
Topology and its Applications 102 (2000) 279–295

Bifurcations of links of periodic orbits in non-singular
Morse–Smale systems with a rotational symmetry onS3

B. Camposa,∗, J. Martínez Alfarob, P. Vindela,1

a Dpt. de Matemàtiques, Universitat Jaume I, 12071 Castelló, Spain
b Dpt. Matemàtica Aplicada, Facultat de Matemàticas, Universitat de València, Burjassot, València, Spain

Received 23 April 1998; received in revised form 17 August 1998

Abstract

In this paper we consider a rotational symmetry on a non-singular Morse–Smale (NMS) system
analyzing the restrictions this symmetry imposes on the links defined by the set of its periodic orbits
and to the appearance of local generic codimension one bifurcations in the set of NMS flows on
S3. The topological characterization is obtained by writing the involved links in terms of Wada
operations.

It is also obtained that symmetry implies that in general bifurcations have to be multiple. On the
other hand, we also see that there exists a set of links that cannot be related to any other by sequences
of this kind of bifurcation. 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the study of a Dynamical System we can focus our attention to the set of its periodic
orbits. The structure of this set can be very complicated; nevertheless, if the phase space
is a three-dimensional manifold and there are a finite number of periodic orbits we can
characterize the set of all periodic orbits as a link. There exists an extensive literature
on the relation between periodic orbits and knots, that began with Birman and Williams
[1,2], Franks [10], and Holmes and Williams [13]. For a review, see Ghrist, Holmes and
Sullivan [11].
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Let χr(M) denote the set ofCr -vector fields onM with the usualCr -topology.
WhenM is a two-dimensional manifold the set of structurally stable vector fields

is dense inχr(M) and it can be used to describe the dynamics of any system. But,
if dimM > 2 this set is not dense and it is usually replaced by one of its subsets:
the Morse–Smale vector fieldsMS(M) [16]. Another motivation for studyingMS flows
is that they characterize entropy zero flows. On the other hand it is shown that Bott
integrable Hamiltonian fields on a non-singular compact constant-energy surfaceQ are in
the boundary of theNMSvector fields [7,9]. Bifurcations take place in its closureMS(M)
and the vector fields where bifurcations are produced are in the boundary∂MS(M). The
characterization of the set of periodic orbits of a non-singular Morse–SmaleNMS(M) flow
on a three-dimensional manifold has been studied by other authors, e.g., [14,15,18–20]. So
links and bifurcations of Hamiltonian systems can be characterized as in [5].

An arc inχr(M) jointing two vector fields can avoid any codimension two bifurcation
through small deformations, but not codimension one bifurcations. So, the study of generic
codimension one families of vector fields is associated with the study of codimension one
bifurcations. In this paper bifurcations are considered in the direction in which new orbits
appear.

Let NMS(S3) denote the set of NMS vector fields onS3. Let f (0) ∈ NMS(S3) be the
initial smooth field of a uniparametric familyf (µ), µ ∈ [0, ε]. Letµ0 be the first point in
whichf (µ) intersects the boundary∂(NMS(S3)). Therefore, the link type of the periodic
orbits of the flow can change. The generic codimension one bifurcations of links of periodic
orbits in NMS systems onS3 are studied in [6] following Wada’s result [19]. LetL(S3)

denote the set of links of periodic orbits of NMS systems.
In this paper we continue this study assuming some symmetry properties of the flow.

We consider that the flow is an NMS flow before and after a codimension one bifurcation,
preserving a rotational symmetry, and we study the restrictions that have to be imposed
on links corresponding to vector fieldsf (µ) to satisfy this condition of symmetry (see
Section 2). While Wada’s results are restated below, we shall assume that the reader is
familiar with the results and techniques in our earlier paper [6].

When a linkl ∈ L(S3) suffers any kind of bifurcation to a new configuration of periodic
orbits bif [l], we cannot assume thatbif [l] ∈ L(S3) because there are some restrictions
imposed by the kind of the system and manifold. To assure thatbif [l] is in L(S3)

we will normally find a “simpler” link (or links)l0 ∈ L(S3) and a sequence of Wada
operations takingl0 to l. To handle this characterization, it will be necessary to impose
some conditions onl. The corresponding statements are given in Section 3. From the
point of view of the dynamics of a system, we obtain conditions for a link to undergo
a generic codimension one bifurcation and we characterize this type of bifurcation. Let us
remark that this interpretation gives a topological description of the links obtained after
the bifurcation. We also see that every bifurcation can be associated with different Wada
operations so, the different topological descriptions obtained point out the way the new
orbits generated by the bifurcation appear.

