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Notch Signaling in Lymphopoiesis

that initiate Notch signaling through cell-cell interac-
tions; CSL, a transcription factor termed CBF1/RBP-J�
in mammals, Suppressor of Hairless [Su(H)] in Drosoph-
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ila, and LAG-1 in C. elegans, which functions as a major2 Institute for Medicine and Engineering
target of Notch-mediated signal transduction (reviewed3 The Abramson Family Cancer Research Institute
by Artavanis-Tsakonas et al., 1999); factors that initiateUniversity of Pennsylvania Medical Center
or regulate proteolytic processing of Notch receptors,Philadelphia, Pennsylvania 19104
such as presenilins (reviewed by Kopan and Goate,4 Department of Biology
2000); and regulatory factors, such as the extracellularHaverford College
protein Fringe and the intracellular proteins Deltex andHaverford, Pennsylvania 19041
Numb (reviewed by Greenwald, 1998).5 Department of Pathology

A general theme to emerge from studies in D. melano-Brigham and Women’s Hospital
gaster and C. elegans is that Notch signaling specifiesHarvard Medical School
the developmental fates of progeny derived from bipo-Boston, Massachusetts 02115
tential precursor cells (reviewed in Simpson, 1998). In-
teractions between cells expressing Notch receptors
and ligands influence lineage specification through twoCell fate decisions in metazoans are regulated by
general mechanisms, lateral inhibition and induction.Notch signals. During lymphoid development, Notch
Inductive signaling occurs when two nonequivalent cellinfluences a series of cell fate decisions involving
types expressing Notch ligand or receptor, respectively,multipotent progenitors. This review focuses on cur-
interact. In this circumstance, access of receptor-rent views and lingering uncertainties about Notch
expressing cells to the appropriate ligand(s) determinesfunction in lymphoid cells.
lineage specification. In contrast, lateral inhibition oper-
ates within clusters of equivalent precursors that ex-Notch genes encode highly conserved cell surface re-
press both Notch ligand and receptor, and dependsceptors that regulate the development of a remarkably
on the existence of a negative feedback loop wherebywide spectrum of cell types in metazoans ranging from
Notch signals downregulate ligand expression. Due tosea urchins to humans. Notch signals influence multiple
stochastic variation or position effects, Notch signalingprocesses that govern normal morphogenesis, including
is lowered within one cell, which then expresses morelineage specification among bipotent progenitor cells,
ligand, raising Notch signaling in neighboring cells. Thisprogrammed cell death, cellular proliferation, and bor-
reinforces and amplifies differences in Notch signalingder formation. The varied and far-reaching conse-
and leads to two classes of cells (Notch high and Notchquences of Notch signaling are also reflected by the
low) that adopt distinct fates. A classic example of lateraldiverse phenotypes caused by mutations in Notch loci,
inhibition is peripheral neurogenesis in Drosophila, dur-ranging from the notching of wings in Drosophila (Mohr,
ing which a cluster of proneural cells yields a single

1919) to the malignant transformation of human T cells
sensory organ precursor and several epidermal cells. In

(Ellisen et al., 1991). Here, we will discuss how dissection
the absence of Notch signals, all cells adopt the “de-

of Notch signaling pathways at the cellular and molecu- fault” sensory organ precursor cell fate (a neurogenic
lar level has provided a framework to address several phenotype), whereas transgenic expression of constitu-
long-standing questions in lymphocyte development. tively active Notch causes cells to adopt the alternative
First, we will review key studies that have provided in- epidermal cell fate.
sight into how Notch signals are produced and regu- Notch activity can also influence developmental out-
lated. We will then discuss the role of Notch signals in comes without directly affecting lineage choice deci-
control of mammalian hematopoiesis, focusing on re- sions through varied effects on terminal differentiation,
cent evidence supporting a pivotal role for Notch in early proliferation, or apoptosis. For example, Notch cooper-
B/T lymphocyte lineage determination. Finally, we will ates with Wingless in the developing fly wing to induce
summarize studies investigating the impact of Notch cell cycle arrest (Johnston and Edgar, 1998), whereas
signaling during later stages of T cell development, as in C. elegans, enforced Notch signaling leads to the
well as the role of Notch in lymphoid transformation. massive overgrowth of germ cell precursors by inhibiting

cell cycle arrest (Berry et al., 1997). Similarly, while Notch
Outcomes of Notch Signaling during Invertebrate activity regulates patterning of the developing Drosoph-
Development ila retina by inducing the death and removal of superflu-
Genetic studies in invertebrates have identified several ous cells (Miller and Cagan, 1998), it can also promote
highly conserved elements of the Notch signaling path- the survival of hematopoietic cell lines following expo-
way (Table 1). These include the Delta/Serrate/LAG-2 sure to apoptotic stimuli (reviewed in Osborne and Miele,
(DSL) family of Notch ligands, transmembrane proteins 1999; Deftos and Bevan, 2000). These remarkably pleio-

tropic effects indicate that the outcome of Notch activity
is not stereotyped, but highly dependent upon signal6 Correspondence: wpear@mail.med.upenn.edu
strength, timing, and developmental context. Indeed, it7 Present address: TVW Telethon Institute for Child Health Research,

