned into a fixed

number of linearly independent sets. Such partitions exist if and

only if every subfamily of the vectors satisfies the so-called Rado–

Horn inequality. In this paper we provide an elementary proof of

the Rado–Horn theorem as well as results for the redundant case.

Previous proofs give no information about how to actually partition

the vectors; we use ideas present in our proof to find subfamilies of

vectorswhichmaybeused to construct a kind of “optimal” partition.

Published by Elsevier Inc.

1. Introduction

The terminology Rado–Horn theorem was first introduced in [3]. This theorem [12,15] provides

necessary and sufficient conditions for a family of vectors to be partitioned into k linearly independent

sets:

Theorem 1.1 (Rado–Horn). Consider a family of non-zero vectors � = {ϕi}Mi=1 in a vector space. Then

the following are equivalent:

(i) The set {1, . . . ,M} can be partitioned into sets {Aj}kj=1 such that {ϕi}i∈Aj is a linearly independent

set for all j = 1, 2, . . . , k.
(ii) For any non-empty subset J ⊆ {1, . . . ,M}, |J| / dim span({ϕi}i∈J) � k.

TheRado–Horn theoremhas foundapplication inseveral areas includingprogresson theFeichtinger

conjecture [5], a characterization of Sidon sets in�∞
k=1Zp [13,14], and a notion of redundancy for finite
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frames [1]. A generalized version of the Rado–Horn theorem has also found use in frame theory where

redundancy is at the heart of the subject [2].

Unfortunately, proving the Rado–Horn theorem tends to be very intricate. Pisier, when discussing

a characterization of Sidon sets in �∞
k=1Zp states “. . . d’un lemme d’alébre dû à Rado–Horn dont la

démonstration est relativement délicate” [14]. Today there are at least six proofs of the Rado–Horn

theorem [4,5,10–12,15]. The theorem was proved in a more general algebraic setting in [12,15] and

then for matroids in [10]; these proofs are all delicate. Harary and Welsh [11] improved upon the

matroid version of the Rado–Horn theorem with a short and elegant proof; however, their argument

requires a development of certain deep structureswithinmatroid theory. The Rado–Horn theoremwas

generalized in [4] to includepartitionsof a familyof vectorswith subfamiliesof specifiedsizes removed,

and the authors also proved results for the redundant case – the case where a family of vectors cannot

be partitioned into k linearly independent sets. Unfortunately the proofs for these refinements to the

theorem are even more delicate than the original. Finally, the Rado–Horn theorem was rediscovered

in [5], where the authors give an induction proof which may be considered elementary. This proof has

some limitations, however, as it does not clearly generalize nor does it describe the redundant case; it

does not reveal the origin of the Rado–Horn inequality.

In this paper, we present an elementary proof which is at the core of the Rado–Horn theorem.

With slight modification, these simple arguments prove a generalization of the Rado–Horn theorem

and provide results for the redundant case similar to those in [4]. Most appealing, the arguments we

present may be thought of visually and provide insight into the specific conditions which give rise to

the inequality in the Rado–Horn theorem. These ideas can then be used to construct partitions which

contain the fewest possible number of linearly independent sets and which are optimal with regard

to certain spanning properties. We will make this clear in the definition of a fundamental partition.

This paper is organized into three sections. The first develops constructions and main arguments

used throughout the paper. The second section uses these tools to prove the Rado–Horn theorem,

the original and the redundant case. The final section describes which subfamilies maximize the

Rado–Horn inequality and how similar subfamilies may be used to construct a so-called fundamental

partition.

2. Preliminaries

We will always consider� = {ϕi}Mi=1 to be a finite family of non-zero vectors in a real or complex

vector space. Note the vectors in this family are not necessarily unique. Our proof of the Rado–Horn

theorem relies on a special partition of this family. In this section we define fundamental partitions

and demonstrate several of their remarkable properties.

Definition 2.1. Given a family of vectors � = {ϕi}Mi=1, let {Aj}kj=1 be a partition of the index set

{1, . . . ,M}. We call {{ϕi}i∈Aj}kj=1 an ordered partition of� if
∣∣Aj

∣∣ �
∣∣Aj+1

∣∣ for all j = 1, . . . , k − 1.

Definition 2.2. Given a family of vectors � = {ϕi}Mi=1, let {Pk}mk=1 be all possible ordered partitions

of � into linearly independent sets. Let Pk = {{ϕi}i∈Fkj}rkj=1 so that {ϕi}i∈Fkj denotes the jth set in the

kth partition. Now define

a1 = max
k=1,...,m

|Fk1| .

Consider only the partitions {Pk : |Fk1| = a1}, and define

a2 = max{k:|Fk1|=a1}
|Fk2| .

We continue so that given a1, . . . , an,

an+1 = max{k:|Fk1|=a1,...,|Fkn|=an}
∣∣Fk(n+1)

∣∣ .
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Fig. 1. Example of a fundamental partition {{ϕi}i∈Fj }�j=1.

When
∑�

i=1 ai = M, any remaining partition is in the set {Pk : |Fk1| = a1, . . . , |Fk�| = a�}. We call

any such ordered partition of � a fundamental partition which we write as {{ϕi}i∈Fj}�j=1. Also, we

will use the notation ϕ(j) when denoting some vector ϕi in {ϕi}i∈Fj .