Some consequences are obtained from these characterizations, in particular, we find
some links that cannot be related to any other by these kind of bifurcations (Theorem 3)
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and some links can be related by a sequence of generic codimension one bifurcations (The-
orem 2).

Finally, the study of the change of the link type when the parameter varies permits us to
look for the characterization of the critical link (Section 4).

1.1. Wada’s theorem

Wada’s theorem [19] characterizes the set of indexed links which arise as the closed
orbits of a non-singular Morse–Smale flow onS3 in terms of a generator, the Hopf link
h with indices 0 and 2 attached to the components, and six operations (the indexi of a
periodic orbit is the dimension of its unstable manifold minus one).

Every indexed link which consists of all the closed orbits of a non-singular Morse–
Smale flow onS3 is obtained from Hopf links by applying the following six operations.
Conversely, every indexed link obtained from Hopf links by applying the operations is the
set of all the closed orbits of a non-singular Morse–Smale flow on S3.

Operations. For given indexed linksl1 andl2, the six operations are defined as follows.
Let l1 · l2 denote the split sum ofl1 and l2 andN(k,M) the regular neighborhood ofk
in M.
• I (l1, l2)= l1 · l2 · u, whereu is an unknot with index 1.
• II (l1, l2)= l1 · (l2− k2) · u, wherek2 is a component ofl2 of index 0 or 2.
• III (l1, l2)= (l1− k1) · (l2− k2) · u, wherek1 is a component ofl1 of index 0 andk2 is

a component ofl2 of index 2.
• IV(l1, l2) = (l1#l2) ∪ m. The connected sum(l1#l2) is obtained by composing a

componentk1 of l1 and a componentk2 of l2, each of which has index 0 or 2. The
index of the composed componentk1#k2 is equal to eitheri(k1) or i(k2). Finally,m
is a meridian ofk1#k2 with i = 1.
• V (l1): Choose a componentk1 of l1 of index 0 or 2, and replaceN(k1, S

3) byD2×S1

with three indexed circles in it; {0}× S1, k2 andk3. Here,k2 andk3 are parallel(p, q)-
cables on∂N({0} × S1, D2× S1), wherep is the number of longitudinal turns and
q the number of the transverse ones. The indices of {0}× S1 andk2 are either 0 or 2,
and one of them is equal toi(k1). The index ofk3 is 1.
• VI(l1): Choose a componentk1 of l1 of index 0 or 2. ReplaceN(k1, S

3) byD2× S1

with two indexed circles in it: {0}× S1 and the(2, q)-cablek2 of {0} × S1. The index
of {0} × S1 is 1, andi(k2)= i(k1).

We call the first three operations (I–III ) typeA operations, and the other three (IV–VI),
that produce unsplittable links, typeB operations.

1.2. Symmetries ofS3

Symmetries frequently appear in Dynamical Systems. The presence of symmetry forces
others kinds of behaviour that are not generic in general but they are generic in symmetric
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systems. We are interested in the study of the symmetries that can appear in an NMS system
onS3.

The group of symmetries ofS3 is O(4), that contains rotationsSO(4), and reflections.
A reflection implies the existence of an invariant surface that produces, by means of
the Poincaré–Bendixon theorem, the existence of fixed points so reflections cannot be
considered in NMS systems. Therefore, we restrict our study to the rotational groupSO(4).

In this paper, we consider as the symmetry groupG, the subgroup generated by a finite
rotation around one axis.

Because of the symmetry we can splitS3 into n equal strata around the symmetry
axis and, each of these stratum,S3

n , can be considered asS3 identifying the points of the
boundary corresponding to the sameG-orbit, where aG-orbit of a pointx is defined by
G(x)= {gx, g ∈G}. An invariant periodic orbitγ is associated to this symmetry axis.

Therefore, an NMS system without symmetry is considered in each stratum. If periodic
orbits are not linked to the invariant one, to reproduce the symmetry implies to repeat them
n times.

When a periodic orbit is linked toγ we can consider the cycle that represents the points
where the periodic orbit crosses the boundary of a stratum. Symmetric links are obtained
composing the associated cyclesn times to reproduce the symmetry of the system. So, we
recall some results of its algebra that are very useful in our reasonings.