100 Roberts Road, Subiaco WA 6008, Australia. appears that physiologic Notch signaling is precisely
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lying between the ankyrin repeats and the PEST se-Table 1. Conservation of Notch Signaling
quences that include, in some receptors such as mam-

Component Drosophila Mammals
malian Notch1, a strong transcriptional activation

Receptors Notch Notch 1–4 domain.
Ligands Delta Delta-like 1,3,4 Although it is extremely difficult to detect Notch in the

Serrate Jagged 1,2
nuclei of normal cells, multiple lines of investigation haveDownstream Su(H) CSL (RBP-J�)
converged on a model in which the intracellular domainTranscription
of Notch (ICN) translocates to the nucleus in a ligand-Factors

Modulators Fringe Lunatic, Radical, dependent fashion (reviewed in Kopan and Goate, 2000)
& Manic Fringe (Figure 2). Nuclear access of ICN appears to require

Numb Numb, Numb-like two successive proteolytic cleavages within the NTM
Deltex Deltex 1–3 subunit. The protease responsible for the first cleavage,
Mastermind Mastermind-like 1–3

which occurs just external to the transmembrane do-Target Hairy/En(spl) Hes 1,5
main, is likely mediated by an ADAM metalloprotease.Genes
Although TNF� converting enzyme (TACE) has the ca-HeyL

Processing Presenilin Presenilin 1,2 pacity to cleave NTM at this site, the identity of the
Molecules Metallo-protease Metallo-protease physiological protease awaits verification. Subsequently,

Furin-like protease Furin-like protease a second cleavage within the transmembrane domain
liberates ICN from its membrane tether. This cleavage
requires the function of two different classes of trans-

controlled at multiple levels and can be exploited by membrane proteins, presenilins and nicastrin (Yu et al.,
other signaling pathways. 2000), two components of a multisubunit complex that

processes a number of transmembrane proteins in addi-
Modes and Consequences of Notch Signaling tion to Notch. Significantly, mutations in Notch1 that
Notch receptors are large single pass transmembrane render it resistant to presenilin-dependent cleavage, as
proteins composed of a series of well-defined structural well as drugs that inhibit �-secretase, both cause Notch
motifs (Figure 1). During transit to the cell surface, Notch loss-of-function phenotypes.
proteins are cleaved within the trans-Golgi network by a Once in the nucleus, ICN interacts with nuclear factors
furin-like convertase, giving rise to mature heterodimeric that regulate transcription. Genetic studies conducted
receptors comprised of noncovalently associated extra- in invertebrates have identified CSL homologs, a struc-
cellular (ECN) and transmembrane (NTM) subunits. The turally unique class of sequence-specific DNA-binding
extracellular subunits contain 11–36 tandem epidermal transcription factors, as the major downstream media-
growth factor (EGF)-like repeats that bind ligand, and tors of Notch signals (reviewed in Bray and Furriols,
three Notch-specific LIN12/Notch repeats that are 2001). In the absence of ICN, CSL acts as a transcrip-
needed to prevent inappropriate Notch receptor activa- tional repressor due to its ability to bind transcriptional
tion prior to ligand binding. The intracellular region con- corepressor complexes. Binding of ICN displaces core-
tains a RAM domain that binds CSL, a series of iterated pressor complexes, thereby derepressing transcription
cdc10/ankyrin repeats that participate in protein-protein from promoters with CSL binding elements. In addition,
interactions with CSL and other polypeptides (described the ankyrin repeats and C-terminal transcriptional acti-
in more detailed below), and a C-terminal PEST se- vation domains of ICN recruit several different transcrip-

tional coactivators, providing an additional stimulus forquence. There are also less highly conserved sequences

Figure 1. Notch Receptors in Flies and
Humans

Diagrammatic representations of the single
Drosophila (dNOTCH) and 4 known human
Notch receptors (hNotch). The full-length pro-
teins are expressed on the cell surface as
heterodimers composed of noncovalently as-
sociated extracellular (ECN) and transmem-
brane subunits (CTM). All Notch receptors
contain epidermal growth factor-like repeats
(EGFR), Lin12 Notch repeats (LNR), a RAM23
domain (RAM), Ankyrin repeats (ANK), and
PEST (P) sequences. The highest degree of
homology between Notch receptors is in the
ankyrin repeats, whereas the C-terminal se-
quences show the greatest degree of di-
vergence. Human Notches1–3 contain se-
quences immediately C-terminal of the
ankyrin repeats (NCR) that regulate functional
activity. Further C-terminally, hNotch1 and
hNotch2 contain strong and weak, respec-
tively, C-terminal transcriptional activation
domains (TAD); a similar domain is also pres-
ent in dNOTCH.
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Figure 2. Ligand-Induced Notch Signaling
Pathways

Binding of Notch receptors to ligands of the
Serrate and Delta families result in successive
cleavages, first in the extracellular domain by
ADAM-type proteases, and then in the trans-
membrane domain by presenilin-dependent
proteases, which release ICN and permit its
translocation to the nucleus. The ability of
Serrate-like ligands to activate Notch is an-
tagonized by Fringe (FNG) glycosylases,
which modify Notch extracellular domains. In
the nucleus, ICN activates target gene ex-
pression by binding the transcription factor
CSL, displacing corepressors (CoR), and re-
cruiting coactivators (CoA), including master-
mind (MAM) (“1”). Poorly characterized CSL-
independent pathways also exist that may
proceed through Dtx (“2”) or unknown factors
(“3”). Notch signals are negatively regulated
by the cytoplasmic protein Numb, and may
be positively or negatively regulated by deltex
(Dtx) proteins.