We introduce a fundamental partition as in Definition 2.2 because existence is clear. However, a

fundamental partition is a specific exampleof abasis for a sumofmatroids [6,7]. The following theorem

gives a useful alternative definition and is Theorem 1 from [7].

Theorem 2.3. Let� = {ϕi}Mi=1 be a family of vectors. Then {{ϕi}i∈Fj}�j=1 is a fundamental partition if and

only if for any other ordered partition {{ϕi}i∈Aj}kj=1 of� into linearly independent sets,

(i) � � k.

(ii)
∑n

j=1

∣∣Aj

∣∣ � ∑n
j=1

∣∣Fj∣∣ , n = 1, 2, . . . , �.

It is helpful to visualize a fundamental partition as a Young diagramwhere each square represents a

vector, and the rows correspond to the sets {ϕi}i∈Fj ; see Fig. 1. Intuitively, if Young diagrams represent

orderedpartitions of vectors into linearly independent sets, a fundamental partition is a diagramwhich

is as top-heavy as possible.

Next we will examine spanning properties of a fundamental partition. We will often use the fol-

lowing well known result.

Proposition 2.4. Let � = {ϕi}Mi=1 be a set of linearly independent vectors. Suppose ψ ∈ span(�) so

that ψ = ∑M
i=1 ciϕi . Then for any j ∈ {1, . . . ,M} such that cj �= 0, �j = (� \ {ϕj}) ∪ {ψ} is linearly

independent and span(�j) = span(�).

The following lemma is trivial but does provides some information concerning spanning properties

of a fundamental partition.

Lemma 2.5. Let {{ϕi}i∈Fj}�j=1 be a fundamental partition of � = {ϕi}Mi=1. Then span({ϕi}i∈Fj) ⊆
span({ϕi}i∈Fr ) for r � j.

Proof. Suppose there existed some ϕ(j) ∈ {ϕi}i∈Fj , such that ϕ(j) /∈ span({ϕi}i∈Fr ). Then

{ϕi}i∈F ′
r
= {ϕi}i∈Fr ∪ {ϕ(j)}

is linearly independent with
∣∣F ′

r

∣∣ > |Fr | contradicting our assumption that {{ϕi}i∈Fj}�j=1 is a funda-

mental partition. �
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This shows that in a fundamental partition, any vector is contained in the spans of the sets before

it. Next we show some vectors must be contained in the spans of almost every set.

Lemma 2.6. Let {{ϕi}i∈Fj}�j=1 be a fundamental partition of � = {ϕi}Mi=1. Pick any ϕ(�) ∈ {ϕi}i∈F� and

fix any k � �− 1. Let Sk ⊆ Fk be the smallest set such that ϕ(�) ∈ span({ϕi}i∈Sk). Then span({ϕi}i∈Sk) ⊆
span({ϕi}i∈Fj), j = 1, . . . , �− 1.

Proof. Clearly the set Sk exist by Lemma 2.5. We will prove the statement for j = � − 1. The result

will then follow for all j = 1, . . . , �− 1 since span({ϕi}i∈F�−1
) ⊆ span({ϕi}i∈Fj) for j � �− 1.

We will assume the result fails and get a contradiction. Suppose there exists some ϕ(k) ∈ {ϕi}i∈Sk
such that ϕ(k) /∈ span({ϕi}i∈F�−1

). By Proposition 2.4,

({ϕi}i∈Sk \ {ϕ(k)}) ∪ {ϕ(�)}}
is linearly independent with the same span as {ϕi}i∈Sk . Thus we can partition� \ {ϕ(k)} into � linearly
independent sets, say {{ϕi}i∈Gj

}�j=1 given by

{ϕi}i∈Gj
=

⎧⎪⎨
⎪⎩
({ϕi}i∈Fk \ {ϕ(k)}) ∪ {ϕ(�)}} for j = k

{ϕi}i∈F� \ {ϕ(�)} for j = �

{ϕi}i∈Fj for j �= k, �.

Notice
∣∣Gj

∣∣ = ∣∣Fj∣∣ and span({ϕi}i∈Gj
) = span({ϕi}i∈Fj) for j = 1, . . . , �− 1, but then

{ϕi}i∈G�−1
∪ {ϕ(k)}

is also linearly independent with
∣∣∣{ϕi}i∈G�−1

∪ {ϕ(k)}
∣∣∣ > ∣∣∣{ϕi}i∈F�−1

∣∣∣. This contradicts the fact that

{{ϕi}i∈Fj}�j=1 was a fundamental partition. �

We can extend Lemma 2.6 to obtain a larger set of vectors which must be contained in the spans of

each {ϕi}i∈Fj , j = 1, . . . , �− 1; this is done by iterating the argument.