Let σ be ap-cycle, if order(σ k) = m thenkm = ṗ, asm has to be the least positive
integer that satisfies this relation,km has to be theleast common multiple ofk andp. So:

o(σ k)=m= lcm(k,p)

k
. (1)

Every permutation can be written as a product of disjoint cycles, and its order is the least
common multiple of the orders of its cycles.

The permutationσk can be decomposed as a product of disjoint cycles where each of
them represents an equivalence class of orderm, then, if the order ofσ isp we obtainp/m
cycles.

2. Symmetric links

We consider an NMS system with rotational symmetry around one axis associated with
the invariant periodic orbitγ . Let ϕ = 2π/n be the minimum rotation angle that leaves
the flow invariant. The symmetry groupG we consider is the cyclic group generated byϕ;
thenS3 can be split inton equal strata,S3

n . Therefore, an NMS system without symmetry
is considered in each stratum where we can use the characterization of links made in [6],
then repeating the stratumn times we obtain the characterization of symmetric links in the
complete system. Let us notice that to build symmetric links in this way is analogous to the
construction of periodic knots (see [4]).

When a periodic orbit is not linked toγ the symmetric link is obtained repeating the
corresponding link in a stratumn times. The characterization of links in each stratum is
studied in [6] and we do not refer to them in the following.
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Fig. 1. A three-dimensional ball inS3.

When a periodic orbit is linked toγ the symmetric link is obtained taking into account
the following results.

Lemma 1. Let k be a periodic orbit linked toγ . Then there exists a meridional diskD
in the solid torusS3−N(γ ) such that at each point wherek intersectsD, the orientation
given tok by the NMS flow entersD transversely from the same side.

Proof. When a periodic orbitk is linked toγ and it is an iterated toral knot ofk0 it follows
a given direction aroundγ , inherited byk0, and this cable never turns back in a toroidal
neighborhood ofγ , N(γ ), so a braid can be defined from thep points where the periodic
orbit crosses the boundary of the stratumD.

If k is not an iterated toral knot but it is linked toγ (γ has to be a trivial knot to maintain
the symmetry), operationsV or VI of Wada over an initial componentk0 linked to the
invariant one (or overγ ) are used, obtaining an iterated toral knotk′ in its corresponding
neighborhood and, after this, operationIV over a component ofk′ has been applied to
obtain this kind of orbit. So,k will be the result of connecting a factork′ linked toγ with
another factork′′. Both factors are necessarily in disjoint three-balls and, as it can be seen
in figures,k′′ is not linked toγ (see Figs. 1 and 2).

So, the projection of these links can be done in such a way that these non-toroidal pieces
do not intersect the boundary of the stratum and they appear repeatedn times to maintain
the symmetry (see Fig. 3). Then we can consider the boundary of the strata avoiding these
non-toroidal pieces.

Hence, in any case, the orientation given tok by theNMSflow crossesD transversely
from the same side.2

Therefore, a symmetric link inS3 can be built from its different components in each
stratum: if a component inS3

n is not linked to the invariant orbit it will be repeatedn times
and if a periodic orbit is linked toγ it crosses the boundary ofS3

n in p points and a cycle
can be associated to it. In the last case, we use composition of cycles to see what happens
in S3.

We refer top as the order of the periodic orbit.
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Fig. 2. Three-dimensional balls inS3 without and with a rotational symmetry aroundγ . A minimal
ball is covering a toroidal neighborhood ofγ .

Fig. 3. Repeating non-toroidal pieces.

Corollary 1. If a p-cycle is associated to a component linked toγ in a stratum, in the
symmetric system there existr components linked toγ and am-cycle is associated to each
of them, where:

r = p

m
= gcd(n,p), m= lcm(n,p)

n
. (2)

When a componentk of a link has cables around it, they are in a neighborhoodN(k)

that does not intersect another periodic orbit. So, when we use cycle theory to represent
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Fig. 4. A symmetric link obtained forn= 3.

Fig. 5. Forn= 4 the symmetry forces the splitting of the initial orbits.

what happens in a stratum, these cables are in the corresponding toral neighborhood of the
orbit in this stratum, therefore, when the original system is restored the cables follow the
orbit k (see Figs. 4 and 5). Moreover, ifk splits intom orbits, their cables also split in such
a way that every orbit obtained has its corresponding cables in its toral neighborhood (see
Fig. 5).
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Corollary 2. When there are two orbits in a stratum, one with ordert and the other one is a
(2, q)-cable of it, in the symmetric system there existr orbits of ordera with s(m/a,nq/k)-
cables of the same index, wheres = gcd(n,2t)/gcd(n, t).

