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Abstract

In this paper we consider a rotational symmetry on a non-singular Morse—Smale (NMS) system
analyzing the restrictions this symmetry imposes on the links defined by the set of its periodic orbits
and to the appearance of local generic codimension one bifurcations in the set of NMS flows on
$3. The topological characterization is obtained by writing the involved links in terms of Wada
operations.

It is also obtained that symmetry implies that in general bifurcations have to be multiple. On the
other hand, we also see that there exists a set of links that cannot be related to any other by sequences
of this kind of bifurcation] 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the study of a Dynamical System we can focus our attention to the set of its periodic
orbits. The structure of this set can be very complicated; nevertheless, if the phase space
is a three-dimensional manifold and there are a finite humber of periodic orbits we can
characterize the set of all periodic orbits as a link. There exists an extensive literature
on the relation between periodic orbits and knots, that began with Birman and Williams
[1,2], Franks [10], and Holmes and Williams [13]. For a review, see Ghrist, Holmes and
Sullivan [11].
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Let x" (M) denote the set af"-vector fields onM with the usualC”-topology.

When M is a two-dimensional manifold the set of structurally stable vector fields
is dense iny” (M) and it can be used to describe the dynamics of any system. But,
if dimM > 2 this set is not dense and it is usually replaced by one of its subsets:
the Morse—Smale vector fielddS(M) [16]. Another motivation for studyind/S flows
is that they characterize entropy zero flows. On the other hand it is shown that Bott
integrable Hamiltonian fields on a non-singular compact constant-energy sg@rfaeein
the boundary of th&iIMSvector fields [7,9]. Bifurcations take place in its closiM&M)
and the vector fields where bifurcations are produced are in the boubiE8). The
characterization of the set of periodic orbits of a non-singular Morse—SWhag& M) flow
on a three-dimensional manifold has been studied by other authors, e.g., [14,15,18-20]. So
links and bifurcations of Hamiltonian systems can be characterized as in [5].

An arc in x" (M) jointing two vector fields can avoid any codimension two bifurcation
through small deformations, but not codimension one bifurcations. So, the study of generic
codimension one families of vector fields is associated with the study of codimension one
bifurcations. In this paper bifurcations are considered in the direction in which new orbits
appear.

Let NMS($3) denote the set of NMS vector fields 6H. Let £ (0) € NMS(S3) be the
initial smooth field of a uniparametric family(w), u € [0, £]. Let ug be the first point in
which f(w) intersects the boundatyNMS(53)). Therefore, the link type of the periodic
orbits of the flow can change. The generic codimension one bifurcations of links of periodic
orbits in NMS systems o3 are studied in [6] following Wada’s result [19]. LeX(S%)
denote the set of links of periodic orbits of NMS systems.

In this paper we continue this study assuming some symmetry properties of the flow.
We consider that the flow is an NMS flow before and after a codimension one bifurcation,
preserving a rotational symmetry, and we study the restrictions that have to be imposed
on links corresponding to vector field&(w) to satisfy this condition of symmetry (see
Section 2). While Wada'’s results are restated below, we shall assume that the reader is
familiar with the results and techniques in our earlier paper [6].

When a linki € £(5%) suffers any kind of bifurcation to a new configuration of periodic
orbits bif[/], we cannot assume thbif[/] € £(S3) because there are some restrictions
imposed by the kind of the system and manifold. To assure bifat] is in £(S%)
we will normally find a “simpler” link (or links)lp € £(S%) and a sequence of Wada
operations takindp to /. To handle this characterization, it will be necessary to impose
some conditions oi. The corresponding statements are given in Section 3. From the
point of view of the dynamics of a system, we obtain conditions for a link to undergo
a generic codimension one bifurcation and we characterize this type of bifurcation. Let us
remark that this interpretation gives a topological description of the links obtained after
the bifurcation. We also see that every bifurcation can be associated with different Wada
operations so, the different topological descriptions obtained point out the way the new
orbits generated by the bifurcation appear.

Some consequences are obtained from these characterizations, in particular, we find
some links that cannot be related to any other by these kind of bifurcations (Theorem 3)
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and some links can be related by a sequence of generic codimension one bifurcations (The-
orem 2).

