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a b s t r a c t

We continue the study of cellular automata (CA) directional dynamics, i.e. , the behavior
of the joint action of CA and shift maps. This notion has been investigated for general
CA in the case of expansive dynamics by Boyle and Lind; and by Sablik for sensitivity
and equicontinuity. In this paper we give a detailed classification for the class of additive
CA providing non-trivial examples for some classes of Sablik’s classification. Moreover,
we extend the directional dynamics studies by considering also factor languages and
attractors.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Cellular automata (CA) are simple formal models for complex systems. They have been widely studied in a number of
disciplines (Computer Science, Physics,Mathematics, Biology, Chemistry, etc.) with different purposes (simulation of natural
phenomena, pseudo-random number generation, image processing, analysis of universal model of computations, quasi-
crystals, etc.). For recent results and an extensive and up-to-date bibliography, for example, see [10,19,5,9,24,15,26,16,35,
18,14,28,6,21].
The huge variety of distinct dynamical behaviors is one of the main features which determined the success of CA in

applications. Paradoxically, the formal (decidable) classification of such behaviors is still a major open problem in CA theory.
Indeed, many classifications have been introduced over the years but none of them is decidable [20,11,4,25,23,17,27].
Inspired by [33,3], M. Sablik proposed to refine Kůrka’s equicontinuity classification along ‘‘directions" different from

the standard time arrow [36]. The idea is to see how ‘‘robust’’ a given dynamical behavior is when changing the way by
which time samples are taken into account. In other words, Sablik studies the space-time structure of CA evolutions by
classifying the dynamics of σ k ◦ F h, where σ is the shift map and F is the global rule of a CA (k ∈ Z, h ∈ N+, see Section 2
for the definitions). Sablik’s work is concerned particularly with directions of equicontinuity and (left/right) expansivity:
he provides a directional dynamics classification of CA according to such properties. Despite his classification sheds new
light about the complexity of CA behavior, most of his classes are still not well understood. Moreover, it is actually unknown
whether his classification is (at least partially) decidable or not.

I A preliminary version of this paper has been presented at the First International Symposium on Cellular Automata, Journées Automates Cellulaires
(JAC 2008), April 21–25, 2008, Uzès, France [A. Dennunzio, P. Di Lena, E. Formenti, L. Margara, Classification of directional dynamics for additive cellular
automata, in: First International Symposium on Cellular Automata, Journées Automates Cellulaires, JAC 2008, Uzès, France, April 21–25, 2008, Proceedings
of JAC 2008, MCCME Publishing House, Moscow, 2008. pp. 40–53] [13].
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Additive CA (ACA) are the subclass of CA whose local rule is defined by an additive function. Despite their simplicity that
makes it possible a detailed algebraic analysis, ACA exhibit many of the complex features of general CA. Several important
properties of ACA have been studied during the last twenty years and in some cases exact characterizations have been
obtained [22,38,39,32,31,8,7].
In this paperwe use ACA to further illustrate thework of Sablik andwe extend the directional dynamics picture by further

introducing attractors and factor languages directions.We provide a very detailed directional dynamics classification of ACA
and we compare our classes with Sablik’s ones. Moreover we show that our classification is completely decidable.
The paper is organized as follows. Sections 2–4 are devoted to the basic background on the subject of CA and ACA. In

Section 5, we consider factor languages directions, in particular we show that all ACA are regular. In Section 6 we consider
attractor directions. In Section 7 we provide a directional dynamics classification of ACA and compare our classes with
Sablik’s ones. In Section 8, we draw some conclusions about this work.

2. Cellular automata

ACA consists in an infinite set of finite automata distributed over a regular latticeL. All finite automata are identical. Each
automaton assumes a state, chosen from a finite set A, called the set of states or the alphabet. A configuration is a snapshot of
all the states of the automata, i.e., a function from L to A. Denote AL the set of all configurations. In the present paper, we
consider one-dimensional CA in which L = Z. A local rule updates the state of each automaton on the basis of its current
state and the ones of a fixed set of neighboring automata individuated by the neighborhood frame N = {m,m+ 1, . . . , a},
where m, a ∈ Z, with m ≤ a. The integers m, a and r = max{|m|, |a|} are called the memory, the anticipation and the
radius of the CA, respectively. Formally, the local rule is a function f : Aa−m+1 → A. All automata in the lattice are updated
synchronously. In other words, the local rule f induces a global rule F : AZ

→ AZ describing the evolution of the whole
system from time t to t + 1:

∀c ∈ AZ,∀i ∈ Z, F(c)i = f (ci+m, . . . , ci+a) .

We say that a CA is one-sided if eitherm ≥ 0 or a ≤ 0. The shift map σ : AZ
→ AZ, defined as ∀c ∈ AZ, ∀i ∈ Z, σ(c)i = ci+1

is one of the simplest examples of CA.
In this work we restrict our attention to the class of additive CA, i.e., CA based on an additive local rule defined over the

ring Zs = {0, 1, . . . , s− 1}. A function f : Za−m+1s → Zs is said to be additive if there exist coefficients λm, . . . , λa ∈ Zs such
that it can be expressed as:

∀(xm, . . . , xa) ∈ Za−m+1s , f (xm, . . . , xa) =

[
a∑
j=m

λjxj

]
s

where [x]s is the integer x taken modulo s. A CA is additive if its local rule is additive.
A rule f : Aa−m+1 → A is permutive in the position i if ∀bm, bm+1, . . . , bi−1, bi+1, . . . , ba ∈ A,∀b ∈ A, ∃!bi ∈ A, f (bm, . . . ,

bi−1, bi, bi+1, . . . , ba) = b. The local rule of an ACA is permutive in the position i iff gcd(s, λi) = 1.

3. Dynamical properties of DTDS and CA

Adiscrete time dynamical system (DTDS) is a pair (X, g)whereX is a compactmetric space and g is a continuousmapping
from X to itself. Denote d(·, ·), the metric on X . When A is equipped with the discrete topology and AZ with the induced
product topology, for any CA F , the structure (AZ, F) is a DTDS. From now on, for the sake of simplicity we identify a CAwith
the dynamical system induced by itself or even with its global rule F .