For s = 1 the order of the cables is2a and for s = 2 the order of the cables isa, the
same as the base component.

Proof. When there are two orbits in a stratum, one with ordert and the other one is in a
toral neighborhood and it is a(2, q)-cable, they can be written as a product of two cycles:
thet-cycleb1 and a 2t cycle corresponding to the(2, q)-cable,b2. Then, the set of periodic
orbits in the symmetric system can be written as:

bn = bn1 · bn2.
As we have seen before,b2 splits into j orbits of orderm, where j = 2t/m =

gcd(n,2t) andm = lcm(n,2t)/n, andb1 splits into r = t/a = gcd(n, t) orbits of order
a = lcm(n, t)/n.

Therefore, there arer orbits of ordera with s(m/a,nq/k)-cables of the same index,
wheres = gcd(n,2t)/gcd(n, t) is 1 or 2 in the complete system. Fors = 1 the order of the
cable is 2a and fors = 2 the order of the cables isa, the same as the base component.2

Therefore, in terms of Wada operations it is deduced that when the system has a
rotational symmetry these operations have to be applied in such a way that the link obtained
has this rotational symmetry. We can conclude that:

(1) We have also to take into account the symmetry of the system when we apply type
B operations. If they are applied over components that are not linked toγ , they
have also to be applied a number of times that has to be a multiple ofn in order to
obtain a symmetric link. In other case, as we can see in the following, the sum of all
transversal turns of the(pi, qi)-cables that appear must be a multiple ofn.

(2) TypeA operations have to be applied a number of times multiple ofn in order to
obtain a symmetric link because eachA operation produces an unknot.

(3) Moreover, the symmetry of the system leads to the non-admissibility of some NMS
links:

Lemma 2. For n > 2, a link obtained using only operation III over Hopf links is not a
symmetric link.

Proof. The link obtained applying only operationIII over Hopf links consists in the split
sum of two trivial orbits with indices 0 or 2 and unknots and it is not a symmetric link
except forn= 2. 2

In the following, letLn(S3) denote the set of NMS links in a symmetric system and
L(S3

n) be the set of NMS links in a stratum. Capital letters denote links and bifurcations in
the symmetric system, and small letters links and bifurcations in a non-symmetric stratum.

Notice that Wada’s operations have to be applied in order to obtain a symmetric link. It
will depend on the type of operation. WhenL ∈Ln(S3) involves typeA operations, we can
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observe that these operations have been applied
.
n times because they generate unknotted

orbits. Likewise for operationIV, because non toroidal pieces, that must be repeated
.
n

times, appear. IfL only involves operationsV andVI over periodic orbits linked toγ , as
we have seen before, the general form forL isL=Br(L0) whereB only representsV and
VI andL0 is a symmetric link.

For instance, if we consider the link in Fig. 3 we can observe that operationsII andIV
have been applied three times. On the other hand, operationVI has been applied three times
because the cabling is made over orbits that are not linked toγ . So, an expression for this
link is L=W (L0, l,

3). . . , l) whereW represents operationsIV andII applied three times,
L0 is the symmetric Hopf link (γ is one of its components) andl = (l1, l2) with l1= VI(h)
and l2 = h. We can also represent this link byL =W (L0, l,

3). . . , l) whereW represents
operationIV applied three times andl = II (VI(h),h).

3. Generic codimension one bifurcations

We consider an NMS flow depending on a parameter onS3
n . For a given value of

the parameter the system bifurcates to a new NMS flow onS3
n . The generic local

codimension one bifurcations that can be obtained are saddle-node, period-doubling
and Hopf bifurcations and they are characterized in [6] in terms of links using Wada’s
operations.

Following these results, in this paper we analyze the admissible bifurcations in the
complete symmetric dynamical system from the bifurcations obtained in each stratum.
In addition a pitchfork type bifurcation is obtained as a consequence of the symmetry of
the system.