Theorem 2.7. Let {{ϕi}i∈Fj}�j=1 be a fundamental partition of� = {ϕi}Mi=1. Pick any ϕ(�) ∈ {ϕi}i∈F� and

for j = 1, . . . , �− 1, let S
(1)
j ⊆ Fj be the smallest set such that ϕ(�) ∈ span({ϕi}i∈S

(1)
j

). Pick a k1 so

∣∣∣S(1)k1

∣∣∣ = max
j=1,...,�−1

∣∣∣S(1)j

∣∣∣ ,
and set S

(1)
k1

= S
(2)
k1

. Now define S
(1)
j ⊆ S

(2)
j ⊆ Fj, j = 1, . . . , � − 1 as the smallest subset such that

span({ϕi}i∈S
(2)
k1

) ⊆ span({ϕi}i∈S
(2)
j

) and choose k2 so

∣∣∣S(2)k2

∣∣∣ = max
j=1,...,�−1

∣∣∣S(2)j

∣∣∣ .
Continue this process so given S

(n−1)
j and kn−1, we set S

(n−1)
kn−1

= S
(n)
kn−1

and define S
(n−1)
j ⊆ S

(n)
j ⊆ Fj,

j = 1, . . . �− 1 as the smallest subset such that span({ϕi}i∈S
(n)
kn−1

) ⊆ span({ϕi}i∈S
(n)
j

). Choosing kn so

∣∣∣S(n)kn

∣∣∣ = max
j=1,...,�−1

∣∣∣S(n)j

∣∣∣ ,
then span({ϕi}i∈S

(n)
kn

) ⊆ span({ϕi}i∈Fj), for all j = 1, . . . , �− 1.
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Proof. For n = 1, this is Lemma 2.6. Notice this guarantees the sets S
(2)
j , j = 1, . . . , � − 1 are well

defined. It now suffices to show span({ϕi}i∈S
(n)
kn

) ⊆ span({ϕi}i∈F�−1
).

We introduce the notation ϕ
(n)
(j) to represent a vector in {ϕi}i∈Fj present in the nth iteration. That is

ϕ
(n)
(j) ∈ S

(n)
j .

We proceed by contradiction. Suppose instead there existed some ϕ
(n)
(kn)

∈ {ϕi}i∈S
(n)
kn

such that

ϕ
(n)
(kn)

/∈ span({ϕi}i∈F�−1
). By Proposition 2.4, there exists some ϕ

(m1)
(kn−1)

∈ {ϕi}
i∈S

(m1)
kn−1

, m1 < n, such

that (
{ϕi}i∈S

(n)
kn

\ {ϕ(n)(kn)}
)

∪
{
ϕ
(m1)
(kn−1)

}

is linearly independent and has the same span as {ϕi}i∈S
(n)
kn

. Note there may be several such mi for

which there is an appropriate ϕ
(mi)
(kn−1)

∈ {ϕi}
i∈S

(mi)

kn−1

, but we may choose S
(m1)
kn−1

so that m1 is minimal.

Indeed simply note if m1 < m and km1
= km then S

(m1)
km1

⊆ S
(m)
km

.

Then we consider {ϕi}
i∈S

(m1)
kn−1

and again apply Proposition 2.4. There exists some ϕ
(m2)
(km1−1)

∈
{ϕi}

i∈S
(m2)
km1−1

, m2 < m1 such that

(
{ϕi}

i∈S
(m1)
kn−1

\ {ϕ(m1)
(kn−1)

}
)

∪
{
ϕ
(m2)
(km1−1)

}

is linearly independent and has the same span as {ϕi}
i∈S

(m1)
km1

. Choose the smallest suchm2.

By continuing this process {mi}ri=1 is a decreasing sequence which terminates withmr = 1. By one

final application of Proposition 2.4,

(
{ϕi}(1)i∈Sk1

\ {ϕ(1)(k1)}
)

∪ {
ϕ(�)

}
is linearly independent and has the same span as {ϕi}i∈S

(1)
k1

.

Thus we can partition� \ {ϕ(n)(kn)} into � sets of linear independent vectors, say {{ϕi}i∈Gj
}�j=1 where∣∣Gj

∣∣ = ∣∣Fj∣∣ and span({ϕi}i∈Gj
) = span({ϕi}i∈Fj) for j = 1, . . . , � − 1. However, recalling ϕ

(n)
(kn)

/∈
span({ϕi}i∈F�−1

),

{ϕi}i∈G�−1
∪

{
ϕ
(n)
(kn)

}

is also linearly independent contradicting that {{ϕi}i∈Fj}�j=1 was a fundamental partition. �

The argument in Theorem 2.7 can be easily visualized; see Fig. 2 where we consider two iterations.

We have shown spans of specific subsets of {ϕi}i∈Fj , j = 1, . . . , �− 1 are contained in a common

subspace. As a corollary, the next stepwill be to show specific subsets span exactly the same subspace.

This will lead to so-called transversals.

Definition 2.8. Given a fundamental partition {{ϕi}i∈Fj}�j=1 of � = {ϕi}Mi=1, let t � � and T ⊆
{1, . . . ,M}. We call {ϕi}i∈T a t-transversal of {{ϕi}i∈Fj}�j=1 if T = ∪t

j=1Sj where Sj ⊆ Fj and

span({ϕi}i∈Sj) = span({ϕi}i∈Sk) for all j, k ∈ {1, . . . , t}.
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Fig. 2. Partitions after performing argument in Theorem 2.7.

Weuse the termtransversal since thisdefinition is (almost) a special case for the conceptof the same

name for a sum of matroids, the difference being transversals for sums of matroids are independent

of a basis (independent of a fundamental partition) [6]. Our use of the term clearly depends on a given

fundamental partition.

Proving the existence of transversals in a sum of matroids, while well known (see Lemma 2.3 in [6]

for example), is not elementary. However, wemay show existence in our case by using Theorem 2.7 to

construct a transversal.