transcription. One functionally conserved protein that loop underlying lateral inhibition. Other ICN/CSL targets
that may explain the effects of Notch on cell cycle kinet-may act as a Notch-specific coactivator is mastermind,

an adaptor molecule that stabilizes CSL/ICN interaction ics in certain contexts are cyclin D1 and p21. Upregu-
lated expression of cyclin D1 promotes G1 progression,and potentiates ICN stimulation of transcription from

CSL-sensitive promoters. The more variable sequences and has been proposed to contribute to the transforma-
tion of BHK cells (Ronchini and Capobianco, 2001). InC-terminal of the ankyrin repeats of Notch1 have been

shown to interact with the general transcriptional coacti- contrast, upregulation of p21 may promote the cell cycle
exit of keratinocytes during differentiation (Rangarajanvators p300, PCAF, and GCN5. The complexity of these

interactions with positive and negative transcriptional et al., 2001). These opposing effects further illustrate the
diverse context-specific responses induced by Notchregulators suggests that the strength of CSL-mediated

signals is subject to precise tuning (Figure 3). signaling.
A variety of studies have suggested the existence ofTargets of ICN/CSL signals in Drosophila include the

genes wingless and vestigial, both of which are involved Notch signals that are independent of CSL; however,
the mechanisms are largely unknown. For instance, thein wing morphogenesis. Less is known about the down-

stream genes in mammals, but genes of the Hairy/ Notch-dependent patterning of the dorsal epidermis in
the embryonic fly does not require CSL, and insteadEnhancer of Split (HES) family, which encode bHLH-type

transcription factors, constitute one conserved target. acts through a c-Jun N-terminal kinase (JNK) pathway
(Zecchini et al., 1999). Likewise, unprocessed mono-HES proteins have C-terminal WPRW sequences that

recruit transcriptional corepressors of the groucho fam- meric Notch receptors may, in some circumstances,
be expressed on the cell surface, and following ligandily, and thereby downregulate transcription (reviewed

by Fisher and Caudy, 1998). One important target of binding, these receptors produce CSL-independent, but
not CSL-dependent, signals (Bush et al., 2001). Furthertranscriptional repression by HES proteins in the fly is

the Delta locus, which completes the negative feedback complexity was recently demonstrated in studies of

Figure 3. Molecular Basis for Differences in
Notch Signal Strength

Model for graded activation of CSL by ICN
through step-wise displacement of corepres-
sors (CoR) and recruitment of coactivators
(CoA). As shown, the overall “intensity” of
Notch signaling is finely regulated. At its low-
est level (indicated by the green line as
threshold “A”), Notch activity would be insuf-
ficient to displace corepressors from CSL. In
contrast, Notch signals rising to threshold “B”
(red line) would lead to derepression and rela-
tively weak transcriptional activity of target
promoters. Recruitment of additional coacti-
vators of transcription produces strong tran-
scriptional activation that surpasses thresh-
old “C.” Some outcomes of Notch signaling
may only require threshold “B” intensity,
whereas others may require threshold “C.”
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mechanoreceptor development in Drosophila, where it Notch-Mediated Signal Transduction in Mammals
The Notch signaling pathway is extraordinarily well con-was found that activation of CSL (and targets such as

HES genes) can occur in a Notch-independent fashion served between invertebrates and mammals (Table 1),
although many Notch signaling components have un-(Barolo et al., 2000). Thus, while Notch and CSL most

often cooperate, both can also function independently dergone several duplications during evolution. For in-
stance, four Notch genes (Notch 1–4) and at least fiveof one another.
Notch ligands (Delta-like1, 3, and 4, and Jagged 1 and
2) have been identified in mice and humans. While theExtracellular and Intracellular Regulators
selective pressures driving these duplications are notof Notch Activity in Invertebrates
readily apparent, it is tempting to speculate that varia-Multiple steps along the central ligand-receptor-CSL
tion among Notch receptors permits more precise regu-signaling axis are subject to regulation by accessory
lation of signal strength at key stages of development.proteins. Notch ligands are regulated by at least two
In this regard, Notch1, the family member most closelydifferent mechanisms. Drosophila neuralized encodes
related to Drosophila Notch, is unique among the mam-an E3 ubiquitin ligase that is required for receipt of Notch
malian Notch receptors in having a strong transcrip-signals in developing peripheral neurons and sensory
tional activation domain (TAD) in its C terminus (Kurookaorgans (reviewed in Kramer, 2001). It appears that neu-
and Honjo, 2000). This domain likely accounts for theralized targets Delta for degradation, and that this para-
high basal transcriptional activation potential of ICN1doxically enhances Notch activation. Delta can inhibit
relative to ICN2-4, and contributes to some activitiesNotch when they are expressed in the same cell, sug-
of Notch1 (Aster and Pear, 2001). Interestingly, all fourgesting that neuralized-dependent degradation of Delta
mammalian Notch receptors bind and activate CSL (Mi-causes a cell-autonomous increase in Notch activation.
zutani et al., 2001), which is the one nonredundant mem-A second possibility is that neuralized-dependent Delta
ber of the mammalian Notch signaling pathway thusdegradation is required for efficient Notch receptor en-
far identified. In competing with one another for CSL,docytosis, which may be a prerequisite for signaling
combinations of various ICNs may dampen or amplify(reviewed in Kramer, 2001). The Fringes are a group of
overall Notch signaling intensity. Thus, the effect ofpolypeptides that modify the responsiveness of Notch
mammalian CSL-dependent Notch signaling on the tran-to different ligands. For example, Drosophila Fringe ren-
criptosome may vary depending on (1) the accessibilityders Notch receptors resistant to activation by Serrate,
of CSL to specific promoters, (2) the level of variousbut not Delta (Panin et al., 1997). Biochemical studies
ICNs, corepressors, and coactivators, and (3) the levelindicate that Fringe is an acetyl-glucosaminyl trans-
of signaling in other pathways that interact with Notch.ferase that adds O-linked fucose residues to the EGF-
The relative ability of various ICNs to signal throughlike repeats of the extracellular portion of Notch (Molo-
CSL-independent pathways is unknown.ney et al., 2000). How this alters responsiveness to