Finally, the study of the change of the link type when the parameter varies permits us to
look for the characterization of the critical link (Section 4).

1.1. Wada’s theorem

Wada’s theorem [19] characterizes the set of indexed links which arise as the closed
orbits of a non-singular Morse—Smale flow 6/ in terms of a generator, the Hopf link
h with indices 0 and 2 attached to the components, and six operations (thei inflex
periodic orbit is the dimension of its unstable manifold minus one).

Every indexed link which consists of all the closed orbits of a non-singular Morse—
Smale flow ors® is obtained from Hopf links by applying the following six operations.
Conversely, every indexed link obtained from Hopf links by applying the operations is the
set of all the closed orbits of a non-singular Morse—Smale flow®on S

Operations. For given indexed linkg; andl, the six operations are defined as follows.
Let /5 - [ denote the split sum dfi andl; and N (k, M) the regular neighborhood a@f
in M.

o [(l1,12) =11 -17-u, whereu is an unknot with index 1.

e ll(I1,l2) =11 - (I2 — k2) - u, whereky is a component ab of index 0 or 2.

o lll(I1,12) = (I1 — k1) - (I2 — k2) - u, whereks is a component df of index 0 andk is
a component of, of index 2.

e IV(I1,12) = (l1#l2) U m. The connected sunii#l,) is obtained by composing a
componenk; of /1 and a componerit; of I2, each of which has index 0 or 2. The
index of the composed componéntik, is equal to either (k1) ori(k2). Finally, m
is a meridian ofk#ko with i = 1.

e V(l1): Choose a componekt of I1 of index 0 or 2, and replac¥ (k1, $3) by D% x §1
with three indexed circles in it; {0k S1, ko andks. Here ko andks are paralle(p, ¢)-
cables ord N ({0} x S, D? x §Y), wherep is the number of longitudinal turns and
g the number of the transverse ones. The indices of&{G} andk are either 0 or 2,
and one of them is equal igk1). The index ofkz is 1.

e VI(/1): Choose a componeht of /1 of index O or 2. Replac® (k1, $%) by D? x §t
with two indexed circles in it: {0} S* and the(2, ¢)-cablek; of {0} x S*. The index
of {0} x Stis 1, andi (ko) =i (k).

We call the first three operationg{lll ) type A operations, and the other thrd¥£V1),
that produce unsplittable links, tygoperations.

1.2. Symmetries of°

Symmetries frequently appear in Dynamical Systems. The presence of symmetry forces
others kinds of behaviour that are not generic in general but they are generic in symmetric
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systems. We are interested in the study of the symmetries that can appearin an NMS system
on s,

The group of symmetries & is O (4), that contains rotationSQ(4), and reflections.

A reflection implies the existence of an invariant surface that produces, by means of
the Poincaré—Bendixon theorem, the existence of fixed points so reflections cannot be
considered in NMS systems. Therefore, we restrict our study to the rotational §&dip

In this paper, we consider as the symmetry grayfthe subgroup generated by a finite
rotation around one axis.

Because of the symmetry we can spiit into n equal strata around the symmetry
axis and, each of these stratuij, can be considered &8 identifying the points of the
boundary corresponding to the saifieorbit, where aG-orbit of a pointx is defined by
G(x) ={gx, g € G}. Aninvariant periodic orbiy is associated to this symmetry axis.

Therefore, an NMS system without symmetry is considered in each stratum. If periodic
orbits are not linked to the invariant one, to reproduce the symmetry implies to repeat them
n times.

When a periodic orbit is linked tp we can consider the cycle that represents the points
where the periodic orbit crosses the boundary of a stratum. Symmetric links are obtained
composing the associated cyclemes to reproduce the symmetry of the system. So, we
recall some results of its algebra that are very useful in our reasonings.