Dynamical and set theoretical properties for DTDS. ADTDS (X, g) is injective (resp., surjective, open) iff g is injective (resp.,
surjective, open).
A DTDS (X, g) is sensitive to the initial conditions (or simply sensitive) if there exists a constant ε > 0 such that for any

configuration x ∈ X and any δ > 0 there is a configuration y ∈ X such that d(y, x) < δ and d(gn(y), gn(x)) > ε for some
n ∈ N. A DTDS (X, g) is positively expansive if there exists a constant ε > 0 such that for any pair of distinct elements x, y
we have d(gn(y), gn(x)) ≥ ε for some n ∈ N. When g is a homeomorphism, the notion of expansivity can be considered too.
It is obtained by replacing n ∈ Nwith n ∈ Z in the definition of positive expansivity.
An element x ∈ X is an equicontinuity point for g if ∀ε > 0 there exists δ > 0 such that for all y ∈ X , d(y, x) < δ implies

that ∀n ∈ N, d(gn(y), gn(x)) < ε. A DTDS is said to be equicontinuous if ∀ε > 0 there exists δ > 0 such that for all x, y ∈ X ,
d(y, x) < δ implies that ∀n ∈ N, d(gn(y), gn(x)) < ε. A DTDS (X, g) is equicontinuous iff the set E of its equicontinuity
points is the whole X . A DTDS is almost equicontinuous if E is residual (i.e., E can be obtained by an infinite intersection of
dense open subsets).
A DTDS (X, g) is (topologically) transitive if for any pair of non-empty open sets U, V ⊆ X there exists an integer n ∈ N

such that gn(U) ∩ V 6= ∅. A DTDS (X, g) is (topologically) mixing if for any pair of non-empty open sets U, V ⊆ AZ there
exists an integer n ∈ N such that for any t ≥ nwe have g t(U) ∩ V 6= ∅. Trivially, any mixing DTDS is also transitive.



A. Dennunzio et al. / Theoretical Computer Science 410 (2009) 4823–4833 4825

A morphism between two DTDS (X, g) and (Y , h) is a continuous mapping φ : X → Y such that h ◦ φ = φ ◦ g . If φ is
surjective then (Y , h) is a factor of (X, g). If φ is a homeomorphism, the two systems are said to be (topologically) conjugated.
The conjugacy preserves most of the properties seen so far.

Limit sets and attractors for DTDS. For a given DTDS (X, g), a subset V ⊆ X is said to be invariant if g(V ) ⊆ V .The omega
limit of a closed invariant subset V ⊆ X is defined as

ω(V ) =
⋂
n>0

⋃
m>n

gm(V ).

The limit set of the DTDS (X, g) isω(X). A dynamical system is called stable if it reaches its limit set in a finite amount of time,
i.e., if there exists some n > 0 such that ∀m > n, gm(X) = gn(X). A set Y ⊆ X is an attractor if there exists a non-empty open
set V such that F(V ) ⊆ V and Y = ω(V ). In totally disconnected spaces, attractors are omega limit sets of clopen invariant
sets. A set Y ⊆ X is a minimal attractor if it is an attractor and no proper subset of Y is an attractor. A quasi-attractor is a
countable intersection of attractors which is not an attractor. DTDS with a unique attractor which is a singleton are called
nilpotent.

Topology on CA configurations and related properties. In order to study the dynamical properties of CA, AZ is usually
equipped with the Cantor metric d defined as

∀c, c ′ ∈ AZ, d(c, c ′) = 2−n, where n = min
{
i ≥ 0 : ci 6= c ′i or c−i 6= c

′

−i

}
.

The topology induced by d coincides with the product topology defined above. In this case, AZ is a Cantor space, i.e., it is
compact, perfect and totally disconnected.
For any configuration c ∈ AZ and any pair i, j ∈ Z, with i ≤ j, denote by c[i,j] the word ci · · · cj ∈ Aj−i+1, i.e., the portion of

the configuration c ∈ AZ inside the interval [i, j] = {k ∈ Z : i ≤ k ≤ j}. A cylinder of block u ∈ Ak and position i ∈ Z is the
set Ci(u) = {c ∈ AZ

: c[i,i+k−1] = u}. Cylinders are clopen (i.e., closed and open) sets w.r.t. the Cantor metric.
In the case of CA, it is possible to study other forms of expansivity. For any n ∈ Z, let c[n,∞) (resp., c(−∞,n]) denote the

portion of a configuration c inside the infinite integer interval [n,∞) (resp., (−∞, n]). A CA (AZ, F) is right (resp., left)
expansive if there exists a constant ε > 0 such that for any pair of configurations c, c ′ ∈ AZ with c[0,∞) 6= c ′[0,∞) (resp.,
c(−∞,0] 6= c ′(−∞,0]) we have d(F

n(c), F n(c ′)) ≥ ε for some n ∈ N.

Subshifts and column subshifts. Denote AN the set of all one-sided configurations i.e. the set of functions from A to N. A
subshift on the alphabet A is a DTDS (S, σ )where S is a closed σ -invariant subset of AN (or AZ). From now on, we identify a
subshift (S, σ ) with the set S. For w = w1 · · ·wn ∈ An and y ∈ AN, w ≺ y means that w is a proper factor of y ∈ AN, i.e.,
there exists i ∈ N such that y[i,i+n−1] = w. Let F ⊆ A∗ and SF =

{
y ∈ AN

: ∀w ≺ y, w /∈ F
}
, where A∗ is the set of (finite)

words over the alphabet A. SF is a subshift, and F is its set of forbidden patterns. A subshift S is said to be a subshift of finite
type (SFT) if S = SF for some finite set F . The language of a subshift S is LS =

{
w ∈ A∗ : ∃y ∈ AN, w ≺ y

}
. A subshift is sofic

if it is a factor of some SFT. Refer to [29] for an introduction on subshifts.
Let S1 and S2 be two subshifts. A function ϕ : S1 → S2 is said to be a block map if it is continuous and σ -commuting, i.e.