Corollary 2.9. Consider the family of vectors� = {ϕi}Mi=1 with a fundamental partition {{ϕi}i∈Fj}�j=1. Fix

t < r � � and choose anyϕ(r) ∈ {ϕi}i∈Fr . Then {{ϕi}i∈Fj}�j=1 contains a t-transversal {ϕi}i∈T , T = ∪t
j=1Sj,

with ϕ(r) ∈ span({ϕi}i∈Sj) for all j = 1, . . . , t.

Proof. Notice if {{ϕi}i∈Fj}�j=1 is a fundamental partition andwe remove sets {ϕi}i∈Fj , j = t+1, . . . , r−
1, r + 1, . . . , �, then

{{ϕi}i∈F1 , . . . , {ϕi}i∈Ft , {ϕi}i∈Fr }
remains a fundamental partition for the remaining vectors

� \ {ϕi}i∈∪�j=t+1,j �=r Fj
.

It therefore suffices to prove the statement for t = �− 1, and r = �.

Consider the sets S
(n)
j , j = 1, . . . , �− 1, n = 1, 2, . . . as given in Theorem 2.7 where again S

(n)
kn

is

a largest such set for each n. Notice span({ϕi}i∈S
(n)
kn

) ⊆ span({ϕi}i∈S
(n+1)
kn+1

). Since we have only finitely

many vectors, there exits an n0 such that∣∣∣S(n0−1)
kn0−1

∣∣∣ =
∣∣∣S(n0)kn0

∣∣∣ .
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Then ∣∣∣S(n0)kn0−1

∣∣∣ =
∣∣∣S(n0)j

∣∣∣ , j = 1, . . . , �− 1.

Since span({ϕi}
i∈S

(n0)
kn0−1

) ⊆ span({ϕi}
i∈S

(n0)
j

) for all j = 1, . . . , �− 1, we conclude

span

(
{ϕi}

i∈S
(n0)
kn0−1

)
= span({ϕi}

i∈S
(n0)
j

).

Clearly ϕ(�) ∈ span({ϕi}
i∈S

(n0)
j

) and S
(n0)
j ⊆ Fj for all j = 1, . . . , � − 1 by construction. Set T =

∪�−1
j=1 Sj = ∪�−1

j=1 S
(n0)
j , and we have the desired �− 1 transversal {ϕi}i∈T . �

It is simple to see that given multiple t-transversals in a fundamental partition, their union is a

t-transversal in the same fundamental partition; we omit the proof. In its matroid version, this is

Proposition 2.4 in [6].

Lemma 2.10. Let {{ϕi}i∈Fj}�j=1 be a fundamental partition of� = {ϕi}Mi=1. Suppose {ϕi}i∈T1 and {ϕi}i∈T2

are t-transversals of {{ϕi}i∈Fj}�j=1 where T1 = ∪t
j=1Uj and T2 = ∪t

j=1Vj. Setting T = ∪t
j=1(Uj ∪ Vj),

{ϕi}i∈T is a t-transversal of {{ϕi}i∈Fj}�j=1.

We are now ready to prove the Rado–Horn theorem.

3. Proof of Rado–Horn and its generalizations

We begin with the original.

Theorem3.1 (Rado–Horn). Consider the family of vectors� = {ϕi}Mi=1. Then the following are equivalent:

(i) The set {1, . . . ,M} can be partitioned into sets {Aj}kj=1 such that {ϕi}i∈Aj is a linearly independent

set for all j = 1, 2, . . . , k.
(ii) For any non-empty subset J ⊆ {1, . . . ,M}, |J| / dim span({ϕi}i∈J) � k.

Proof. (i ⇒ ii). Suppose {Aj}kj=1 is a partition of {1, . . . ,M} such that {ϕi}i∈Aj is a linearly independent

set for all j = 1, 2, . . . , k. For any J ⊆ {1, . . . ,M}, let Jj = J ∩ Aj . Then

|J| =
k∑

j=1

∣∣Jj∣∣ =
k∑

j=1

dim span({ϕi}i∈Jj) � k dim span({ϕi}i∈J)

giving the result.

(ii ⇒ i). We prove the contrapositive. Suppose� cannot be partitioned into k linearly independent

sets. Then for any fundamental partition {{ϕi}i∈Fj}�j=1, we must have � > k. By Corollary 2.9, for any

ϕ(�) ∈ {ϕi}i∈F� , {{ϕi}i∈Fj}�j=1 contains a k-transversal, T with ϕ(�) ∈ span({ϕi}i∈T ). Then we have

|T ∪ {(�)}|
dim span({ϕi}i∈T∪{(�)})

= k + 1

dim span({ϕi}i∈T )
> k. � (1)

One of the benefits of this proof is that the ideas generalize to many other versions of the Rado–

Horn theorem. It is a simple matter to adapt the ideas of this proof to show the following generalized
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version of the Rado–Horn theorem which originally appeared in [4]. We omit the details as the ideas

are similar to the previous proof.

Theorem 3.2 (Generalized Rado–Horn). Consider the family of vectors� = {ϕi}Mi=1. Then the following

are equivalent.

(i) There exists a subset H ⊆ {1, . . . ,M} such that {ϕi}i/∈H can be partitioned into k linearly indepen-

dent sets.

(ii) For any non-empty subset J ⊆ {1, . . . ,M}, we have (|J| − |H|)/ dim span({ϕi}i∈J) � k.