Let o be ap-cycle, if ordefo*) = m thenkm = p, asm has to be the least positive
integer that satisfies this relatidan has to be théeast common multiple @& and p. So:

lem(k,
O((rk) =m= % 1)
Every permutation can be written as a product of disjoint cycles, and its order is the least
common multiple of the orders of its cycles.
The permutationr® can be decomposed as a product of disjoint cycles where each of
them represents an equivalence class of ardéhen, if the order of is p we obtainp/m

cycles.

2. Symmetric links

We consider an NMS system with rotational symmetry around one axis associated with
the invariant periodic orbiy. Let ¢ = 27r/n be the minimum rotation angle that leaves
the flow invariant. The symmetry group we consider is the cyclic group generateddy
thens® can be split into: equal stratas?. Therefore, an NMS system without symmetry
is considered in each stratum where we can use the characterization of links made in [6],
then repeating the stratumtimes we obtain the characterization of symmetric links in the
complete system. Let us notice that to build symmetric links in this way is analogous to the
construction of periodic knots (see [4]).

When a periodic orbit is not linked tp the symmetric link is obtained repeating the
corresponding link in a stratum times. The characterization of links in each stratum is
studied in [6] and we do not refer to them in the following.
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Fig. 1. A three-dimensional ball is3.

When a periodic orbit is linked tp the symmetric link is obtained taking into account
the following results.

Lemma 1. Let k be a periodic orbit linked ta/. Then there exists a meridional digk
in the solid torusS® — N(y) such that at each point whekeintersectsD, the orientation
given tok by the NMS flow enter® transversely from the same side.

Proof. When a periodic orbit is linked toy and itis an iterated toral knot & it follows
a given direction aroungt, inherited bykg, and this cable never turns back in a toroidal
neighborhood o/, N(y), so a braid can be defined from theoints where the periodic
orbit crosses the boundary of the stratédm

If k is not an iterated toral knot but it is linked to(y has to be a trivial knot to maintain
the symmetry), operationg or VI of Wada over an initial compone#p linked to the
invariant one (or ovey) are used, obtaining an iterated toral kikbin its corresponding
neighborhood and, after this, operatibh over a component of’ has been applied to
obtain this kind of orbit. Sok will be the result of connecting a factéf linked to y with
another factok”. Both factors are necessarily in disjoint three-balls and, as it can be seen
in figures,k” is not linked toy (see Figs. 1 and 2).

So, the projection of these links can be done in such a way that these non-toroidal pieces
do not intersect the boundary of the stratum and they appear repetiteds to maintain
the symmetry (see Fig. 3). Then we can consider the boundary of the strata avoiding these
non-toroidal pieces.

Hence, in any case, the orientation giverktby the NMSflow crossesD transversely
from the same side. O

Therefore, a symmetric link i52 can be built from its different components in each
stratum: if a component ifS is not linked to the invariant orbit it will be repeatedimes
and if a periodic orbit is linked t¢r it crosses the boundary ij in p points and a cycle
can be associated to it. In the last case, we use composition of cycles to see what happens
in S,

We refer top as the order of the periodic orbit.
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Fig. 2. Three-dimensional balls i§? without and with a rotational symmetry aroupd A minimal
ball is covering a toroidal neighborhood pf

Fig. 3. Repeating non-toroidal pieces.

Corollary 1. If a p-cycle is associated to a component linked/tén a stratum, in the
symmetric system there existomponents linked tp and am-cycle is associated to each
of them, where

lem(n,
r=? _gedn, p),  m= P
m n

)

When a componerit of a link has cables around it, they are in a neighborhd@kl)
that does not intersect another periodic orbit. So, when we use cycle theory to represent
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S

Fig. 4. A symmetric link obtained for = 3.

Fig. 5. Forn = 4 the symmetry forces the splitting of the initial orbits.

what happens in a stratum, these cables are in the corresponding toral neighborhood of the
orbit in this stratum, therefore, when the original system is restored the cables follow the
orbitk (see Figs. 4 and 5). Moreover/ifsplits intom orbits, their cables also split in such

a way that every orbit obtained has its corresponding cables in its toral neighborhood (see
Fig. 5).
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Corollary 2. When there are two orbits in a stratum, one with ordand the other oneis a
(2, q)-cable of it, in the symmetric system there existbits of ordera with s(m/a, nq/ k)-
cables of the same index, where- gcdn, 21)/gcdn, 1).