ϕ ◦ σ = σ ◦ ϕ. In particular, CA are block maps from the subshift AZ to itself.
The column subshift of width k > 0 of a given CA (AZ, F), is the subshift (Σk(F), σ ) on the alphabet B = Ak where

Σk(F) =
{
y ∈ BN

: ∃c ∈ AZ,∀i ∈ N, yi = F i(c)[1,k]
}
.

A language L ⊆ A∗ is bounded periodic if there exist two integers l ≥ 0 and n > 0 such that for every u ∈ L and i ≥ l we
have ui = ui+n. A CA is said to be bounded periodic (resp., regular) if for any k > 0 the the language of the column subshift
(Σk(F), σ ) is bounded periodic (resp., regular).

Directional dynamics of CA. The directional dynamics of CA concerns the study of the joint action of CAwith the shift map.
More precisely, for a given CA F and for any rational k/h (k ∈ Z, h ∈ N+), the focus is the dynamical behavior of the CA
σ kF h. A CA F is said to be equicontinuous (resp., almost equicontinuous, resp. left expansive, resp., right expansive, resp.,
positively expansive, resp., expansive) along the direction k/h, k ∈ Z, h ∈ N+, if the CA σ kF h is equicontinuous (resp., almost
equicontinuous, resp. left expansive, resp., right expansive, resp., positively expansive, resp., expansive).

3.1. Classifications of CA

We now recall three important classifications of CA based on the complexity of their column subshift languages, the
degree of stability/unstability of their behavior, and the existence of attractors, respectively. All these classifications have
been defined and compared in [25].

Theorem 1 ([25]). Every CA (AZ, F) falls exactly in one of the following classes:

L1. (AZ, F) is bounded periodic.
L2. (AZ, F) is regular not bounded periodic.
L3. (AZ, F) is not regular.
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Theorem 2 ([25]). Every CA (AZ, F) falls exactly in one of the following classes:

E1. (AZ, F) is equicontinuous;
E2. (AZ, F) is almost equicontinuous but not equicontinuous;
E3. (AZ, F) is sensitive but not positively expansive;
E4. (AZ, F) is positively expansive.

Theorem 3 ([25]). Every CA (AZ, F) falls exactly in one of the following classes.

A1. There exist two disjoint attractors.
A2. There exists a unique minimal quasi-attractor.
A3. There exists a unique minimal attractor different from ω(AZ).
A4. There exists a unique attractor ω(AZ) 6= AZ.
A5. There exists a unique attractor ω(AZ) = AZ.

A recent classification concerns the directional dynamics of a CA F . In order to illustrate it, we introduce the following
notation.

Definition 1. The equicontinuous, almost equicontinuous, positively expansive and left-or-right expansive direction sets of a CA
(AZ, F) are defined as follows

• EF = {k/h | k ∈ Z, h ∈ N+ : σ kF h is equicontinuous}.
• AF = {k/h | k ∈ Z, h ∈ N+ : σ kF h is almost equicontinuous}.
• X−F = {k/h | k ∈ Z, h ∈ N+ : σ kF h is left expansive}.
• X+F = {k/h | k ∈ Z, h ∈ N+ : σ kF h is right expansive}.
• XF = {k/h | k ∈ Z, h ∈ N+ : σ kF h is expansive}.

The sets EF ,AF ,X
−

F and X+F are convex (in Q or in R). Moreover, note that the set of positively expansive directions is
X+F ∩ X−F .

Theorem 4 ([36]). Let (AZ, F) be a CA with memory m and anticipation a.

• If |EF | > 1 then EF = Q and (AZ, F) is nilpotent.
• IfEF 6= ∅ andEF 6= Q then∃!α ∈ [−a,−m],EF = {α}. Moreover, if (AZ, F) is surjective thenX−F = (−∞, α),X

+

F = (α,∞)
and, in particular, (AZ, F) is injective.

Theorem 5 ([36]). Every (AZ, F) CA with memory m and anticipation a falls exactly in one of the following classes:

C1. EF = AF = Q and X−F = X+F = ∅. This happens iff (A
Z, F) is nilpotent.

C2. There exists α ∈ [−a,−m], EF = AF = {α}. Moreover, if (AZ, F) is surjective, X−F = (−∞, α) and X+F = (α,∞).
C3. There exists α ∈ [−a,−m], EF = ∅,AF = {α}.
C4. There exist α1 < α2 such that (α1, α2) ⊆ AF ⊆ [α1, α2] ⊆ [−a,−m] and EF = X−F = X+F = ∅.
C5. X−F ∩ X+F 6= ∅. This implies EF = AF = ∅.
C6. EF = AF = ∅ and X−F ∩ X+F = ∅.

3.2. Main properties of ACA

The dynamical behavior of ACA has been extensively studied. We briefly report the main results which characterize the
most important dynamical and set theoretical properties for ACA.

Theorem 6 ([22,30,32,8,7]). Let (ZZ
s , F) be an ACA with coefficients λm, . . . , λa and s = p

n1
1 · p

n2
2 · · · p

nl
l where p1, . . . , pl are

primes. Then,

• (ZZ
s , F) is surjective iff gcd(s, λm, . . . , λa) = 1

• (ZZ
s , F) is injective iff ∀pi, ∃!λj, pi - λj

• (ZZ
s , F) is equicontinuous iff ∀pi, pi | gcd(λm, . . . , λ−1, λ1, . . . , λa)

• (ZZ
s , F) is sensitive iff ∃pi, pi - gcd(λm, . . . , λ−1, λ1, . . . , λa)

• (ZZ
s , F) is transitive iff it is mixing iff gcd(s, λm, . . . λ−1, λ1, . . . , λa) = 1

• (ZZ
s , F) is pos. expansive iff gcd(s, λm, . . . , λ−1) = gcd(s, λ1, . . . , λa) = 1

• (ZZ
s , F) is expansive iff gcd(s, λm, . . . , λ−1, λ1, . . . , λa) = 1

Remark that, as immediate consequence of Theorem 6, E2 = ∅ for ACA. Moreover, all the characterizations are given in
terms of coefficients of the local rule and hence they are decidable.
We now recall two tools which are fundamental in order to study ACA.
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Theorem 7 ([12]). Consider an ACA (ZZ
pq, F)with gcd(p, q) = 1. Then (Z

Z
pq, F) is conjugated to the ACA (Z

Z
p × ZZ

q , [F ]p × [F ]q).