Transversals in a fundamental partition also explainwhy the Rado–Horn inequality can fail when�

cannot be partitioned into k linearly independent sets. The following redundant version of Rado–Horn

was originally proven in [4].

Theorem 3.3 (Redundant Rado–Horn). Consider the family of vectors � = {ϕi}Mi=1 in a vector space

V. If this set cannot be partitioned into k linearly independent sets, then there exists a partition {Aj}kj=1 of

{1, . . . ,M} and a subspace S of V such that the following hold:

(i) For all 1 � j � k, there exists a subset Sj ⊆ Aj such that S = span({ϕi}i∈Sj).

(ii) For J = {i : ϕi ∈ S}, |J| / dim span({ϕi}i∈J) > k.

(iii) For all 1 � j � k, {ϕi}i∈Aj\Sj is linearly independent.

Proof. Take a fundamental partition {{ϕi}i∈Fj}�j=1 of�, and consider the partition of indices {Aj}kj=1 =
{F1, . . . , Fk−1,∪�r=kFr}. We will show there exists a subspace S which satisfies (i), (ii), and (iii) for

{{ϕi}i∈Aj}kj=1.

By Corollary 2.9, for each r ∈ Fj , j = k + 1, . . . , �, there exits a k-transversal, say {ϕi}i∈Tr , of

{{ϕi}i∈Fj}�j=1 containing ϕr in span({ϕi}i∈Tr ). By Lemma 2.10, we take the union

T = ∪{r:ϕr∈Fj,j=k+1,...,l}Tr

so {ϕi}i∈T is a k-transversal of {{ϕi}i∈Fj}�j=1 which satisfies ϕr ∈ span({ϕi}i∈T ) for all ϕr ∈ Fj , j =
k + 1, . . . , �. Thus

span({ϕi}i∈Fj) ⊆ span({ϕi}i∈T )

for all j = k + 1, . . . , �.

Finally, set S = span({ϕi}i∈T ) and Si = T ∩ Fi for i = 1, . . . , k− 1 with Sk = T ∩ (∪�j=kFj). Then (i)

and (ii) follow since {ϕi}i∈T is a k-transversal which contains in its span at least one ϕ ∈ {ϕi}i∈Fj , j > k

(in this case all of them). Clearly for j = 1, . . . , k − 1, {ϕi}i∈Aj\Sj ⊆ {ϕi}i∈Fj is linearly independent.

Lastly by the way we constructed our transversal,

{ϕi}i∈Ak\Sk ⊆ {ϕi}i∈(∪�j=kFj)\(∪�j=k+1Fj)
⊆ {ϕi}i∈Fk ,

which is also linearly independent. �

4. Constructing a fundamental partition

The previous sections rely only on the existence of a fundamental partition. Interestingly, we can

build a fundamental partition where we use Rado–Horn as a tool in the construction. This process is

much like a finding the so-called flag transversal for a sum of matroids [9]. It will be helpful to define

the concept of a quasi-transversal which, like the transversal, is inspired from a matroid version [8].
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Definition 4.1. Given a fundamental partition {{ϕi}i∈Fj}�j=1 of � = {ϕi}Mi=1, let t � � and T ⊆
{1, . . . ,M}. We call {ϕi}i∈T a t-quasi-transversal of {{ϕi}i∈Fj}�j=1 if T = ∪t

j=1Sj where Sj ⊆ Fj and

span({ϕi}i∈Sj) = span({ϕi}i∈Sk) j, k ∈ {1, . . . , t − 1}
span({ϕi}i∈St ) ⊆ span({ϕi}i∈Sj) j ∈ {1, . . . , t − 1}.

Quasi-transversals will form building blocks for our construction; initially this is a problem since

quasi-transversals aredefined in termsof existing fundamental partitions. In order toproceed,wemust

find vectors which necessarily form a quasi-transversal in some yet unknown fundamental partition.

Choosing vectors which maximize the Rado–Horn inequality is a reasonable starting point.

Proposition4.2. Givena familyof vectors� = {ϕi}Mi=1, suppose J ⊆ {1, . . . ,M}maximizes |J|/dim span

({ϕi}i∈J). Then in a fundamental partition of {ϕi}i∈J , say {{ϕi}i∈F ′
j
}�j=1, {ϕi}i∈J is an �-quasi-transversal.

Proof. By Corollary 2.9 and Lemma 2.10, {{ϕi}i∈F ′
j
}�j=1 contains amaximal (�−1)-transversal, {ϕi}i∈T ,

where span({ϕi}i∈F ′
�
) ⊆ span({ϕi}i∈T ). Define the set T ′ = T ∪ F ′

� so that {ϕi}i∈T ′ is an �-quasi-

transversal of {{ϕi}i∈F ′
j
}�j=1. For contradiction, suppose {ϕi}i∈J was not an �-quasi-transversal of

{{ϕi}i∈F ′
j
}�j=1. Then {ϕi}i∈J\T ′ cannot be an (�− 1)-transversal in {{ϕi}i∈F ′

j
}�j=1. Specifically,

∣∣∣F ′
�−1 \ T ′∣∣∣ < ∣∣∣F ′

1 \ T ′∣∣∣ = dim span({ϕi}i∈J)− dim span({ϕi}i∈T ′),

which then implies

|J| −
∣∣∣T ′∣∣∣ =

∣∣∣J \ T ′∣∣∣ < �−1∑
j=1

∣∣∣F ′
j \ T ′∣∣∣ < (�− 1)[dim span({ϕi}i∈J)− dim span({ϕi}i∈T ′)]. (2)

Using (2) and that {ϕi}i∈T ′ is an �-quasi-transversal of {{ϕi}i∈F ′
j
}�j=1, we have

|J| − ∣∣T ′∣∣
dim span({ϕi}i∈J)− dim span({ϕi}i∈T ′)

< �− 1 <

∣∣T ′∣∣
dim span({ϕi}i∈T ′)

.