specific ligands is unknown, but the net effect may be
to restrict Notch signaling to particular microenviron-

Notch Regulation of Early Hematopoiesisments.
in Mice and HumansTwo distinct types of cytoplasmic Notch regulators
Pluripotent hematopoietic stem cells (HSCs) sit at thehave been described, Numb and SEL-5. Through incom-
apex of a hierarchy of progenitors that become increas-pletely understood mechanisms, Numb suppresses
ingly restricted to specific differentiation programs. TheNotch signals, and may thereby influence cell fate
general ability of Notch activity to regulate lineagechoices. In one well-characterized instance, Numb pro-
choice in other contexts suggests that Notch signalingtein is differentially distributed to one of two progeny of
may also function to guide HSCs toward particular lin-sensory organ precursors which adopt different fates
eages. However, most data to date suggest that Notch(reviewed in Greenwald, 1998). An additional level of
activity in HSCs promotes self-renewal rather than lin-control in vertebrates may be provided by regulated
eage specification (reviewed in Milner and Bigas, 1999).degradation of Numb by the RING domain protein “li-
For instance, exposure of mouse (Varnum-Finney et al.,gand of Numb protein X” (LNXp80) (Nie et al., 2002). In
1998) and human (Karanu et al., 2000) HSCs to Notchcontrast, SEL-5 encodes a serine/threonine kinase in C.
ligands induces their self-renewal and expansion with-elegans that functions before or during ligand-depen-
out markedly altering their differentiative potential. Fur-dent release of ICN to facilitate Notch signaling in a
thermore, Bernstein and colleagues found that trans-tissue-specific manner (Fares and Greenwald, 1999).
duction of isolated HSCs with ICN1 resulted in theAdditional modifiers of Notch activity that may function
outgrowth of immortalized, cytokine-dependent cell(at least in part) in the nucleus include SEL-10, Supressor
lines with the capacity to yield lymphoid and myeloidof Deltex (Su(Dx)), and Deltex. SEL-10 and Su(Dx) both
lineage cells (Varnum-Finney et al., 2000). Unlike long-appear to be negative regulators that promote the deg-
term HSCs, however, these cells did not rescue radiationradation of Notch signaling components (Hubbard et al.,
chimeras, suggesting that ICN1 activity had immortal-1997; Wu et al., 2001). The role of Deltex is less clear.
ized a late-stage HSC. Normally, HSCs express higherAlthough initially identified as a positive regulator of
levels of Notch2 than Notch1 (Varnum-Finney et al.,Notch signaling in Drosophila (Matsuno et al., 1995),
1998), raising the possibility that individual Notch familyrecent work in mammalian cells suggests that enforced
members might have distinct roles in HSC self-renewalDeltex expression can antagonize Notch signaling, pos-
and differentiation. The effect of deficiencies in varioussibly by competing with ICN for transcriptional coactiva-

tors (Sestan et al., 1999; Izon et al., 2002). Notch receptors on HSCs has not yet been assessed.
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Figure 4. Impact of Notch Activity on Lym-
phopoiesis

Notch signaling functions in multiple cell fate
decisions during lymphocyte development.
Cell fate decisions for which there is strong
evidence for Notch involvement are indicated
by “black” arrows. “Red” arrows indicate po-
tential functions for Notch signaling that re-
quire confirmatory experiments. Notch “low”
and Notch “med” (medium) refer to the rela-
tive levels of Notch signaling at these stages
of thymocyte differentiation. The highest lev-
els of Notch signaling are observed during
the CD4� CD8� stages of T cell development.