On the basis of this theorem, if s = pn11 · · · p
nl
l is the prime factor decomposition of s, an ACA on Zs is conjugated to the

product of ACA on Zpnii . So all the properties which are preserved under product and under topological conjugacy are lifted
from ACA on Zpk to Zs.

Theorem 8 ([31]). Let (ZZ
s , F) be an ACA. Then ∀h ≥ blog2 sc, F

h(ZZ
s ) = F

blog2 sc(ZZ
s ) = ω(ZZ

s ). Moreover, (F
h(ZZ

s ), F) is
conjugated to some surjective ACA (ZZ

s∗, F∗).

Remark that the conjugacy map involved in the proof of Theorem 8 preserves factor languages complexities, i.e. for k > 0,
the column factor of width k of (F h(ZZ

s ), F) is a SFT if and only if the column factor of width k of (Z
Z
s∗, F∗) is SFT. This property

will be useful in the sequel.

4. Surjective ACA

Thanks to Theorems 7 and 8, most of the properties of general ACA can be deduced from undecomposable ACA, namely
surjective ACA over Zpk for some prime number p. In this section we classify the possible dynamics of this class in order to
understand the directional dynamics of general ACA.

Lemma 1. Let (ZZ
pk , F) be a surjective ACA with p prime whose local rule has memory m and anticipation a. Then, there exists

i ∈ [m, a] such that gcd(λi, p) = 1.

Proof. If for all λi it happens that gcd(p, λi) = p then, by Theorem 6, (ZZ
pk , F) is not surjective, contradicting the

hypothesis. �

Lemma 2 ([12]). Let (ZZ
pk , F) be a surjective ACA with p prime. Set

L = min{j : gcd(λj, p) = 1} and R = max{j : gcd(λj, p) = 1}.

Then there exists h ≥ 1 such that the rule f h associated to F h has the form

f h(xhm, . . . , xha) =
[
ΣhRi=hLµixi

]
pk with gcd(µhL, p) = gcd(µhR, p) = 1.

Recall that the condition gcd(µhL, p) = gcd(µhR, p) = 1 implies permutivity in hL and hR. The following proposition char-
acterizes the possible dynamics of undecomposable CA.

Proposition 1. Consider a surjective ACA (ZZ
pk , F) with p prime. Then, exactly one of the following cases occurs:

1. (ZZ
pk , F) is equicontinuous.

2. (ZZ
pk , F) is positively expansive.

3. (ZZ
pk , F) is either left or right expansive.

Proof. Let L = min{j : gcd(λj, p) = 1} and R = max{j : gcd(λj, p) = 1}. By Lemma 1, L and R are not empty. There are
three possible cases:

1. L = R = 0. Then, by Theorem 6, (ZZ
pk , F) is equicontinuous.

2. L < 0 < R. Then, by Theorem 6, (ZZ
pk , F) is positively expansive.

3. L < 0 and R ≤ 0 (the case L ≥ 0 and R > 0 is similar). Then, by Lemma 2, there exists some h > 0 such that the local
rule f h(xhm, . . . , xha) =

[
ΣhRi=hLµixi

]
pk of F

h is permutive in hL < hR ≤ 0. Then f h is left one-sided and permutive. In
particular F h is left expansive which easily implies that F is also left expansive. �

Remark 1. In a similar way as in the proof of Proposition 1, one can show that right/left expansive ACA on Zpnii are mixing.

The following theorem classifies the directional dynamics of undecomposable surjective ACA: any undecomposable ACA
either contains exactly one equicontinuous direction (and it is injective) or contains a positively expansive direction (and it
is not injective).

Theorem 9. Let (ZZ
pk , F) be a surjective ACA with p prime. Then, exactly one of the following cases can occur

1. (ZZ
pk , F) is injective. Then,

X−F ∩ X+F = ∅, |EF | = 1 and XF = X−F ∪ X+F = Q \ EF .

2. (ZZ
pk , F) is not injective. Then,

X−F ∩ X+F 6= ∅ and EF = XF = ∅.
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Proof. By Proposition 1, (ZZ
pk , F) can be equicontinuous or positively expansive or left/right expansive. In the first two cases

the conclusion is immediate. If (ZZ
pk , F) is left/right expansive then there are two possible cases. Let L, R be defined as in

Lemma 2.

1. L = R 6= 0. By Theorem 7, (ZZ
pk , F)must be expansive and, in particular, it is the power of some shift map. Then the thesis

follows from Theorem 4.
2. L 6= R. Then, by Lemma 2, there exists some h > 0 such that the local rule of F h is permutive in its leftmost and rightmost
positions hL, hR. Without loss of generality, we can assume that hR − hL > 1 (this condition can be obtained by simply
taking some power of F h). Then there exists some k such that σ kF h is permutive in its leftmost and rightmost positions
hL+ k < 0 < hR+ k. Then σ kF h is positively expansive. �

From Theorem 9, one can find an easy proof for the following result. We remark that there are several easy proofs for
such result and we add ours here just for completeness.

Theorem 10 ([39]). Any surjective ACA is open.
Proof. Since the openness property is preserved in every direction and it is preserved also under product, by Theorems 7
and 9 it follows that any surjective ACA is open. �

5. Directional dynamics of factor languages for ACA

In this section we show that all ACA are regular. This fact implies that the dynamics of ACA is regular in all rational
directions.