It now follows that∣∣∣T ′∣∣∣ dim span({ϕi}i∈J)

=
∣∣∣T ′∣∣∣ [dim span({ϕi}i∈T ′)+ (dim span({ϕi}i∈J)− dim span({ϕi}i∈T ′))]

>
∣∣∣T ′∣∣∣ dim span({ϕi}i∈T ′)+ (|J| −

∣∣∣T ′∣∣∣) dim span({ϕi}i∈T ′)

= |J| dim span({ϕi}i∈T ′),

giving
∣∣T ′∣∣ / dim span({ϕi}i∈T ′) > |J| / dim span({ϕi}i∈J), a contradiction. �

Proposition 4.2 is not adequate since it does not consider the entire family�. By picking a slightly

different J ⊆ {1, . . . ,M}, we can find the needed quasi-transversals.

Lemma 4.3. Suppose � = {ϕi}Mi=1 can be partitioned into at fewest � linearly independent sets. Let

K ⊆ {1, . . . ,M} be such that

|K|
dim span({ϕi}i∈K)

= �− 1,
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and for any other set L satisfying this equality,

|{i : ϕi ∈ span({ϕi}i∈K)} \ K| � |{i : ϕi ∈ span({ϕi}i∈L)} \ L| .
Let J = {i : ϕi ∈ span({ϕi}i∈K)}. Then for any fundamental partition {{ϕi}i∈Fj}�j=1 of �, {ϕi}i∈J is an

�-quasi-transversal.

Proof. First note such a set K �= ∅ since an (�− 1)-transversal in a fundamental partition, which we

have by Corollary 2.9, satisfies the equality.

With J now chosen, let {{ϕi}i∈Fj}�j=1 be any fundamental partition of�, and consider the sets J ∩ Fj .

We must have

|J ∩ F�| � |J \ K| (3)

for otherwise we could find a maximal (� − 1)-transversal {ϕi}i∈L as a consequence of Corollary 2.9

and Lemma 2.10. This would imply

|L|
dim span({ϕi}i∈L)

= �− 1,

and

|{i : ϕi ∈ span({ϕi}i∈L)} \ L| � |J ∩ F�|
> |J \ K|
= |{i : ϕi ∈ span({ϕi}i∈K)} \ K|

a contradiction.

With (3) in mind, notice

∣∣J ∩ Fj
∣∣ � dim span({ϕi}i∈J) = dim span({ϕi}i∈K),

but suppose the inequality was strict for some j ∈ {1, . . . , �− 1}. Then we have

|K| + |J \ K| = |J|

=
�∑

j=1

∣∣J ∩ Fj
∣∣

=
�−1∑
j=1

∣∣J ∩ Fj
∣∣ + |J ∩ F�|

< (�− 1) dim span({ϕi}i∈K)+ |J ∩ F�|
= |K| + |J ∩ F�| ,

and we see |J ∩ F�| > |J \ K|, a contradiction.

We conclude

∣∣J ∩ Fj
∣∣ = dim span({ϕi}i∈J)

for all j ∈ {1, . . . , �− 1} and
|J ∩ F�| = |F�| .

It follows that {ϕi}i∈J is an �-quasi-transversal of {{ϕi}i∈Fj}�j=1. �
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Definition 4.4. Given a family of vectors� = {ϕi}Mi=1 which canbepartitioned into at fewest� linearly
independent sets, let J ⊆ {1, . . . ,M} be given as in Lemma 4.3. Then we will say {ϕi}i∈J is a universal

quasi-transversal of�.

Notice that for any fundamental partition {{ϕi}i∈Fj}�j=1 of {ϕi}Mi=1, a universal quasi-transversal

{ϕi}i∈J must be an �-quasi-transversal with F� ⊆ J.

Now thatwehave aquasi-transversal for some fundamental partition, albeit unknown, thenext two

results show projecting onto the orthogonal complements of the spans of such transversals maintains

some structure of the partition. Theorem 4.6 is the main result needed for our construction.

Lemma 4.5. Consider family of vectors� = {ϕi}Mi=1 with a fundamental partition {{ϕi}i∈Fj}�j=1. Suppose{ϕi}i∈T is an �-quasi-transversal of this partitionwhich satisfies F� ⊆ T. Let PT be the orthogonal projection

onto span({ϕ}i∈T ) and suppose F ′
j = {i : i ∈ Fj \T}. Then {{(I−PT )ϕi}i∈F ′

j
}�′j=1 is a fundamental partition

of {(I − PT )ϕi}i/∈T where

�′ = max
{
j : Fj �= F ′

j

}
. (4)

Proof. Note the family {(I−PT )ϕi}i/∈T is precisely the elements of� under the projection I−PT which

are non-zero.