Notch Regulation of Early B/T Notch1 expression are unknown. A recent report sug-
gested that Delta-expressing S17 stromal cells, but notLineage Specification

One long-standing question in lymphocyte development their Jagged-expressing counterparts, were able to in-
duce T cell commitment in human hematopoietic pro-is how equipotential progenitor cells become committed

to different cell fates. Prior studies indicate that HSCs genitors (Jaleco et al., 2001). However, Jagged ligands
are more highly expressed in the thymus, whereas Deltagive rise to common lymphoid progenitors (CLPs) in the

bone marrow and adult thymus (reviewed in Kondo et is more highly expressed in the bone marrow and spleen
(Bash et al., 1999). Deciphering the physiologic signalsal., 2001). The first evidence that Notch activity regulates

B/T lineage specification came from studies of mice that result in T cell commitment will require a better
description of the microenvironment in which commit-containing conditional Notch1 knockout alleles. These

mice are characterized by a very early arrest in T cell ment occurs, as well as a more complete characteriza-
tion of the expression pattern and activation state ofdevelopment and increased numbers of intrathymic B

cells (Radtke et al., 1999) that appear to derive from Notch signaling molecules in cells undergoing com-
mitment.thymic progenitors (Wilson et al., 2001). These experi-

ments were complemented by adoptive transfer studies A major gap in current knowledge concerns the pre-
cise cellular and molecular mechanisms that governin which ICN1 expression in bone marrow progenitors

promoted the thymic-independent development of im- Notch-mediated B/T lineage determination. At the cellu-
lar level, the impact of Notch signaling on specificmature T cells (Pui et al., 1999; Allman et al., 2001) and a

block in early B cell ontogeny (Pui et al., 1999). Together, lymphoid progenitors, including CLPs, has not been ad-
dressed directly. However, T lineage commitment ap-these findings suggest that Notch-derived signals mod-

ulate B/T lineage determination by targeting early pears to occur after lymphoid-restricted progenitors en-
ter the thymus (Koch et al., 2001; Wilson et al., 2001;lymphoid-restricted progenitors, and support a scenario

in which Notch1 activity is necessary and sufficient to Izon et al., 2002), suggesting that deregulated Notch1
activity does not promote T cell development by ex-cause T lineage commitment in early lymphoid progeni-

tors. It follows that the thymus provides a unique envi- panding or inducing the differentiation of preexisting
T-lineage-committed progenitors in the bone marrow.ronment for the generation of Notch signals with the

capacity to induce early T cell differentiation (Figure 4). Further, Notch signaling does not merely promote the
survival of early T cell progenitors, since enforced ex-A unique role for Notch1 in regulation of T cell develop-

ment was foreshadowed by earlier observations show- pression of antiapoptotic proteins, such as Bcl-2, in
bone marrow progenitors does not appreciably perturbing that, of all cell types and tissues analyzed, Notch1

is most highly expressed in immature CD4� CD8� thy- hematopoiesis or lymphoid differentiation (Innes et al.,
1999). Thus, although Notch signaling may promote sur-mocytes (Ellisen et al., 1991; Hasserjian et al., 1996).

Other work has shown that the strong C-terminal tran- vival at later stages of T cell development (Deftos et al.,
1998; Jehn et al., 1999), the existing evidence is mostscriptional activation domain of Notch1 contributes to

its ability to induce extrathymic T cell development compatible with an inductive role for Notch1 signaling
in promoting early T lineage development.(Aster et al., 2000). These observations suggest that T

cell commitment within the thymus requires the upregu- How then is Notch signaling (and thus T cell differenti-
ation) minimized among lymphoid progenitors in thelation of Notch1 expression in progenitors within a spe-

cific microenvironment that permits the receipt of strong bone marrow? One possibility is that signaling is si-
lenced in marrow microniches harboring CLPs. Thissignals. At present, the critical signals that upregulate
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could be achieved by downregulation of Notch recep- cell development, Notch signaling may nonetheless act
tors, sequestration of CLPs away from ligand-express- to modulate later stages of B cell development and/or
ing cells, or upregulation of factors that inhibit signaling function. Supporting this possibility, Notch receptors
pre- (e.g., fringe) or post- (e.g., numb) receptor cleavage. are expressed at multiple stages of B cell development
Studies on the mechanisms governing T/B lineage de- (Bertrand et al., 2000) and Notch ligands are expressed
termination in the thymus have provided some indirect in the avian bursa (Morimura et al., 2001) and mammalian
support for the latter idea. For instance, enforced ex- marrow and spleen (reviewed in Anderson et al., 2001a).
pression of Lunatic Fringe, a mammalian homolog of Exposure of cocultivated B cells to cells expressing the
Drosophila Fringe, abrogates early T cell development ligand Jagged-1 leads to activation of CSL target genes,
while promoting thymic B cell development (Koch et such as CD23 (Bash et al., 1999). However, enforced
al., 2001). Fringe could restrict Notch signaling in bone expression of ICN1 causes the death or growth arrest of
marrow CLPs similarly. We also recently noted that en- avian B cells, and the downregulation of immunoglobulin
forced expression of Deltex1 suppresses T cell develop- heavy chain gene transcription in both avian and murine
ment and promotes thymic B cell development, possibly cells (Strobl et al., 2000; Morimura et al., 2001). In a
by hampering the ability of Notch1 to recruit coactiva- parallel story that also suggests the importance of regu-
tors (Izon et al., 2002). This result suggests that Deltex1 lating Notch signals in B cells, multiple polypeptides
might promote the differentiation of bone marrow CLPs encoded by the genome of the Epstein-Barr virus (EBV)
into B cells by dampening Notch signaling. interact with Notch signaling pathway components (re-