Lemma 3. LetΣ ⊆ AN be a subshift. Then, the following conditions are equivalent:

1. (Σ, σ ) is open
2. ∀n > 0, (Σ, σ n) is open.
3. ∃n > 1 such that (Σ, σ n) is open.

Proof. Trivially, 1 H⇒ 2 H⇒ 3. We show that 3 H⇒ 1. Since every open set in Σ is the union of clopen sets and every
clopen set is a finite union of cylinders it is sufficient to show that σ is open on every cylinder inΣ . For themoment let k > n
and choose some cylinder C0(u) where u = u0u1 . . . uk−1 ∈ Ak. By hypothesis, V = σ n(C0(u)) is clopen then V is the finite
union of cylinder sets. Now let define W =

⋃
Cn(v)⊆V C1(u1u2 . . . un−1v). Then W is clopen and moreover F(C0(u)) = W .

This proves that the image under σ of every cylinder of width k > n is a clopen set. Now, since every cylinder of width
1 ≤ k′ ≤ n can be defined as the finite union of cylinders of width k > n, the conclusion follows. �

A proof of Lemma 3 in a more general setting can be found in [2].

Lemma 4. Let (ZZ
pn , F) be a right (left) expansive ACA with p prime. Then, for all sufficiently large k, (Σk(F), σ ) is a SFT.

Proof. Since (ZZ
pn , F) is right expansive, as shown in the proof of Proposition 1, there exists some h > 0 such that F

h is
one-sided and permutive in its rightmost position which in turn implies that for all sufficiently large k > 0 the column
factorΣk(F h) is a SFT. Consider the subshift Xh = {(x1, . . . , xh) ∈ ZZ

pn ×· · ·×ZZ
pn | F(xi) = xi+1, 1 ≤ i < h}. It is not difficult

to see that (Xh, σ ) is conjugated to (ZZ
pn , σ ) and, in particular, Xh is a mixing SFT. The map F

h induces on Xh a continuous
and σ -commuting function Gh : Xh → Xh defined by Gh(x) = y if and only if x = (x1, . . . , xh), y = (y1, . . . , yh) ∈ Xh
and F(xh) = y1. Then (Xh,Gh) is conjugated to (ZZ

pn , F
h). In particular, the local rule of Gh is one-sided and right expansive.

Since Xh is a mixing SFT, it follows that for all sufficiently large k > 0 the column factorΣk(Gh) is a SFT. Now we have that
∀k > 0, (Σk(Gh), σ ) is conjugated to (Σk(F), σ h). By Parry’s Theorem [34], a one-sided subshift Y is a SFT if and only if
σ : Y → Y is open. Then, by Lemma 3 we obtain that for all sufficiently large k > 0, σ h : Σk(F)→ Σk(F) is open and then
(Σk(F), σ ) is a SFT. �

Note that the condition that for all sufficiently large k > 0,Σk(F) is a SFT is sufficient to conclude that (ZZ
pn , F) is regular.

Theorem 11. Any ACA is regular.
Proof. Since, by Theorem8, ACA are stable, to study the factor language complexity of ACA,we can restrict our attention only
to the dynamics on the limit set (a finite prefix does not change the language complexity of column factors). Moreover, by
Theorem 8, the limit set of an ACA is conjugated to some ACA by some map which preserves factor languages complexities.
This implies that ACA are regular if and only if surjective ACA are regular. Since the product of regular CA is regular and
since equicontinuous and positively expansive CA are regular, by Theorem 7, Proposition 1 and Lemma 4, it follows that any
surjective ACA is regular. �

Remark 2. Actually a stronger result holds for an ACA F : for any k > 0, Σk(F) is a SFT. Indeed, consider a CA F which is
permutive in both its rightmost and leftmost variables. Then, for any k > 0, Σk(F) is a SFT [37]. This fact is sufficient to
conclude that all factor subshifts of any ACA are SFT.
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6. Directional dynamics of ACA according to attractors

In this section we study the class of attractors of ACA according to rational directions. In [31], Manzini andMargara show
that any ACA can have either a unique attractor or a pair of disjoint attractors. Here we show some properties of disjoint
attractor directions of ACA. We will need the two following results.

Lemma 5. Let (ZZ
s , F) be a surjective ACA and let s = p

n1
1 · p

n2
2 · · · p

nl
l be the prime factor decomposition of s. Then the following

conditions are equivalent:

1. (ZZ
s , F) has two disjoint attractors,

2. (ZZ
s , F) is not mixing,

3. (ZZ
p
ni
i
, [F ]pnii

) is equicontinuous for some pnii .

Proof. (1⇒ 2) By [25, Prop. 13], if (ZZ
s , F) has two disjoint attractors then it cannot be mixing. (2⇒ 3) Assume by absurd

that for each pnii the undecomposable ACA (Z
Z
p
ni
i
, [F ]pnii

) is not equicontinuous. Then, by Lemma 1 and Theorem 7, (ZZ
s , F) is

conjugated to the product of mixing CA and then it is mixing contradicting the hypothesis. (3 ⇒ 1) Assume that for some
pnii , (Z

Z
p
ni
i
, [F ]pnii

) is equicontinuous. Let A1, A2 ⊂ ZZ
p
ni
i
be two disjoint attractors of [F ]pnii

. Let q = s/pnii and let A ⊂ ZZ
q be an

attractor of (ZZ
q , [F ]q). Then A1×A and A2×A are disjoint attractors of (Z

Z
p
ni
i
×ZZ

q , [F ]pnii
× [F ]q). Then, by Theorem 7, (ZZ

s , F)

has two disjoint attractors. �

The class of attractors of ACA can be easily characterized using the class of attractors of surjective undecomposable ACA.