3.1. Multiple saddle-node bifurcation

Consider a vector fieldf (µ) ∈ NMS(S3). Let k be a periodic orbit for a critical value
µ= µ0 that bifurcates by means of a saddle-node to two new periodic orbits,k1 andk2.
Then, forµ nearµ0 one has:

(1) There exists a toral neighborhoodN(k) which does not intersect another periodic
orbit. By continuity,k1 andk2 are inN(k), so they are linked in a similar way to the
rest of the periodic orbits.

(2) Asf ∈C1 the solutions are alsoC1, therefore the knot type of the periodic orbits is
tame and there are a finite number of crosses in a regular projection;k1 andk2 are
in N(k) with the same number and type of crosses ask, so they are of the same knot
type.

This occurs in an NMS system, so we have the different cases obtained in [6] in each
of the strataS3

n into which S3 has been split. Now, we analyze the bifurcations that are
obtained inS3 building the symmetric link from the links in the stratum following the
sameG-orbit, i.e.,L=G(l) andSN[L] =G(sn[l]).

Let us say thatSN[L] is a link obtained from a symmetric linkL addingr-pairs of
parallel periodic orbits of the same knot type. Each pair in the same toral neighborhood
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similarly linked to the rest of orbits in agreement with symmetry, one orbit with index 1
and the other with index 0 or 2.

Proposition 1. Let L =W (L0, l,
n). . . , l) ∈ Ln(S3), whereL0 ∈ Ln(S3), l = (l1, . . . , lν),

li ∈ L(S3
n) andW represents a set ofν Wada operations.

A saddle bifurcation in a symmetric system when the new orbits are linked to the
invariant orbit is characterized by:

SN[L] =W(V r(L0), l,
n). . . , l

)
, (3)

wherer = gcd(n,p′) andp′ is the order of the new orbits in each stratum.

Proof. In first place, we can consider that the new orbits that appear in a stratum are linked
to γ but not linked between each other. In this case they have to be(0,1)-cables, so they
are trivial knots and can be represented by a product of 1-cycles and the same bifurcation
is obtained in the symmetric system. In terms of Wada operations it can be written as:

SN[L] = IV(L,h)= V (L), (4)

where the connected sum is made over the invariant periodic orbit when operationIV is
used; operationV is equivalent to it when(0,1)-cables are used. This bifurcation is a
saddle-node bifurcation in the symmetric system.

If they are linked between each other it is necessary to use operationV . Let us begin
with the case in which they are also linked to an orbitk0 with index 0 or 2 and we can
consider them as cables ofk0. In this case to make operationV in a stratum consists in
adding two(p, q)-cables (see [19]), wherep is the number of longitudinal turns around a
given component of ordert linked to the invariant periodic orbit andq is the number of
transversal turns. The order of the cables ist ′ = p · t . These three orbits can be associated
to a permutation of(2p+ 1) · t points, and its matrixb can be written as a product of three
cycles, two of themb1 andb2, corresponding to the cables, aret ′-cycles and the other,b3,
is at-cycle. Then in the original system the associated element of the group can be written
as:

bn = bn1 · bn2 · bn3.
Using the results of composing a cyclen times, we see thatb1 andb2 split into r m-cycles,
wherer = t ′/m= gcd(n, t ′) andm= o(bni )= lcm(n, t ′)/n, and the orbit associated tob3

splits intos = t/a = gcd(n, t) orbits corresponding toa-cycles, witha = lcm(n, t)/n.
That means that there weres orbits with perioda in the original system and after

the bifurcation 2z (m/a,nq/r)-cables appear around each of them, wherez = r/s =
gcd(n, t ′)/gcd(n, t), z cables with index 1 andz cables with index 0 or 2, so the link
obtained after the bifurcation is the result of applyingr-times operationV of Wada over
the previous linkL:

SN[L] = V r(L). (5)
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In general, if the new orbits appear in the neighborhood ofk0 containing a set of orbits
coming from different Wada operationsW , following the reasonings of [6] this bifurcation
can be characterized as:

SN[L] = SN
[
W
(
L0, l,

n). . . , l
)]=W(V r(L0), l,

n). . . , l
)
. (6)

In the particular case that the new orbits that appear linked to a componentk0 of order
t which givesl longitudinal turns toγ , we can also associate a product of cycles, as in
Theorem 1. If they correspond to a(p, q)-cable ofk0 in a stratum, they will givepl
longitudinal turns andpt transversal turns toγ and their characterization will be as the
previous one. 2
Corollary 3. A saddle-node bifurcation in a symmetric system can be produced on every
link L ∈ Ln(S3), except when the bifurcation pair does not appear as a cable of a
component of the previous link. In this caseL has to be

L=A(L0, l,
n). . . , l

)
. (7)

whereL,L0 ∈ Ln(S3), l = (l1, . . . , lν) with li ∈ L(S3
n) andA represents a set ofν Wada

operations of typeA.