For s = 1 the order of the cables i and fors = 2 the order of the cables ig, the
same as the base component.

Proof. When there are two orbits in a stratum, one with ordand the other one is in a
toral neighborhood and it is @, g)-cable, they can be written as a product of two cycles:
ther-cycleb; and a 2 cycle corresponding to th@, ¢)-cable b,. Then, the set of periodic
orbits in the symmetric system can be written as:

b" =b} - bl
As we have seen beforéy, splits into j orbits of orderm, where j = 2t/m =
gedn, 2t) andm = lem(n, 2t)/n, and by splits intor = t/a = gcdn, t) orbits of order
a=Ilcmn,t)/n.
Therefore, there are orbits of ordera with s(m/a, nq/k)-cables of the same index,

wheres = gcd(n, 2r)/gcd(n, t) is 1 or 2 in the complete system. Fo& 1 the order of the
cable is 2 and fors = 2 the order of the cables is the same as the base componemt.

Therefore, in terms of Wada operations it is deduced that when the system has a
rotational symmetry these operations have to be applied in such a way that the link obtained
has this rotational symmetry. We can conclude that:

(1) We have also to take into account the symmetry of the system when we apply type

B operations. If they are applied over components that are not linked toey
have also to be applied a number of times that has to be a multiplénodrder to
obtain a symmetric link. In other case, as we can see in the following, the sum of all
transversal turns of thg;, g;)-cables that appear must be a multiple:of

(2) Type A operations have to be applied a number of times multiple of order to

obtain a symmetric link because eattoperation produces an unknot.

(3) Moreover, the symmetry of the system leads to the non-admissibility of some NMS

links:

Lemma 2. For n > 2, a link obtained using only operation 11l over Hopf links is not a
symmetric link.

Proof. The link obtained applying only operatidhh over Hopf links consists in the split
sum of two trivial orbits with indices 0 or 2 and unknots and it is not a symmetric link
exceptfom=2. 0O

In the following, let£,(S3) denote the set of NMS links in a symmetric system and
L(S2) be the set of NMS links in a stratum. Capital letters denote links and bifurcations in
the symmetric system, and small letters links and bifurcations in a hon-symmetric stratum.

Notice that Wada’s operations have to be applied in order to obtain a symmetric link. It
will depend on the type of operation. Whére £, (5%) involves typeA operations, we can
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observe that these operations have been appliides because they generate unknotted
orbits. Likewise for operatiolV, because non toroidal pieces, that must be repeated
times, appear. IL. only involves operation¥ andVI over periodic orbits linked tg/, as

we have seen before, the general formi£ads L = B" (L) whereB only represent¥ and

VI andLg is a symmetric link.

For instance, if we consider the link in Fig. 3 we can observe that operati@msl 1V
have been applied three times. On the other hand, opehdtioas been applied three times
because the cabling is made over orbits that are not linked 80, an expression for this
link is L = W(Lo,1,.%.,1) whereW represents operatiotg andll applied three times,
Lo is the symmetric Hopf linky is one of its components) ama= (11, [2) with I1 = VI(h)
andl, = h. We can also represent this link by= W (Lo, [, .2.,1) whereW represents
operationV applied three times anid= 1l (VI(h), h).

3. Generic codimension one bifurcations

We consider an NMS flow depending on a parameterspnFor a given value of
the parameter the system bifurcates to a new NMS rowSén The generic local
codimension one bifurcations that can be obtained are saddle-node, period-doubling
and Hopf bifurcations and they are characterized in [6] in terms of links using Wada'’s
operations.

Following these results, in this paper we analyze the admissible bifurcations in the
complete symmetric dynamical system from the bifurcations obtained in each stratum.
In addition a pitchfork type bifurcation is obtained as a consequence of the symmetry of
the system.

3.1. Multiple saddle-node bifurcation

Consider a vector field () NMS(S3). Letk be a periodic orbit for a critical value
u = uo that bifurcates by means of a saddle-node to two new periodic okbitsndk,.