Theorem 12 ([31]). Any ACA has either a unique attractor or a pair of disjoint attractors.
Proof. Let (ZZ

s , F) be an ACA. It is easy to see that A ⊂ ZZ
s is an attractor for (Z

Z
s , F) if and only if it is for (ω(Z

Z
s ), F). The

thesis follows from Theorem 7, Proposition 1, and Lemma 5. �

At this point, we have all the elements to study the set of disjoint attractor directions of ACA.

Definition 2. Let (ZZ
s , F) be an ACA. The disjoint attractors direction set of (Z

Z
s , F) is

DF = {k/h | k ∈ Z, h ∈ N+ : σ kF hhas two disjoint attractors}.

The following proposition shows some properties of the set DF . In particular, we have that DF is finite and that between
two disjoint attractors directions α1, α2 ∈ DF there cannot exist left/right expansive directions.

Proposition 2. Let (ZZ
s , F) be an ACA with memory m and anticipation a. Then the following conditions hold.

1. If |EF | > 1 thenDF = ∅.
2. If EF = {α} thenDF = {α}.
3. If |DF | > 1 then EF = ∅.
4. DF ⊂ [−a,−m] is finite.
5. IfDF = {α1, . . . , αn} then ∀αi ≤ αj, [αi, αj] 6⊂ X−F ∪ X+F .

Proof. Properties 1, 2 follow directly from Theorem 4 and Lemma 5. Property 3 follows from 1 and 2.
4. Since A ⊂ ZZ

s is an attractor for (Z
Z
s , F) if and only if it is for (ω(Z

Z
s ), F), we can assume, without loss of generality,

that (ZZ
s , F) is surjective. Since any surjective ACA is the (finite) product of surjective undecomposable CA (which, by

Theorem 4, can have at most one equicontinuous direction), by Lemma 5 it follows that DF is finite (possibly empty).
Moreover, sincewe are assuming that (ZZ

s , F) is surjective and (Z
Z
s , σ

kF) ismixing for k ∈ Z\ [−a,−m] (see [1, Prop. 3]),
immediately follows thatDF ⊂ [−a,−m].

5. If (ZZ
s , F) is not surjective then X+F = X−F = ∅ and the thesis holds. Assume now that F is surjective and let αi ≤ αj.

By Lemma 5, αi, αj /∈ X−F ∪ X+F . By Theorems 7 and 9, it follows that for every surjective ACA there exists some α such
that X+F = [α,∞) (the property is symmetric for X−F ). Since X−F , X

+

F are convex sets, it follows that ∀α ∈ [αi, αj],
α /∈ X−F ∪ X+F . �

To conclude we enumerate some classes of ACA for whichDF is easy to characterize.

Corollary 1. Let (ZZ
s , F) be an ACA.

• If (ZZ
s , F) is nilpotent thenDF = ∅.

• If (ZZ
s , F) is equicontinuous and not nilpotent thenDF = {0}.

• If (ZZ
s , F) is positively expansive thenDF = ∅.

• If (ZZ
s , F) is expansive thenDF 6= ∅.

In the case of ACA, the presence of a direction with two disjoint attractors is tightly linked to the presence of some form
of equicontinuity. Indeed, such an ACA is either equicontinuous (not nilpotent) or it is the product of an ACA having an
equicontinuous direction with some other ACA (see Lemma 5). It is not known if the same holds for general CA.
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7. Directional dynamics of ACA

In this section, we classify the directional dynamics of ACA according to equicontinuous, left/right expansive, expansive
and disjoint attractor directions. We do not consider explicitly factor languages directions since, by Theorem 11, for ACA all
language directions are regular, and, by [25, Th. 4], directions which have bounded periodic languages coincide exactly with
equicontinuous directions. To have a more clear picture we introduce explicitly the class of strictly sensitive non-expansive
directions.

Definition 3. The strictly sensitive direction sets of the ACA (ZZ
s , F) is defined bySF = Q \ (EF ∪ X−F ∪ X+F ∪ XF ).

We consider separately the directional dynamics of non-surjective, strictly surjective and injective ACA. Note that, since
there are no almost equicontinuous ACA, classes C3 and C4 of Theorem 5 are empty for ACA. By Theorem 9, it follows that
surjective ACA always have left and right expansive directions. In particular, since surjective ACA are open, it is not difficult
to see that for any surjective ACA of memory m and anticipation a it happens that (−∞,−a) ⊆ X−F and (−m,∞) ⊆ X+F .
This implies that surjective ACA can only belong to classes C2, C5, C6. In particular, injective ACA are contained in class
C2∪C6 and strictly surjective ACA are contained in C5∪C6. Obviously, in the strictly surjective case there are not expansive
directions which arise uniquely in the injective case. For injective ACA it happens also that DF 6= ∅ and that expansive
directions are always the complement in Q ofDF .

Theorem 13. Let (ZZ
s , F) be an injective ACA with memory m and anticipation a. Then XF = Q \ DF . Moreover, exactly one of

the following cases can occur:

1. EF 6= ∅. ThenDF = EF = {α} ⊂ [−a,−m], X+F = (α,∞), X−F = (−∞, α).
2. EF = ∅. ThenDF = {α1, . . . , αn} ⊂ [−a,−m], with α1 < · · · < αn, n > 1 and X−F = (−∞, α1),X

+
F = (αn,∞).

Proof. Since (ZZ
s , F) is injective, by Theorems 7 and 9, it is the product of undecomposable CA which have exactly one

equicontinuity direction andwhich are expansive in all other directions. Then, since expansivity is preserved under product,
by Lemma 5, it follows that XF = Q \DF .

1. If EF 6= ∅ then the conclusion follows directly from Theorem 4 and Proposition 2. In particular, we are in class C2 of
Theorem 5.

2. IfEF = ∅ then (ZZ
s , F)must be the product of at least two injective undecomposable CA (whose respective equicontinuous

directions have different slope). Then F must have a finite set of at least two disjoint attractors directions α1 < · · · < αn.
By Proposition 2, the interval [α1, αn] ⊂ [−a,−m] cannot contain left-or-right expansive directions and by Theorem 4,
it must be X−F = (−∞, α1),X

+
F = (αn,∞). In particular, we are in class C6. �

Strictly surjective ACA trivially cannot contain equicontinuous directions but they can have disjoint attractors directions.