A better appreciation of the mechanisms governing viewed in Zimber-Strobl and Strobl, 2001). EBNA2,
Notch-mediated T/B lineage determination will also be which is essential for B cell transformation by EBV, binds
gained through the further identification of early and activates CSL, although more weakly than ICN1.
lymphoid-specific target genes. Proposed target genes Three other EBV proteins, EBNA3A, EBNA 3C, and
associated with early T cell development include the RPMS, also bind CSL, but inhibit rather than activate
bHLH gene HES-1, the IL-2R component CD25, and Notch signaling. The net effect of these interactions
pre-T� (Deftos et al., 2000). Interestingly, while HES-1- on signaling is not clear, but the positive and negative
deficient mice were originally reported to exhibit an early effects of various proteins suggest that EBV modifies
arrest in thymocyte development (Tomita et al., 1999), CSL-dependent signaling in B cells in a highly regulated
Takahama and colleagues reported hypocellularity with- way, rather than merely turning it on constitutively.
out alterations in relative frequencies of thymocyte sub-
populations in HES-1�/� fetal thymi (Kaneta et al., 2000). Notch Regulation of Downstream Developmental
Thus, HES-1 deficiency does not phenocopy Notch1 Branch Points in Thymocyte Development
deficiency, suggesting that it may act in combination Developing T cells pass through a series of develop-
with other Notch1-dependent transcriptional targets. A mental stages defined, in part, by expression of the
recent report supports pre-T� as a direct Notch target coreceptor molecules CD4 and CD8. TCR rearrange-
(Reizis and Leder, 2002). Murine and human pre-T� pro- ments are initiated among CD4� CD8� cells, which give
moters contain at least one CSL binding site and are

rise to either �� T cells or �� T lineage progenitors.
activated by Notch in tissue culture and in vivo. In thymo-

Cells containing productive TCR� rearrangements are
cytes, Notch upregulation pre-T� expression occurs

selected for their ability to generate a signal through the
during the DN2 stage, providing further support for the

pre-TCR, a complex of TCR�, CD3, and pre-T� polypep-hypothesis that Notch signals at this specific stage en-
tides. Successful pre-TCR signaling commits a cell toforce T cell commitment.
the TCR�� lineage and results in their differentiationAn understanding of the basis for Notch-mediated
into CD4� CD8� (double positive, DP) thymocytes. Aregulation of B/T lineage specification will also require
small proportion of DP thymocytes are subsequentlyan examination of how Notch signaling inhibits early B
selected to differentiate into mature CD4� CD8� MHCcell development. Notch signaling interferes with the
class II restricted or CD4� CD8� MHC class I restrictedactivity of E2A (Pui et al., 1999), a bHLH transcription
single positive (SP) thymocytes that subsequently mi-factor that is required for early B cell ontogeny. Intrigu-
grate to peripheral lymphoid tissues.ingly, E2A knockout mice share several phenotypes with

Notch ligands are expressed on thymic epithelial cellsmice that express activated Notch constructs, including
(Anderson et al., 2001b), suggesting that Notch signalinga B cell deficiency, altered CD4:CD8 ratios, and the
may influence several thymocyte fate decisions, includ-tendency to develop T cell leukemia. However, E2A defi-
ing �� versus �� and CD4� versus CD8� lineage choices.ciency also inhibits early T cell development (Bain et al.,
Using bone marrow chimeric mice repopulated with1997), indicating that the effects of Notch on lymphoid
both Notch1�/� and Notch1�/� HSCs, Robey and col-commitment are unlikely to be accounted for purely by
leagues found that thymocytes derived from Notch1�/�inhibition of E2A. Additionally, Notch signaling may pre-
HSCs were skewed toward production of �� T cellsvent B cell development by inducing apoptosis and/
(Washburn et al., 1997). Interestingly, altered ratios of ��or cell cycle arrest in early B cell progenitors. Indeed,
and �� T cells were observed only when haploinsufficientconstitutive Notch signaling induced apoptosis and a
HSCs were mixed with Notch1�/� HSCs, suggesting thatG1 cell cycle arrest in a chicken B cell line (Morimura
lateral interactions between neighboring developinget al., 2000). Thus, it will be interesting to determine
thymocytes mediate ��/�� lineage choice. Further, en-whether Notch-induced B cell deficiency is rescued by
forced expression of an ICN1 transgene favors �� T cellenforced expression of genes that increase the survival
development, even in mice bearing a �� TCR transgeneof early B cell precursors.

Although Notch activity is incompatible with early B or a disrupted TCR� locus (Washburn et al., 1997), again
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suggesting that stronger Notch signals favor �� over ��
T cell development. This simple view is complicated,
however, by studies showing that mice homozygous
for a mutation disrupting Jagged2 (Jag�DSL) showed an
�50% decline in the numbers of fetal-derived �� T cells,
and no alteration of �� T cell development (Jiang et al.,
1998). The explanation for these discordant results is
uncertain, but multiple Notch ligands are expressed in
both developing thymocytes and thymic stroma. It has
been suggested, for example, that Jagged 2 function is
specifically required for �� T cell development, and that
some other ligand is responsible for the generation of
signals that promote �� T cell development (Jiang et
al., 1998). Thus, while changes in Notch signaling can
influence the ��/�� T cell specification, additional work
is needed to understand the normal role of specific
Notch receptors, ligands, and modifiers in this process.