3.2. Multiple period-doubling bifurcation

When a period doubling bifurcation occurs a periodic orbitk changes its stability and
sheds two periodic orbits, one of them constitutes a period-two orbit fork. This period-
doubled orbit forms the boundary of a Möbius band having the original orbit as a spine.
We can distinguish two cases of period doubling bifurcation depending on the change of
index ofk, from 0 or 2 to 1, or vice versa.

Following the method used before for obtaining the bifurcations in the symmetric
system, forL = G(l) we denoteFLIPi [L] = G(flipi(l)), i = 1,2, whens (defined in
Corollary 2) is 1.

As we will see,FLIP1[L] is the link obtained from a linkL where a setk1, . . . , kr of
G-invariant orbits have changed their indices (from 0 or 2 to 1) and a(2, q)-cable, with the
previous index of the orbit, is around each of them,FLIP2[L] the link obtained from a link
L where some orbits have changed their indices (from 1 to 0 or 2) and a(2, q)-cable with
index 1, is around each of them. So,FLIP1 andFLIP2 represent a multiple period double
bifurcations in a symmetric system.

LetO represent operationII or III of Wada.

Proposition 2. LetL ∈ Ln(S3), when the orbits that bifurcate are linked toγ
(a) FLIP1 is characterized by:

FLIP1[L] = VIr (L); (8)

(b) FLIP2 is characterized by one of the following statements:
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FLIP2[L] = FLIP2

[
An−r

(
Or
(
VIr (L0), l,

n). . . , l
))]

=An−r(Or
(
V r(L0), l,

n). . . , l
))
, (9)

FLIP2[L] = FLIP2
[
VIr (L0)

]= V r(L0), (10)

whereL0 ∈ Ln(S3), l ∈ L(S3
n), r = gcd(n, t) corresponds to the number of orbits that

bifurcate andt is the order of these orbits in each stratum.

Proof. From Corollary 2 there are two orbits in a stratum, one with ordert and the other
one is in a toral neighborhood and it is a(2, q)-cable, they can be written as a product of
two cycles: thet-cycleb1 and a 2t cycle corresponding to the(2, q)-cable,b2. So, in the
symmetric system, there existr orbits of ordera with s cables around each of them.

If s = 1, in the symmetric system theser orbits suffer a period double bifurcation
simultaneously. Following results obtained in [6], these bifurcations can be characterized
as formulas (8) and (9). Recall that in order to obtain symmetric links typeA operations
must be applied

.
n times.

If the new orbits correspond to(2,1)-cables of ther orbits that bifurcate and appear
parallel to some previous one, this bifurcation can be characterized by formula (10).

If the orbit that bifurcates is the invariant one, it admits the flip and the pitchfork
bifurcation only in the casen= 2. Whenn 6= 2, the bifurcation ofγ keeping the symmetry
of the system, sinceγ has index 1 before or after these bifurcations, leads to the fact that
asymptotic sets are not manifolds, so the system is not an NMS system and we will not
consider it.

When the orbit that bifurcates isγ , it changes its index and a cable of order 2 appears
around it. If the index of the invariant orbit before the bifurcation is 0 or 2, then:
FLIP1[L] = VI[L] doing operationVI over the invariant orbit. If its index is 1,L has
to be one of the types of (9) withr = 1. 2
Corollary 4. A FLIP1 bifurcation in a symmetric system can be produced on any link
L ∈ Ln(S3). A FLIP2 bifurcation can be produced when the linkL can be written as:

L=L0 · l · u · n)· · · · l · u,
L=L0 · (l − k) · u · n)· · · · (l − k) · u, (11)

L= [VI(L0)
]k
,

whereL0 ∈ Ln(S3), l ∈ L(S3
n), r is the number of orbits that bifurcate andL0 means that

r orbits of a symmetric linkL0 have changed their index to1.