Theorem 14. Let (ZZ
s , F) be a surjective but non-injective ACA with memory m and anticipation a. Then, EF = ∅. Moreover,

exactly one of the following cases occurs.

1. DF = ∅ and X−F ∩ X+F = ∅. Then ∃α1, α2 ∈ [−a,−m], α1 < α2,X
−
F = (−∞, α1), X+F = (α2,∞),SF = [α1, α2].

2. DF = ∅ and X−F ∩ X+F 6= ∅. Then ∃α1, α2 ∈ [−a,−m], α2 ≤ α1, X−F = (−∞, α1), X+F = (α2,∞),SF = ∅.
3. DF 6= ∅. Then ∃ − a ≤ α1 ≤ β1 ≤ · · · ≤ βn ≤ α2 ≤ −m,DF = {β1, . . . , βn}, X−F = (−∞, α1),X+F = (α2,∞),SF =
[α1, α2].

Proof. If EF is not empty then, by Theorem 4, (ZZ
s , F) is either injective or nilpotent contradicting the hypothesis.

1. DF = ∅ and X−F ∩X+F = ∅. Then (ZZ
s , F)must be the product of undecomposable CA which have at least one positively

expansive direction (Theorems 7, 9 and Lemma 5). IfX−F ∩X+F = ∅ thenSF = [α1, α2] = Q\(X−F ∪X+F ). In particular,
we are in class C6 of Theorem 5.

2. DF = ∅ and X−F ∩X+F 6= ∅. Then (ZZ
s , F)must be the product of undecomposable CA which have at least one positively

expansive direction (Theorems 7, 9 and Lemma 5). If X−F ∩ X+F 6= ∅ then SF = ∅ = Q \ (X−F ∪ X+F ) and (ZZ
s , F) is

positively expansive in X−F ∩ X+F . In particular, this is exactly class C5 of Theorem 5.
3. DF 6= ∅. Then there exist p and qwith s = pq such that (ZZ

s , F) is the product of a strictly surjective ACA (Z
Z
p , [F ]p)with

D[F ]p = ∅ (i.e. case 1) with an injective ACA (Z
Z
q , [F ]q) ( Theorems 7, 9 and Lemma 5). Then DF = D[F ]q and SF = S[F ]p .

In particular F must have at least one disjoint attractor direction which, by Proposition 2, implies that X−F ∩ X+F = ∅

then we are in class C6. �

For any non-surjective CA trivially X−F = X+F = XF = ∅.

Theorem 15. Let (ZZ
s , F) be a non-surjective ACA. Then, exactly one of the following cases can occur.

1. EF = Q andDF = SF = ∅.
2. EF = DF = {α} ⊆ [−a,−m] andSF = Q \ {α}.
3. SF = Q,EF = ∅ (with eitherDF = ∅ orDF 6= ∅).
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Proof. Since (ZZ
s , F) is not surjective it cannot be of class C5 of Theorem 5. Then here class 1, 2 and 3 coincide respectively

with classes C1, C2, C6. For classes 1 and 2 the characterization of DF follows from Proposition 2. For what concerns class
3, note that all CA in this class can be built from the product of a finite number of ACA F1, . . . , Fn such that at least one Fk is
not surjective and such that for some 1 ≤ i, j ≤ n,EFi ∩ EFj = ∅. �

In the next theorem we redefine the above classes in terms of the coefficients of the local rule.
Theorem 16. Let (ZZ

s , F) be an ACA with coefficients λm, . . . , λa and s = p
n1
1 · p

n2
2 · · · p

nl
l where p1, . . . , pl are primes. Then,

1.1 (ZZ
s , F) is in class 1 of Theorem 13 iff
∃!λj,∀pi, pi - λj

1.2 (ZZ
s , F) is in class 2 of Theorem 13 iff
∀pi, ∃!λj, pi - λj and @!λj,∀pi, pi - λj

2.1 (ZZ
s , F) is in class 1 of Theorem 14 iff
∀pi, ∃λj′ 6= λj′′ , pi - λj′ , pi - λj′′ and @k ∈ [m, a],∀pi, ∃λj′ < k ≤ λj′′ , pi - λj′ , pi - λj′′

2.2 (ZZ
s , F) is in class 2 of Theorem 14 iff
∃k ∈ [m, a],∀pi, ∃λj′ < k ≤ λj′′ , pi - λj′ , pi - λj′′

2.3 (ZZ
s , F) is in class 3 of Theorem 14 iff
∀pi, ∃λj, pi - λj and ∃pi, ∃!λj, pi - λj and ∃pi′ , ∃λj′ 6= λj′′ , pi′ - λj′ , pi′ - λj′′

3.1 (ZZ
s , F) is in class 1 of Theorem 15 (i.e., it is nilpotent) iff
∀pi,∀λj, pi | λj

3.2 (ZZ
s , F) is in class 2 of Theorem 15 iff
gcd(s, λm, . . . , λa) 6= 1 and ∃pi, ∃λj, pi - λj and ∃k ∈ [m, a],∀pi, pi | gcd(λm, . . . , λk−1, λk+1, . . . , λa)

3.3 (ZZ
s , F) is in class 3 of Theorem 15 iff
gcd(s, λm, . . . , λa) 6= 1 and ∃pi, ∃λj, pi - λj and @k ∈ [m, a],∀pi, pi | gcd(λm, . . . , λk−1, λk+1, . . . , λa).