Several groups have investigated the role of Notch in
regulating the CD4� versus CD8� fate choice, but the
physiological significance of Notch receptors in this
context remains controversial. Studies using transgenes
encoding truncated ICN1 proteins variously suggested
that Notch1 signaling selectively promotes CD8� and
inhibits CD4� thymocyte development (Robey et al.,
1996), or promotes the development of both CD4� and
CD8� cells (Deftos et al., 2000). These discordant out-
comes may stem from the use of different ICN1 trans-
genes, variation in ICN1 expression levels, or analysis
of mice of differing age. Experiments where Notch dos-
age is reduced have also suggested that Notch plays
a role in CD4 versus CD8 development. Germain and
colleagues found that inhibiting Notch1 in reaggregated
thymic cultures with blocking antibodies or antisense

Figure 5. Notch Signaling May Modulate Positive Selection by In-RNA appeared to enhance development of CD4 cells
hibiting TCR Signaling in a Dose-Dependent Fashion(Yasutomo et al., 2000). Similarly, � secretase inhibitors,
This figure illustrates one model to explain the consequences ofwhich prevent cleavage of all Notch receptors, inhibited
experimentally induced variations in Notch activity on CD4�CD8�CD8 development and, in at least one system, shifted
thymocyte development. In this model, Notch activity downregu-maturation toward the CD4 fate (Doerfler et al., 2001;
lates net TCR signaling, perhaps by manipulating the Ras/MAPK

Hadland et al., 2001). pathway, and thereby influences CD4 versus CD8 lineage choice.
Because these studies suggested a role for Notch in Thus, the highest doses of Notch inhibit net TCR-mediated positive

positive selection, it was surprising that the CD4/CD8 selection signals maximally and the lowest doses of Notch have
minimal effects on net TCR signaling. Stronger TCR signaling (lowratio was unaltered in thymocytes derived from mice in
Notch activity) will result in a bias toward CD4 development andwhich Notch1 was inactivated just prior to the onset of
weaker TCR signals (high Notch activity) will favor CD8 develop-positive selection (Wolfer et al., 2001). Although this
ment. The highest Notch activity would be expected to reduce TCRresult suggests that Notch1 signaling is dispensable for
signaling below the threshold required for positive selection of both

positive selection, it fails to address whether other Notch CD4 and CD8 T cells. It is important to note that in a physiological
receptors that are expressed in thymocytes, such as setting, CD4� CD8� thymocytes are unlikely to experience variable
Notch2 and Notch3, might compensate for the absence Notch activity, and instead, will integrate basal Notch activity with

variable TCR signals to make a lineage decision. Finally, unlike the B/of Notch1. Consistent with the model presented in Fig-
T cell fate choice (which is dependent on Notch1 function), positiveure 3, the level of Notch activity required for positive
selection may be influenced by signals produced by Notch1, Notch2,selection may be less than that needed for commitment
or Notch3.to T cell fate at the T:B decision point. If true, other

Notch receptors could replace Notch1 in the former but
appear to adopt the CD4� cell fate, whereas those re-not the latter developmental process.
ceiving TCR signals that are weaker or of shorter dura-The outcome of positive selection depends on interac-
tion are more likely to become CD8� T cells.tions between thymocyte TCR and MHC/peptide ligands

One possible explanation for the influence of Notchon thymic epithelial cells. Recent data suggest that the
signaling on CD4� versus CD8� lineage commitment isCD4 versus CD8 fate choice may be regulated by TCR
that Notch may antagonize net TCR signal strength dur-signal strength and/or duration (reviewed in Hogquist,
ing positive selection. Consistent with this view, en-2001). Positive selection requires the ras/MAPK signal-
forced expression of full-length ICN1 abrogates TCRing pathway and the outcome of positive selection ap-
signaling in CD4�CD8� thymocytes and inhibits theirpears to be influenced by the activity of the tyrosine
differentiation into both CD4� and CD8� thymocyteskinase lck (Alberola-Ila et al., 1996; Legname et al., 2000).

Thymocytes receiving stronger or longer TCR signals (Izon et al., 2001). As illustrated in Figure 5, high levels
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of Notch activity may inhibit net TCR signaling most mals, the Notch1 gene was originally identified through
its participation in a recurrent t(7;9)(q34;q34.3) chromo-profoundly and therefore be incompatible with positive
somal translocation found in a small fraction of humanselection. Likewise, intermediate levels of Notch activity
T cell acute lymphoblastic leukemias (T-ALLs) (Ellisenwill abrogate TCR signaling less and therefore may favor
et al., 1991). In all t(7;9)-associated T-ALLs, the translo-CD8� T cell development, and low levels of Notch signal-
cation fuses sequences corresponding roughly to ICN1ing (as induced experimentally by � secretase inhibitors)
with the promoter/enhancer sequences of the TCR� lo-may permit optimal TCR signaling and therefore favor
cus. This leads to dysregulated expression of N-ter-CD4� T cell development.
minally truncated forms of Notch1 that localize to theA recent clue as to how Notch may influence TCR-
nucleus, where they presumably cause constitutive acti-mediated positive selection was provided by studies
vation of Notch1 signaling.investigating C. elegans vulval development. In vulval