We first show {(I − PT )ϕi}i∈F ′
j
is linearly independent for j = 1, . . . , �′, each set being non-

empty due to (4). Indeed suppose there exists scalars ai such that
∑

i∈F ′
j
ai(I − PT )ϕi = 0. Then∑

i∈F ′
j
aiϕi ∈ span({ϕi}i∈Fj\F ′

j
). Since {ϕi}i∈Fj is linearly independent, ai = 0 for all i ∈ F ′

j .

Now suppose these independent sets do not form a fundamental partition. Then there exists some

other partition of {1, . . . ,M} \ T , say {Aj}sj=1 such that {(I − PT )ϕi}i∈Aj is linearly independent for

all j = 1, . . . , s and there is some k < �′ such that |Ak| > ∣∣F ′
k

∣∣ but ∣∣Aj

∣∣ =
∣∣∣F ′

j

∣∣∣ for all j < k. It now

suffices to show {ϕi}i∈(Fj\F ′
j )∪Aj

is linearly independent for j = 1, . . . , k, for this would contradict that

{{ϕi}i∈Fj}�′j=1 was a fundamental partition.

For scalars ai, consider
∑

i∈(Fj\F ′
j )∪Aj

aiϕi = 0. Under the projection I − PT , this becomes

∑
i∈(Fj\F ′

j )∪Aj

ai(I − PT )ϕi = ∑
i∈Aj

ai(I − PT )ϕi = 0,

and ai = 0 for i ∈ Aj . But then

∑
i∈(Fj\F ′

j )∪Aj

aiϕi = ∑
i∈Fj\F ′

j

aiϕi = 0,

and ai = 0 for all i ∈ (Fj \ F ′
j ) ∪ Aj . �

Theorem 4.6. Suppose the family of vectors � = {ϕi}Mi=1 can be partitioned into at fewest � linearly

independent sets. Let {ϕi}i∈J be a universal quasi-transversal of�, and let PJ be the orthogonal projection

onto span({ϕi}i∈J). Assuming J �= {1, . . . ,M}, let {{ϕi}i∈Gj
}�j=1 and {{(I− PJ)ϕi}i∈G′

j
}�′j=1 be fundamental

partitions of {ϕi}i∈J and {(I − PJ)ϕi}i/∈J respectively. Then {{ϕi}i∈Gj∪G′
j
}�j=1 is a fundamental partition of�

where we set G′
j = ∅ for �′ < j � �.

Proof. First note {ϕi}i∈G′
j
are not all empty since J �= {1, . . . ,M}.
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We will show {ϕi}i∈Gj∪G′
j
are linearly independent for j ∈ {1, . . . , �}. For j > �′, {ϕi}i∈Gj∪G′

j
=

{ϕi}i∈Gj
is clearly linearly independent. Thus let j � �′, and suppose

∑
i∈Gj∪G′

j

aiϕi = ∑
i∈Gj

aiϕi +
∑
i∈G′

j

aiϕi = 0.

Under the projection (I − PJ), this becomes

∑
i∈G′

j

ai(I − PJ)ϕi = 0,

and ai = 0 for i ∈ G′
j since {{(I − PJ)ϕi}i∈G′

j
}rj=1 is a fundamental partition. Then

∑
i∈Gj∪G′

j

aiϕi = ∑
i∈Gj

aiϕi = 0,

but {{ϕi}i∈Gj
}�j=1 is also a fundamental partition. We conclude {ϕi}i∈Gj∪G′

j
is a linearly independent set

for j ∈ {1, . . . , �}.
Nowthatwehave linear independence,wewill show {{ϕi}i∈Gj∪G′

j
}�j=1 formsa fundamentalpartition

of �. For contradiction, suppose this was not the case. Then there exists a fundamental partition

{{ϕi}i∈Fj}�j=1 such that for some 1 � t < �,
∣∣Fj∣∣ =

∣∣∣Gj ∪ G′
j

∣∣∣ for j < t but |Ft| > ∣∣Gt ∪ G′
t

∣∣. We define

F ′
j = Fj \ J

and compare {(I − PJ)ϕi}i∈F ′
j
with {(I − PJ)ϕi}i∈G′

j
.

Since {ϕi}i∈J is a universal quasi-transversal, Lemma 4.5 implies {{(I − PJ)ϕi}i∈F ′
j
}�′j=1 is a funda-

mental partition of {(I − PJ)ϕi}i/∈J , and by hypothesis, so is {{(I − PJ)ϕi}i∈G′
j
}�′j=1. Hence

∣∣∣F ′
j

∣∣∣ =
∣∣∣G′

j

∣∣∣
for j ∈ {1, . . . , �′}. Then for j < t � �′,

∣∣Gj

∣∣ +
∣∣∣G′

j

∣∣∣ =
∣∣∣Gj ∪ G′

j

∣∣∣ = ∣∣Fj∣∣ =
∣∣∣Fj \ F ′

j

∣∣∣ +
∣∣∣F ′

j

∣∣∣ =
∣∣∣Fj \ F ′

j

∣∣∣ +
∣∣∣F ′

j

∣∣∣
yielding

∣∣Gj

∣∣ =
∣∣∣Fj \ F ′

j

∣∣∣. The same argument for j = t shows |Gt| < ∣∣Ft \ F ′
t

∣∣ contradicting that

{{ϕi}i∈Gj
}�j=1 was a fundamental partition. �

We can now construct a fundamental partition by repeated application of Theorem 4.6.

