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Abstract
Basarab, SA., Relaive eimination of quantifiers for Henselian valued fields, Annas of Pure
and Applied Logic 53 (1991) 51-74

A general result on relative elimination of quantifiers for Henselian valued fields of
characteristic zero is proved by algebraic and basic model-theoretic methods.

0. Introduction

In a well-known series of papers, Ax and Kochen[2-4] and Ershov [17-20]
initiated a metamathematical approach to some basic problems in the theory of
Henselian valued fields. These papers were followed by other works [1, 19, 21,
23, 26, 27], which continued the investigation of Henselian fields using methods
of model theory, recursive function theory and nonstandard arithmetic. Further
refinements of these results were obtained in [5-9, 15, 32, 35]. An account of
model-theoretic and agorithmic results in the elementary theory of valued fields,
in an approach that uses explicit, primitive recursive quantifier elimination
procedures as a unifying principle, is given in [34].

For p-adic fields Q, and the power series fields F((¢)) over a decidable field F
of characteristic zero, Ax and Kochen [4] proved by model-theoretic methods
decidability and relative quantifier elmination, when a cross-section is included in
the language of valued fields. A quantifier elimination with cross-section and a
decision method for Q, were aso given by Cohen [14] using primitive recursive
methods. Later Macintyre [23] showed that quantifier elimination for @, can be
obtained without cross-section, when more natural root-predicates are included in
the language. In a more algebraic approach, this result was extended by Prestel
and Roquette [24]to p-adically closed fields. Extensions of Macintyre's result are
also contained in [13,15]. Some general results concerning the transfer of model
completion for Henselian fields with finite absolute ramification index were
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obtained in [7,35]. Elementary invariants for Henselian valued fields of mixed
characteristic and arbitrary ramification are investigated by van den Dries [31].

On the other hand, Cohen’s ideas were strongly generalized in [32, 34] in order
to get primitive recursive relative quantifier elimination procedures for Hensdlian
fields of characteristic zero subject to a condition of moderate generality on the
value group.

In the last time the quantifier dimination problem for valued fields gained
popularity thanks to its interest for computer scientists under the aspect of
feasahility as well as for deep applications in diophantine questions. Concerning
the diophantine applications, let us mention here Cantor and Roquette's [11, 28]
and Rumely’s work, on Hilbert’s tenth problem for the ring of algebraic integers,
Denef’s paper [16] on the rationality of certain Poincaré series over Q, and
Weispfenning's result [33] on the primitive recursive decidability of the adele ring
and idele group of an algebraic number field.

The present paper, which appeared as an INCREST-Bucharest preprint in
February 1986, is devoted to the proof by agebraic and basic model-theoretic
methods of a general result on relative quantifier elimination for Henselian fields
of characteristic zero.

Given a vdued field K = (K, v) let us denote by O the valuation ring, by K
the residue field and by vK the value group. Assume that the characteristic of K
is zero and let p be the characteristic exponent of K. For k eN, let m ., be the
ideal {a € Ok: vu > kvp} of Ok. In particular, m o = mg IS the maximal ideal of
the valuation ring Ok. Denote by O, the factor ring Ox/mg «; Ok « 1S a loca
ring with maximal ideal mg/my .. In particular, for p=1, Ok, =K for al keN.

On the other hand, consider the multiplicative groups Gk = K*/1 + my , for
keN. If p=1,then Gk, =Ggo=Gx =K*/1 + mg for al ke N. Given k eN,
the ring Ok ., and the group Gk, are related through a natural map 6, defined
on the subset

{aeOku:a l p¥}= Ox, 2 \(Mg, (/Mg 2)  Of Og o

with valuesin Gk : Ox(a+mg ) =8(1 + mg,) for ae Ok subject to vu < kvp.

For k eN, the vauation v induces a map v, : Ok U Gy x— vK U {=}; the
image vk(Ok.2\{0}) is the convex subset vKy, = {e € vK: 0= a<2kuvp} of the
ordered group vK and the restriction v, |, ,: Gk« — vK is a group epimorphism.
Among other properties, the map 6, as defined above satisfies the following
valuation-theoretic condition of compatibility: the diagram

Ok M0} —> vK,, > vK

j I

OK.Zk\(mK,k/mK,Zk) —'_”I(_)Gl(,k
commutes.
For k eN, consider the system K = (Og .o, Gk .i» VK, O, i) With O o4, Gk ks
vK, 6,,v, as above and cal it the mixed k-structure assigned to the valued field



Elimination of quantifiers 53

K. In particular, for p = 1, K, = K, is the triple (K, Gx, vK) together with the
exact sequence

1— K*—> Gx—vK—0.