Mammalian models have confirmed that transforma-precursor cells, Notch-expressing cells adopt one fate,
tion is a general feature of constitutive Notch signalingwhereas Notch-ligand-expressing cells adopt the alter-
in T cells, as ICN1, ICN2, and ICN3 all cause T-ALLsnative cell fate via lateral inhibition. The primary differ-
(reviewed in Aster and Pear, 2001). The capacity of ICN1ence between Notch receptor expressing cells and
to transform hematopoietic cells is sharply restricted toNotch ligand expressing cells is that MAPK signaling is
T cell progenitors with intact pre-TCR signaling. ICN1suppressed in the former and enhanced in the latter.
will not transform donor HSCs from Rag-2�/� and SLP-Notably, Berset et al. recently showed that a direct tran-
76�/� mice, despite evidence of increased commitmentscriptional target of Notch signaling in C. elegans vulval
of marrow progenitors to T cell fate (Allman et al., 2001).precursors is LIP-1, a MAPK phosphatase (Berset et al.,
These mice do not develop neoplasms despite persis-2001) that inhibits MAPK signaling in Notch-expressing
tent high-level expression of ICN1 in marrow progeni-cells. Thus, it is plausible that a similar mechanism inhib-
tors, demonstrating the Notch1 has little (if any) capacityits ras/MAPK signaling to influence positive selection in
to transform myeloid cells. The loss of transforming ac-developing T cells. Indeed, Notch activity inhibited an
tivity in the Rag-2�/� background is reconstituted by aAP1 reporter in the Jurkat T cell line, following stimula-
TCR� transgene that permits expression of a pre-T�/tion by reagents that act both proximally (anti-TCR) and
TCR� signaling complex and progression to the DPdistally (PMA/ionomycin) in the ras/MAPK pathway (Izon
stage of differentiation (Allman et al., 2001). This synergyet al., 2001). An additional level of control may result
illustrates how interactions between Notch and otherfrom CD4 downregulation due to Notch-mediated ex-
signaling pathways contribute to particular phenotypes,pression of HES repressors, which bind to the CD4 si-
and emphasizes the link between Notch and TCR signal-lencer (Allen et al., 2001).
ing in both normal lymphoid development and leukemia.The NF-�B signaling pathway, which is of broad im-
The requirement for TCR function in Notch-inducedportance in lymphocyte maturation and function, may
T-ALL is distinct from certain other genes implicated inalso interact with Notch signals in developing T cells.
T-cell leukemia. For example, p53�/� mice reproduciblyEnforced activation of NF-�B permits Rag2�/� thymo-
develop T-ALLs irrespective of TCR expression, and thecytes to proceed to the CD4�8� stage of differentiation
incidence of T-ALL is reduced by expression of a TCR�(Voll et al., 2000), suggesting that it also acts down-
transgene in ATM-deficient mice (Liao et al., 1998; Liaostream of TCR signals. Conversely, inhibition of NF-
and van Dyke, 1999). Conversely, the dependency of�B decreases the number of CD4�8� thymocytes and
Notch-induced transformation on pre-TCR signalingpreferentially inhibits the positive selection of CD8� SP
bears some resemblance to T-ALLs arising from deregu-thymocytes (Hettmann and Leiden, 2000). However,
lation of the Zn finger transcriptional regulator IkarosNotch has been variously reported to have both positive
(Winandy et al., 1999).(Cheng et al., 2001) and negative (Wang et al., 2001)

Although it is likely that enforced Notch signaling both
effects on NF-�B signaling in mammalian cells, and there

drives T cell commitment in progenitors and subse-
are no published reports showing strong interactions

quently prevents T cell maturation beyond the DP stage,
between Notch and NF-�B (e.g., dorsal) signaling in in- the mechanisms underlying T-lineage specific Notch-
vertebrates. Thus, additional work is needed to evaluate mediated leukemogenesis are unclear. In our Notch1
the importance of Notch/NF-�B interactions during T retroviral transduction models, thymic-independent
cell development. T cell development in the bone marrow is polyclonal,

Currently, there is little information on how Notch whereas the Notch-induced T-ALLs are monoclonal,
might influence T cells once they exit the thymus. In one suggesting that additional genetic events are necessary
study, enforced expression of Jagged-1/Serrate-1 in for transformation. Consistent with this finding, both
mouse antigen presenting cells induced CD4� periph- myc and E2A-PBX have been shown to synergize with
eral T cells to differentiate into regulatory cells that inhib- Notch1 to induce murine T-ALL (reviewed in Aster and
ited the primary and secondary immune response Pear, 2001). Activated Notch is unlikely to provide a
(Hoyne et al., 2000). While this finding might lead to proliferative advantage, as our retroviral transduction
methods to manipulate the immune response in clinical studies have shown that the Notch-induced ectopic
settings, whether Notch signaling truly regulates periph- T cells are both small and resting, similar to thymic
eral T cell function remains to be determined. double-positive cells (Allman et al., 2001). It is not clear

if either the antiapoptotic or antidifferentiative propensi-
Notch and T Cell Leukemogenesis ties of Notch contribute to transformation. In addition
A sometimes-ignored consequence of deregulated to elucidating the mechanisms of Notch transformation,

it will be interesting to learn whether Notch signalingNotch signaling is malignant transformation. In mam-
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