Proof. We jointly consider the cases 1.1, 1.2 and the cases 2.1, 2.2, 2.3.
1. If (ZZ

s , F) is either in class 1 or in class 2 of Theorem 13 then it is injective and then, by Theorem 6, ∀pi, ∃!λj, pi -
λj. Trivially, every undecomposable ACA [F ]pnii

in the canonical decomposition of (ZZ
s , F) must be injective and, by

Theorem 9, it must contain exactly one equicontinuous direction. It is not difficult to see that all these equicontinuous
directions coincide iff ∃!λj such that ∀pi, pi - λj (then we are in class 1 of Theorem 13). On the contrary, all such
equicontinuous directions do not coincide iff ∃pi 6= pi′ , ∃λj 6= λj′ such that pi - λj and pi′ - λj′ (then we are in class
2 of Theorem 13). Note that, by Theorem 6, the conditions on the local rule coefficients in points 1.1 and 1.2 imply
injectivity.

2. If (ZZ
s , F) is in some class of Theorem14 then itmust be surjective not injective and, in particular, every undecomposable

ACA [F ]pnii
in its canonical decompositionmust be surjective. Then, by Lemma 1, for every pi there exists some j ∈ [m, a]

such that pi - λj and, since (ZZ
s , F) is strictly surjective, theremust exist (at least one) pi andλj′ 6= λj′′ such that pi - λj′ and

pi - λj′′ (on the contrary (ZZ
s , F)would be injective). We are in class 3 of Theorem 14 iff in the canonical decomposition

of (ZZ
s , F) there is an injective ACA, that is, iff ∃pi, ∃!λj, pi - λj (point 2.3). Recall that, by Theorem 9, every surjective

non-injective undecomposable ACA contains at least one positively expansive direction.We are in class 2 of Theorem 14
iff there is no injective ACA in the canonical decomposition of (ZZ

s , F) and there is one direction in which all [F ]pnii
are

positively expansive. This happens iff ∃k ∈ [m, a] such that ∀pi, ∃λj′ < k ≤ λj′′ , pi - λj′ , pi - λj′′ (point 2.3). Finally, we
are in class 1 of Theorem 14 iff there is no injective ACA in the canonical decomposition of (ZZ

s , F) and there is no k as
in point 2.3.

3.1 The automaton (ZZ
s , F) is in class 1 of Theorem 15 iff it is nilpotent iff every undecomposable ACA [F ]pnii

in its canonical

decomposition is nilpotent. Assume that (ZZ
s , F) is nilpotent. This implies that there exists some n > 0 such that for

every [F ]pnii
, all coefficients of the local rule of ([F ]pnii

)nmodulo pnii are zero (on the contrary [F ]pnii
would be not nilpotent

becausewe could find some configuration x ∈ [ZZ
s ]p

ni
i
forwhich ([F ]pnii

)n(x) is not equal to the configuration of all zeroes).
Since pi is prime, the only possibility is that pi divides all coefficients of the local rule of [F ]pnii

and, in particular, that

it divides all λj. The same argument holds for all pi. Then we can conclude that if (ZZ
s , F) is nilpotent it follows that

∀pi,∀λj, pi | λj. Assume now that ∀pi,∀λj, pi | λj. We have to show that (ZZ
s , F) is nilpotent. Since, by hypothesis, every

prime pi divides every coefficient λj, it is not difficult to see that there must exist some power n such that all coefficients
of the local rule of F n are divisible by s = pn11 · p

n2
2 · · · p

nl
l which implies that F is nilpotent.

3.2 As a consequence of equicontinuity and surjectivity characterization given by Theorem 6, an ACA (ZZ
s , F) is in class

2 of Theorem 15 iff it is not surjective and it has exactly one equicontinuous direction iff gcd(s, λm, ..., λa) 6= 1 and
∃pi, ∃λj, pi - λj and ∃k ∈ [m, a],∀pi, pi | gcd(λm, . . . , λk−1, λk+1, . . . , λa).

3.3 The automaton (ZZ
s , F) is in class 3 of Theorem 15 iff it is not surjective and it does not belong to class 1 and class 2 of

Theorem 15. �
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–m–a –m –a

Fig. 1.Directional dynamics for injectiveACA. Gray area depicts expansive directions. Trailed line is a direction of equicontinuitywith twodisjoint attractors.
Dotted lines are directions presenting two disjoint attractors.

–a

–m

–a

–m –m

–a

Fig. 2. Directional dynamics for surjective ACA. Light gray (resp., dark gray) areas depict left (resp., right) expansive directions. White area indicates
directions presenting sensitivity. Very light gray areas show the positively expansive directions. Dotted lines are directions presenting two disjoint
attractors.

–m –m –m

–a –a –a

Fig. 3. In the leftmost (resp., central and rightmost) picture, grayed areas indicate equicontinuity (resp., sensitivity) directions. Dotted lines in the central
(resp., rightmost) picture represent equicontinuity directions with two disjoint attractors (resp., two disjoint attractors).

8. Conclusions

In this paper we have completely characterized the directional dynamics of ACA, not only w.r.t. equicontinuity or
expansivity (as in the Sablik’s approach) but also w.r.t. attractors and factor languages. Figs. 1–3 summarize all the possible
scenarios.
Looking at the pictures, one immediately sees that the algebraic nature of ACA has greatly reduced the number and the

complexity of the possible dynamics. For example, we have proved that the factor languages of any ACA are regular along
any direction. Of course, this is not true for the general case but it would be very interesting to investigate which is the
largest class of CA with such a property.
The directional classification proposed by Sablik [36] sheds some light on how the information propagates in space-

time diagrams of CA. For instance, there is no exchange of information between zones delimited by two directions of
equicontinuity (almost equicontinuity) and the rest of phase space. In this paper, we showed that this is also the case
for CA having directions with two disjoint attractors (see Fig. 2 right or Fig. 3). Remark that in the case of ACA, directions
with two disjoint attractors are always tightly linked to the presence of equicontinuity (see Lemma 5). We wonder if this
happens also in the general casewhere the situation ismuchmore complicated, since onemust take into account also almost
equicontinuity and other types of attractors.
To conclude we remark that, by Theorem 16, our classification is completely decidable.
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