Then, forpu nearug one has:

(1) There exists a toral neighborhodtlk) which does not intersect another periodic
orbit. By continuity,k1 andkz are inN (k), so they are linked in a similar way to the
rest of the periodic orbits.

(2) As f e C the solutions are als6?, therefore the knot type of the periodic orbits is
tame and there are a finite number of crosses in a regular projektiandky are
in N (k) with the same number and type of crossek,&® they are of the same knot
type.

This occurs in an NMS system, so we have the different cases obtained in [6] in each
of the strataS,? into which $2 has been split. Now, we analyze the bifurcations that are
obtained in$® building the symmetric link from the links in the stratum following the
sameG-orbit, i.e.,L = G(I) andSN L] = G(sn[/]).

Let us say thaSN L] is a link obtained from a symmetric link addingr-pairs of
parallel periodic orbits of the same knot type. Each pair in the same toral neighborhood
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similarly linked to the rest of orbits in agreement with symmetry, one orbit with index 1
and the other with index O or 2.

Proposition 1. Let L = W (Lo, 1, ™., 1) € £,(S%), whereLg € £,(8%), | = (1, ...,1,),
l; € L(S2) and W represents a set of Wada operations.

A saddle bifurcation in a symmetric system when the new orbits are linked to the
invariant orbit is characterized by

SNL]=W(V"(Lo),1,."..1), (3)

wherer = gcdn, p’) and p’ is the order of the new orbits in each stratum.

Proof. In first place, we can consider that the new orbits that appear in a stratum are linked
to y but not linked between each other. In this case they have t0,li¢-cables, so they

are trivial knots and can be represented by a product of 1-cycles and the same bifurcation
is obtained in the symmetric system. In terms of Wada operations it can be written as:

SNL]=IV(L,h)=V(L), (4)

where the connected sum is made over the invariant periodic orbit when opdkati®on
used; operatiorV is equivalent to it whenr(0, 1)-cables are used. This bifurcation is a
saddle-node bifurcation in the symmetric system.

If they are linked between each other it is necessary to use opefatibat us begin
with the case in which they are also linked to an oiitwith index 0 or 2 and we can
consider them as cables kf. In this case to make operatidn in a stratum consists in
adding two(p, ¢q)-cables (see [19]), where is the number of longitudinal turns around a
given component of orderlinked to the invariant periodic orbit anglis the number of
transversal turns. The order of the cables is p - t. These three orbits can be associated
to a permutation of2p + 1) -  points, and its matri¥ can be written as a product of three
cycles, two of thenb; andb,, corresponding to the cables, afeycles and the othebg,
is ar-cycle. Then in the original system the associated element of the group can be written
as:

b =D bl bl

Using the results of composing a cyeléimes, we see thadt andb; splitintor m-cycles,
wherer =t'/m = gcdn, t') andm = o(b}') =Icm(n, ') /n, and the orbit associated tg
splits intos = ¢/a = gcdn, t) orbits corresponding te-cycles, witha = Ilcm(n, 1) /n.

That means that there weseorbits with perioda in the original system and after
the bifurcation 2 (m/a,nq/r)-cables appear around each of them, wheee r/s =
gcdn, t')/gcdn, t), z cables with index 1 and cables with index 0 or 2, so the link
obtained after the bifurcation is the result of applyinimes operatiori’ of Wada over
the previous linkL:

SNL]= V' (L). (%)
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In general, if the new orbits appear in the neighborhookhafontaining a set of orbits
coming from different Wada operatio®g, following the reasonings of [6] this bifurcation
can be characterized as:

SNL]=SNW(Lo.l,."..1)]=W(V"(Lo), 1, ... 1). (6)

In the particular case that the new orbits that appear linked to a companehbrder
t which gives!/ longitudinal turns toy, we can also associate a product of cycles, as in
Theorem 1. If they correspond to (@, g)-cable ofkg in a stratum, they will givepl
longitudinal turns angpr transversal turns ter and their characterization will be as the
previous one. O

Corollary 3. A saddle-node bifurcation in a symmetric system can be produced on every
link L e £,(5%), except when the bifurcation pair does not appear as a cable of a
component of the previous link. In this caséas to be

L=A(Lo,1,...10). ()

whereL, Lo € £,(S%), [ = (I1,...,1,) with [; € £(53) and A represents a set of Wada
operations of typet.