3.3. Multiple pitchfork bifurcation

When a pitchfork bifurcation occurs a periodic orbitk changes its index and two new
periodic orbits,k1andk2, appear. We can distinguish two cases of pitchfork bifurcation
depending on the change of index ofk, from 0 (or 2) to 1, or vice versa and the
corresponding indices of the new orbits will be 1 or 0 (or 2). For values of the parameter
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near the bifurcation value one has the same conditions that for saddle-node bifurcation
(Section 3.1). Following the method used before for obtaining the bifurcations in the
symmetric system we denote:

PITCHi [L] =G
(
flipi (l)

)
, i = 1,2,

whens = 2.
When the orbits that bifurcate are trivial the link characterization after the bifurcation

is topologically equivalent to the obtained for a saddle-node bifurcation (see formula (4)).
So, in the following we only study the case when the orbits that bifurcate are not trivial or
the cables are linked between each other.

We obtain thatPITCH1[L] the link obtained from a linkL where a setk1, . . . , kr of
orbits corresponding to the sameG-orbit have changed their indices from 0 or 2 to 1 and
two linked(1, q)-cables with the same index the orbits had before, appear around each of
them. Similarly,PITCH2[L] denotes the link obtained from a linkL in the same way but
the change of the indices of the orbitsk1, . . . , kr is from 1 to 0 or 2.

Proposition 3. LetL ∈ Ln(S3), a pitchfork bifurcation is characterized by:

PITCH1[L] = PITCH1

[
An−r

(
Or
(
VIr

(
V r(L0)

)
, l, n). . . , l

))]
=An−r

(
Or
(
VIr

(
V 2r (L0)

)
l, n). . . , l

))
, (12)

PITCH2[L] = PITCH2

[
An−r

(
Or
(
VIr (L0), l,

n). . . , l
))]

=An−r
(
Or
(
VIr

(
V r(L0)

)
, l, n). . . , l

))
, (13)

whereL0 ∈ Ln(S3), l ∈ L(S3
n) andr is the number of orbits that bifurcate.

Proof. Following the results of Corollary 2, ifs = 2, we obtain, in the symmetric system,
a bifurcation consisting in the appearance of two cables of ordera with the same index,
around each of the initialr orbits that have changed their indices. Depending on the index
of the orbits that bifurcate we have the following cases:

If the initial orbits, of ordera, have index different from 1, after the bifurcation they have
index 1 and two(1, q ′)-cables of index 0 or 2 appear around each of them. Then, the link
must be written in terms of operationV applied once over each of ther orbits and once
over the cables with index different from 1, adding in this last case(1,0)-cables in order to
obtain parallel cables. But it is not possible to throw out the cables with index 1 generated,
so they have to be in the link before the bifurcation, thenL has to be of the form:

L=An−r
(
Or
(
VIr

(
V r(L0)

)
, l, n). . . , l

))
,

because applyingr times operationV and then operationVI, the 2r cables with index 1
are obtained and applyingr times typeO operations the double period cables generated
are eliminated.

If r 6= n it is necessary to make typeA operations(n − r) times for gettingL to be
symmetric.
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After the bifurcation, as the orbits have index 1 we need to applyr times operationVI,
operationsII or III for getting rid of the double period cables generated by this operation
and typeA operations for obtaining a symmetric link, so:

PITCH1[L] =An−r
(
Or
(
VIr

(
V 2r (L0)

)
, l, n). . . , l

))
.

If the initial orbits, of ordera, have index 1, they have index 0 or 2 after the bifurcation
and two cables of index 1 appear around each of them. The orbits that appear after the
bifurcation are(1, q ′ = nq/k)-cables with index 1 and the only way to get them is using
operationV .

As ther componentspj that bifurcate have index 1, the link before the bifurcation must
be obtained using operationVI to change the index ofpj and operationsII or III to throw
out the double period cables, so:

L=An−r(Or
(
VIr (L0), l,

n). . . , l
))
.

The linkPITCH2[L] comes from operationV appliedr times in order to get ther pairs
of parallel(1, q)-cables and from operationVI appliedr times for changing the indices
to 1 and then, double period cables generated by operationsVI will be eliminate withr
operationsII or III ; n− r typeA operations are also necessary to build a symmetric link,
then:

PITCH2[L] =An−r
(
Or
(
VIr

(
V r(L0)

)
, l, n). . . , l

))
.