The mixed k-structures introduced above play a key role in the mode theory of
Henselian fields of characteristic zero as shows the following elementary
equivalence theorem.

Theorem A. Given the valued field extensions LIK and FIK, where K is of
characteristic zero and L, F are Henselian, the necessary and sufficient condition
for the valued fields L, F to be elementarily equivalent over K is that for all k e,
the corresponding mixed k-structures L, F, are elementarily equivalent over K.

Given a sentence g in the language ¢,' of mixed k-structures, k eN, one may
assign effectively to ¢ aformula tr.(¢)(z), with one variable z, in the language
L' of valued fields in such a way that for every valued field K of characteristic
zero and residue characteristic exponent p, K satisfies tr.(g)(p), written
K Etr(p)(p), iff K, satisfies ¢, written K, F @¢. The correspondence above
@ — tr (@) extends naturally to a trandlation map tr, from the arbitrary formulas
in &, to formulasin L.

As a consegquence of Theorem A we get the second main result of the paper
concerning the relative elimination of quantifiers for Henselian fields of charac-
terigtic zero.

Theorem B. Let p be either 1 or a prime number, and denote by T, the theory of
Henselian valued fields of characteristic zero and residue characteristic exponent p.
For every formula ¢(x),x = (x,..., x,) in & there exist k eN, formulas
Yi(¥), .. wdy) in &y = (U1, .. -, Ym), quantifierless formulas A,(x), ...,
A(x) in & and polynomials f, g; € Z[x], 1 =i =m, such that ¢(x) is equivalent in
¥, with the following formula:

/i/l [4,() A tr () (filx)gi(x) i L <i <m;p)].

One may derive Weispfenning’'s main theorem [34, Theorem 4.3] (with
recursive instead of primitive-recursive) from Theorem B above; details will be
contained in a forthcoming paper. In the last section of the present work we shall
show only that the Prestel-Roquette theorem [24] on quantifier elimination for
p-adically closed fidlds is a consequence of Theorem B.

1. The radical structure theorem

Consider a valued fidd K = (K, v) of characteristic zero and residue charac-
teristic exponent p. We define the canonical decomposition of the valuation v as

'The languages ¥, and ¥ are natural. For details see Sections 3, 4.
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follows. Denote by A = Ax the smallest convex subgroup of vK containing vp.
A=0iff p=1,i.e, K isof characteristic zero. Let K be the factor group vK/A,
and v: K*— K :a — va be the group epimorphism induced by v : K* — vK. Since
A is convex in vK,vK inherits from vK the structure of a totally ordered group
and hence the map © is a valuation of the field K, called the coarse valuation
assigned to v. Denote by K the valued field (K, ©). The valuation ring O, of K is
characterized as the smallest overring of O in which p becomes a unit, i.e., O is
the ring of fractions of O with respect to the multiplicatively closed set
{p*:k eN}. Note that v = v iff p=1, and ¢ is trivid iff vK = A.

Let myg be the maximal idea of Ok; then myiz c mx « Og < Og. Denote by K°
the residue fiedld Og/m, of the valued field K. For a € O let a° be its residue in
K°. The field K°, caled the core field of the valuation v of K, carries naturally a
valuation whose valuation ring is the image Ox/myg of O,. Denote also by v this
valuation and by K° the core valued field (K”, v). The vaue group vK°®is
identified with the convex subgroup A of vK and the residue field K° is identified
with the residue field K of K. Thus the core valued field K° is of characteristic
zero and residue characteristic exponent p; K°= K iff p = 1.

Consider a valued field extension L = (L, v) of K. Then the coarse valuation of
L is a prolongation of the coarse valuation of K; hence both may be denoted by
the same symbol v. The core valued field L° is an extension of the core valued
fidd K°.

We say that the extension L/K iscore-dense if for every a e A = A and for
every b el there exists a € K such that v(b —a) > a; in particular, A, = A,. This
is equivalent with the fact that for every k eN, the ring embedding Ok , =
Okox— O - Op is anisomorphism. In other words, L/K is core-dense iff the
core extension L°/K°isdense. If p =1, then L/K is core-dense iff L =K.

A main ingredient in the proof of Theorem A is the following natural
generalization of the Prestel-Roquette radical structure theorem (24, Theorem
38L

Proposition 1.1. Let K = (K, v) be a Henselian valued field of characteristic zero
and L be an algebraic core-dense extension of K. Then L/K is generated by
radicals, i.e., L =K(T) where T=T, c={telL” \/,-1t"e K} is the
multiplicative group of radical elements of LIK. The radical value group vT equals
the full value group vL of L and the valuation map v : T — vL induces a group
isomorphism T/K” 3 vL/vK. If L/K is a finite extension, then [L: K] = (T : K”).