3.2. Multiple period-doubling bifurcation

When a period doubling bifurcation occurs a periodic okb@thanges its stability and
sheds two periodic orbits, one of them constitutes a period-two orbi.fdhis period-
doubled orbit forms the boundary of a Mdbius band having the original orbit as a spine.
We can distinguish two cases of period doubling bifurcation depending on the change of
index ofk, from O or 2 to 1, or vice versa.

Following the method used before for obtaining the bifurcations in the symmetric
system, forL = G(I) we denoteFLIP;[L] = G(flip; (1)), i = 1,2, whens (defined in
Corollary 2) is 1.

As we will see,FLIP1[L] is the link obtained from a link. where a sekq, ..., k, of
G-invariant orbits have changed their indices (from O or 2 to 1) af& @)-cable, with the
previous index of the orbit, is around each of théilP[ L] the link obtained from a link
L where some orbits have changed their indices (from 1 to 0 or 2) &&dja-cable with
index 1, is around each of them. 3d,IP; andFLIP, represent a multiple period double
bifurcations in a symmetric system.

Let O represent operatidh or Il of Wada.

Proposition 2. Let L € £, (S%), when the orbits that bifurcate are linked fo
(a) FLIP1 is characterized hy

FLIP1[L] = VI"(L); (8)

(b) FLIP2 is characterized by one of the following statements
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FLIP2[L] = FLIP2[ A" (0" (VI" (Lo). 1, ..1))
=A"""(0"(V"(Lo).1,.M.,1)), 9)
FLIP2[L] = FLIP2[VI"(Lo)] = V" (Lo), (10)

where Lo € £,(5%), 1 € L(S3), r = gcdn, t) corresponds to the number of orbits that
bifurcate ands is the order of these orbits in each stratum.

Proof. From Corollary 2 there are two orbits in a stratum, one with ordand the other
one is in a toral neighborhood and it i2 ¢)-cable, they can be written as a product of
two cycles: the-cycle by and a 2 cycle corresponding to th@, ¢)-cable,b,. So, in the
symmetric system, there exisorbits of order with s cables around each of them.

If s =1, in the symmetric system theseorbits suffer a period double bifurcation
simultaneously. Following results obtained in [6], these bifurcations can be characterized
as formulas (8) and (9). Recall that in order to obtain symmetric links #/jpperations
must be applied times.

If the new orbits correspond t(?, 1)-cables of the- orbits that bifurcate and appear
parallel to some previous one, this bifurcation can be characterized by formula (10).

If the orbit that bifurcates is the invariant one, it admits the flip and the pitchfork
bifurcation only in the case = 2. Whenn = 2, the bifurcation ofy keeping the symmetry
of the system, sincg has index 1 before or after these bifurcations, leads to the fact that
asymptotic sets are not manifolds, so the system is not an NMS system and we will not
consider it.

When the orbit that bifurcates ig, it changes its index and a cable of order 2 appears
around it. If the index of the invariant orbit before the bifurcation is 0 or 2, then:
FLIP1[L] = VI[L] doing operatioriVl over the invariant orbit. If its index is 1, has
to be one of the types of (9) with=1. O

Corollary 4. A FLIP; bifurcation in a symmetric system can be produced on any link
L € £,,(5%). A FLIP, bifurcation can be produced when the likcan be written as

L=Lo-(U—k -u-"--10—k) -u, (11)
L=[VILo],

whereLg € £, (S%), 1 € £(S?), r is the number of orbits that bifurcate arich means that
r orbits of a symmetric linli.o have changed their index o

3.3. Multiple pitchfork bifurcation

When a pitchfork bifurcation occurs a periodic orbithanges its index and two new
periodic orbits,kjand k2, appear. We can distinguish two cases of pitchfork bifurcation
depending on the change of index bf from 0 (or 2 to 1, or vice versa and the
corresponding indices of the new orbits will be 1 or 0 (¢rRor values of the parameter
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near the bifurcation value one has the same conditions that for saddle-node bifurcation
(Section 3.1). Following the method used before for obtaining the bifurcations in the
symmetric system we denote:

PITCH;[L]=G(flip;()), i=12,

whens = 2.