4.1. Construction of a fundamental partition

Let � = {ϕi}Mi=1 = {ϕ1i}Mi=1 be a family of vectors where we have added the extra index in order

to track an iterative process of projections. Suppose

max
J⊆{1,...,M}

⌈ |J|
dim span({ϕi}i∈J)

⌉
= k1.
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Then a fundamental partition of� contains k1 linearly independent sets, and we may find a universal

quasi-transversal of � by searching through K ⊆ {1, . . . ,M} such that |K| / dim span({ϕi}i∈K) =
k1 − 1. Choose T1 ⊆ {1, . . . ,M} so that {ϕi}i∈T1 comprises such a universal quasi-transversal. Let

t1 = dim span({ϕ1i}i∈T1),

s1 = |T1| − (k1 − 1)t1.

Thenwe know exactly how this quasi-transversal appears in a fundamental partition. It is not difficult

to see that we may partition T1 as {T1j}k1j=1 where

(i)
∣∣T1j∣∣ = t1, j = 1, . . . , k1 − 1.

(ii)
∣∣T1j∣∣ = s1, j = k1.

(iii) span({ϕi}i∈T1n) = span({ϕi}i∈T1m), n,m �= k1.

(iv) span({ϕi}i∈T1k1
) ⊆ span({ϕi}i∈T1j), j = 1, . . . , k1 − 1.

Let PT1 be the orthogonal projection of � onto span({ϕ1i}i∈T1). Define �2 = {(I − PT1)ϕ1i}i/∈T1 =
{ϕ2i}i/∈T1 . Finding a fundamental partition of�2 will give us a fundamental partition of� via Theorem

4.6.

Examine subsets of the indices {1, . . . ,M} \ T1 so that

max
J⊆{1,...,M}\T1

⌈ |J|
dim span({ϕ2i}i∈J)

⌉
= k2.

We now know a fundamental partition of�2 contains k2 linearly independent sets, and wemay again

find a universal quasi-transversal. Choose T2 ⊆ {1, . . . ,M}\T1 so that {ϕ2i}i∈T2 comprises a universal

quasi-transversal, and let

t2 = dim span({ϕ2i}i∈T2),

s2 = |T2| − (k2 − 1)t2.

Wemay partition T2 as {T2j}k2j=1 where

(i)
∣∣T2j∣∣ = t2, j = 1, . . . , k2 − 1.

(ii)
∣∣T2j∣∣ = s2, j = k2.

(iii) span({ϕi}i∈T2n) = span({ϕi}i∈T2m), n,m �= k2.

(iv) span({ϕi}i∈T2k2
) ⊆ span({ϕi}i∈T2j), j = 1, . . . , k2 − 1.

We continue so that PTr is the orthogonal projection of �r onto span({ϕri}i∈Tr ). Define �r+1 =
{(I − PTr )ϕri}i/∈T1∪...∪Tr = {ϕ(r+1)i}i/∈T1∪...∪Tr . Examine subsets of the indices {1, . . . ,M} \ (∪r

j=1Tj)

so that

max
J⊆{1,...,M}\(∪r

j=1Tj)

⌈ |J|
dim span({ϕ(r+1)i}i∈J)

⌉
= kr+1.

Now choose Tr+1 ⊆ {1, . . . ,M} \ (∪r
j=1Tj) so that {ϕ(r+1)i}i∈Tr+1

is a universal quasi-transversal

in�r+1. Letting

tr+1 = dim span({ϕ(r+1)i}i∈Tr+1
),

sr+1 = |Tr+1| − (kr+1 − 1)tr+1,

we may partition Tr+1 as {T(r+1)j}kr+1

j=1
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Fig. 3. Fundamental partition constructed from quasi-transversals of appropriate projections.

(i)
∣∣T(r+1)j

∣∣ = tr+1, j = 1, . . . , kr+1 − 1.

(ii)
∣∣T(r+1)j

∣∣ = sr+1, j = kr+1.

(iii) span({ϕi}i∈T(r+1)n
) = span({ϕi}i∈T(r+1)m

), n,m �= kr+1.

(iv) span({ϕi}i∈T(r+1)kr+1
) ⊆ span({ϕi}i∈T(r+1)j

), j = 1, . . . , kr+1 − 1.

Notice kr > kr+1. At some point, we will have used up all our indices. To be precise, this occurs

after z iterations where kz �= 0 but kz+1 = 0. Finally, for j > kr adopt the convention Trj = ∅. Then
letting

Fj = ∪r=1,...,zTrj, j = 1, . . . , k1,

{{ϕi}i∈Fj}�j=1 is a fundamental partition of�.

We have constructed a fundamental partition by repeatedly finding universal quasi-transversals

and applying Theorem 4.6. Fig. 3 provides an example of a constructed fundamental partition showing

values ti, ki, si, i = 1, . . . , z where z = 3.

Remark 4.7. We have essentially used Rado–Horn and transversals to describe many of the spanning

properties of the vectors. For example, using the notation from the above construction, a family of

vectors � = {ϕi}Mi=1 spans a (
∑z

i=1 ti)-dimensional space and can be partitioned into at most kz
spanning sets when tz = sz and at most kz − 1 spanning sets when tz > sz .
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