When the orbit that bifurcates isγ , we have seen that the rotational symmetry has to be
n= 2. Then, we obtain the previous results wheren= 2. 2
Corollary 5. A PITCH1 bifurcation in a symmetric system can be produced on a linkL if
L can be written as:

L= V r(L0) · l · u · n)· · · · l · u, (14)

L= V r(L0) · (l − k) · u · n)· · · · (l − k) · u.
A PITCH2 bifurcation can be produced when the linkL can be written as:

L=L0 · l · u · n)· · · · l · u (15)

L=L0 · (l − k) · u · n)· · · · (l − k) · u.
whereL0 ∈ Ln(S3), l ∈ L(S3

n), r is the number of orbits that bifurcate andL0 means that
r orbits of a symmetric linkL0 have changed their index to be1.

3.4. Multiple Hopf bifurcation

When a Hopf bifurcation occurs an invariant torus appears around a (attractive or
repulsive) periodic orbit that changes its index. If the rotation number that the flow induces
on this invariant torus is rational, we have, generically, a finite and even number of
hyperbolic periodic orbits, 2r, and the flow onS3 is still NMS.
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As before, we obtain the bifurcation of a symmetric linkL from the bifurcation in a
stratum denoting:

HOPF[L] =G(hopf(l)
)
.

In the following proposition it is obtained thatHOPF[L] is the link obtained by changing
the index of a set of symmetric orbits ofL (with index 0 or 2) and adding an even number
of hyperbolic periodic orbits (r with index 0 or 2 andr with index 1).

Similarly to the previous propositions it can be shown that:

Proposition 4. Let L ∈ Ln(S3), a Hopf bifurcation ofL, when the orbits that bifurcates
are linked toγ , is characterized by:

HOPF[L] = V rs(L), (16)

wheres is the number of pairs of orbits that appear in each stratum,r = gcd(n,p′) andp′
is the order of these orbits.

Then, it can be deduced that:

Corollary 6. A HOPF bifurcation in a symmetric system can be produced on every link
L ∈ Ln(S3).

4. Final remarks

(1) The first conclusion we would like to underline is the existence of new symmetric
bifurcations for a given critical value of the parameter, in contrast to a trivial repetition
of local generic codimension one bifurcations that will occur after passing several times
through different bifurcation points.

We also obtain some important results about the kind of links that can suffer a given
bifurcation, maintaining the symmetry of the system, we state it as:

Theorem 1. In NMS systems onS3 with rotational symmetry around one axis, the generic
codimension one bifurcations are multiple except when the invariant orbitγ bifurcates or
when the order of the new orbits that appear after the bifurcation and the symmetry of the
system,n, are prime.

The proof follows from the propositions developed in Section 3.
(2) Similar results to those obtained in NMS systems are obtained when symmetry is

present, that is, we also have the possibility of connecting certain links by a sequence of
these kind of bifurcation.

Theorem 2. Given two symmetric unsplittable links differing only in orbits that corre-
spond to cables, one can be obtained from the other by a sequence of symmetric generic
codimension one bifurcations.
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Proof. Given two unsplittable links, we can write them in terms of typeB Wada
operations. If they only differ in orbits that are cables (in number, type and/or index), as we
have seen that operations of cabling are associated with certain bifurcations and no orbit
have been eliminated (typeA operations are not involved), we can obtain the sequence of
generic codimension one bifurcations that carries a link onto the other.2

It is directly deduced from characterizations obtained the existence of links that can not
be obtained one from any other by means of generic local codimension one bifurcations of
symmetric NMS systems over the three-sphere:

Theorem 3. A symmetric link composed by the split sum of Hopf links and unknots with
index1 cannot be obtained from the generic codimension one bifurcation of any link.

(3) Critical links. As a consequence of the previous propositions it is possible to
obtain all the possible configurations of links of periodic orbits for the critical value of
the parameterµ=µ0, for each type of bifurcation.

If the orbits that bifurcates are not linked to the invariant one, the symmetry forces
the repetition of the links obtained in [6]. When the orbit that bifurcates is linked to the
invariant, new intermediate configurations are obtained from the previous propositions.

Let v be the nonhyperbolic orbit representing the orbit that bifurcates which, then the
intermediate configurations forµ=µ0 is:

– L with r linked components,v, that are nonhyperbolic and correspond to the same
G-orbit.

Let us notice that the set of limit configurations of NMS systems is different from the
set of limit configurations of NMS systems with symmetry because in this last case it
can appear several critical orbits in the link. Both configurations will coincide when one
critical orbit appears in the bifurcation point, that is when the order of the orbit is prime
with respect to the symmetryn.
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