When the orbits that bifurcate are trivial the link characterization after the bifurcation
is topologically equivalent to the obtained for a saddle-node bifurcation (see formula (4)).
So, in the following we only study the case when the orbits that bifurcate are not trivial or
the cables are linked between each other.

We obtain thatPITCH4[L] the link obtained from a linkL where a seky, ..., k, of
orbits corresponding to the sanmieorbit have changed their indices from 0 or 2 to 1 and
two linked (1, g)-cables with the same index the orbits had before, appear around each of
them. Similarly,PITCHy[L] denotes the link obtained from a linkin the same way but
the change of the indices of the orbits . . ., &, is from 1 to O or 2.

Proposition 3. Let L € £, (%), a pitchfork bifurcation is characterized by
PITCHL[L] = PITCHy[ A"~ (0" (VI (V" (Lo)). 1. ..1))
= A" (07 (VI (VZ (Lo)l, ..1) ), (12)
PITCHpIL] = PITCH[ 4"~ (0" (VI"(Lo). 1, ..1))
= A" (07 (VI (V7 (Lo)). 1, 2., 1)), (13)
whereLg € £,(5%), [ € £(S3) andr is the number of orbits that bifurcate.

Proof. Following the results of Corollary 2, ¥ = 2, we obtain, in the symmetric system,

a bifurcation consisting in the appearance of two cables of ardeith the same index,
around each of the initial orbits that have changed their indices. Depending on the index
of the orbits that bifurcate we have the following cases:

If the initial orbits, of ordek, have index different from 1, after the bifurcation they have
index 1 and twq(1, ¢’)-cables of index O or 2 appear around each of them. Then, the link
must be written in terms of operatidn applied once over each of theorbits and once
over the cables with index different from 1, adding in this last ¢ds6)-cables in order to
obtain parallel cables. But it is not possible to throw out the cables with index 1 generated,
so they have to be in the link before the bifurcation, tliemas to be of the form:

L= (0 (W (v (Lo). L, 1)),

because applying times operatiorl and then operatioN|, the 2- cables with index 1
are obtained and applyingtimes typeO operations the double period cables generated
are eliminated.

If r #n it is necessary to make typé operations(n — r) times for gettingL to be
symmetric.
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After the bifurcation, as the orbits have index 1 we need to appiyes operatiorvI,
operationdl or lll for getting rid of the double period cables generated by this operation
and typeA operations for obtaining a symmetric link, so:

PITCH[L] = A"~ (0" (VI" (VZ (L0). 1, .. 1)).

If the initial orbits, of ordew, have index 1, they have index 0 or 2 after the bifurcation
and two cables of index 1 appear around each of them. The orbits that appear after the
bifurcation are(1, ¢’ = nq/k)-cables with index 1 and the only way to get them is using
operationV.

As ther componentg; that bifurcate have index 1, the link before the bifurcation must
be obtained using operatiafi to change the index qgf; and operationdl or Il to throw
out the double period cables, so:

L=A""(0"(VI"(Lo),l,..,1)).

The link PITCHz[ L] comes from operatiol appliedr times in order to get the pairs
of parallel (1, g)-cables and from operatiovll appliedr times for changing the indices
to 1 and then, double period cables generated by operadibmsll be eliminate withr
operationdl or Il ; n — r type A operations are also necessary to build a symmetric link,
then:

PITCH(L] = A"~ (0" (VI" (V' (L0)). 1, ..1) ).
When the orbit that bifurcates js, we have seen that the rotational symmetry has to be

n = 2. Then, we obtain the previous results wheee 2. O

Corollary 5. A PITCH; bifurcation in a symmetric system can be produced on alitifk
L can be written as

L=ViLo)-l-u-""1-u (14)
L=V Loy -(I—k)-u-"--(l—k) u.

A PITCH;, bifurcation can be produced when the lihkcan be written as

L=Zo~l-u~-”~)-~l~u (15)
L=To-(—k -u-"-(—Fk) -u.
whereLo € £,(8%), | € /:(S,?), r is the number of orbits that bifurcate ardg means that
r orbits of a symmetric linl.g have changed their index to lie

3.4. Multiple Hopf bifurcation

When a Hopf bifurcation occurs an invariant torus appears around a (attractive or
repulsive) periodic orbit that changes its index. If the rotation number that the flow induces
on this invariant torus is rational, we have, generically, a finite and even number of
hyperbolic periodic orbits,2 and the flow ors? is still NMS.
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As before, we obtain the bifurcation of a symmetric lihkfrom the bifurcation in a
stratum denoting:

HOPF[L] = G (hopf(})).

In the following proposition it is obtained thBIOPF[ L] is the link obtained by changing
the index of a set of symmetric orbits bf(with index 0 or 2) and adding an even number
of hyperbolic periodic orbits+(with index 0 or 2 and with index 1).

Similarly to the previous propositions it can be shown that:

Proposition 4. Let L € £, (%), a Hopf bifurcation ofL, when the orbits that bifurcates
are linked toy, is characterized hy

HOPF[L] = V"*(L), (16)

wheres is the number of pairs of orbits that appear in each stratum,gcdn, p’) and p’
is the order of these orbits.

Then, it can be deduced that:

Corollary 6. A HOPF bifurcation in a symmetric system can be produced on every link
L e L,(53).

4. Final remarks

() The first conclusion we would like to underline is the existence of new symmetric
bifurcations for a given critical value of the parameter, in contrast to a trivial repetition
of local generic codimension one bifurcations that will occur after passing several times
through different bifurcation points.

We also obtain some important results about the kind of links that can suffer a given
bifurcation, maintaining the symmetry of the system, we state it as:

Theorem 1. In NMS systems off with rotational symmetry around one axis, the generic
codimension one bifurcations are multiple except when the invariant prbifurcates or
when the order of the new orbits that appear after the bifurcation and the symmetry of the
systemz, are prime.

The proof follows from the propositions developed in Section 3.

(2) Similar results to those obtained in NMS systems are obtained when symmetry is
present, that is, we also have the possibility of connecting certain links by a sequence of
these kind of bifurcation.

Theorem 2. Given two symmetric unsplittable links differing only in orbits that corre-
spond to cables, one can be obtained from the other by a sequence of symmetric generic
codimension one bifurcations.
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Proof. Given two unsplittable links, we can write them in terms of typeWada
operations. If they only differ in orbits that are cables (in number, type and/or index), as we
have seen that operations of cabling are associated with certain bifurcations and no orbit
have been eliminated (typé operations are not involved), we can obtain the sequence of
generic codimension one bifurcations that carries a link onto the otlmer.

Itis directly deduced from characterizations obtained the existence of links that can not
be obtained one from any other by means of generic local codimension one bifurcations of
symmetric NMS systems over the three-sphere:

Theorem 3. A symmetric link composed by the split sum of Hopf links and unknots with
index1 cannot be obtained from the generic codimension one bifurcation of any link.

(3) Critical links. As a consequence of the previous propositions it is possible to
obtain all the possible configurations of links of periodic orbits for the critical value of
the parameten = uo, for each type of bifurcation.

If the orbits that bifurcates are not linked to the invariant one, the symmetry forces
the repetition of the links obtained in [6]. When the orbit that bifurcates is linked to the
invariant, new intermediate configurations are obtained from the previous propositions.

Let v be the nonhyperbolic orbit representing the orbit that bifurcates which, then the
intermediate configurations for = uo is:

— L with r linked componentsy, that are nonhyperbolic and correspond to the same

G-orbit.

Let us notice that the set of limit configurations of NMS systems is different from the
set of limit configurations of NMS systems with symmetry because in this last case it
can appear several critical orbits in the link. Both configurations will coincide when one
critical orbit appears in the bifurcation point, that is when the order of the orbit is prime
with respect to the symmetwy.
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