Proof. AsK is Hensdlian and L/K is algebraic, L is Hensdlian too and vL/vK is
a torsion group. First of al let us show that L°= K° and vL = vT. Let a € O,..
We have to show that a e Ox-.. As L°/K° is algebraic and K° is of characteistic
zero, there exists f e Og[X] such that f(a) =0 and f'(a) #0. Let @ e vK° =vL®
be such that a = 2vf ‘(a). Since L°/K° is dense there exists ¢ € Og- such that
v(a —c) >a. Thus vf (c) >a = 2vf ‘(a) = 2vf ‘(c) and hence by Newton's lemma
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[24, p. 20] there is one and only one b € Og- such that f(b) = 0 and v(b —¢)>
vf'(c) = vf'(a). (Note that K° is Hensdlian since K is Hensdian). As f(a) = 0 and
via—c)>a=2vuf'(a)=vf'(a), we get a = b € Ok, as contended. Now let
ateL”. We have to show that vu = vt for some te T. As vL/uK is a torsion
group, @”"=bu with be K, n = 1, u € O;. As L° = K°, there exists u' e Ok such
that ¥#(u— u') > 0. Consider the polynomia f(X) = X" —uu'"'e€ Of[X]. Since
vf(1)>0=vn=uf'(1) and L is Henselian (as L is Hensdlian), there exists ¢'e L*
such that f(¢') =0, i.e., t"=a"(bu’)"". Let t=at'""; then t"=bu' e K*, i.e.,
teT,and vt = vu, as contended.

Consider the intermediate field L' = K(T) between K and L. We have to show
that L’ = L. The value group vL’'of L’ = (L’, v) contains vT = vL and hence
vL' = vL; in particular, ¥L’' = ¢L. On the other hand, L'° = L° since K° = L".
Thus the valued field extension L/L' is immediate. As an algebraic extension of
the Henselian valued field K, L' is Henselian and hence algebraically complete
being of residue characteristic zero [1, Proposition 15]. Since L/L' is algebraic
immediate, we conclude that L’ = L.

As vT = vL, the valuation v induces a group epimorphism v :T/K*—uvlL/uK.
We have to show that this is an isomorphism. Let t€ T be such that vt € vK.
Assume that the order of ¢ modulo K*isn and t"=ae K. As vt evK by
assumption, t= bu with b € K, ue O3. Since K° = L°, there exists u’' € Ox such
that o(u— u) > 0; therefore ¢ =(bu')(uu'"")e K*(1 + my). To show that te K
we may replace ¢ by any other element in its coset modulo K*, so we may assume
without loss of generality that ¥(1—1t) >0 and hence ¢v(1—¢*)=0(1—3a) > 0.
Consider the polynomial f(X) = X"—aeOg[X]. As K is Hensdian and 0f(1) =
¥(1—a) >0 = v(n) = ¥f'(1), there exists one and only one ¢ € K such that
f(c) = ¢"—a=0and ¥(1—c) > 0. Since this uniqueness statement holds not only
in K, but also in the Henselian field L and since f(t) = 0, #(1—t) > 0, we
conclude that t=ce K.

We have shown that T/K” =~uvL/vK. If one of these groups is finite, then the
other is finite too and (T : K”) = (vL:vK). On the other hand, if [L : K] is finite
then [L:K]=(vL:vK)=(vL:vK), since K is algebraically complete and
[L”: K”] =1. We conclude that [L: K] = (T: K”). O

The following explicit description of the field structure of L/K in terms of
radicals is an immediate consequence of Proposition 1.1; see the proof of [24,
Corollary 3.91.

Corollary 1.2. In the same situation us in Proposition 1.1, assume that L/K is
finite. Then LI K can be generated by finitely many radicals such that the product of
their radical exponents equals the field degree:

L = K(ty,...,¢,),

th=aq; eK*, 1=<i<r,

[L:K]=nn,---n,.
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The substitution X;—¢,1=<i=<r, extends to ¢ K-isomorphism of the factor
algebra K[X,,..., X,]/1, where Z is the ideal generated by the polynomials
X¥—a;, 1<i=<r,onto the field L.

2. An embedding theorem for Henselian fields

The key role played by the embedding theorems in the investigation of the
model-theoretic properties of the Hensdlian valued fields is well known (see, for
instance, [21],[24, Theorem 4.11, {7, Theorem 1.21, [9, Proposition 2.21). In this
section we prove a general embedding theorem for Hensdian valued fidds of
characteristic zero that will be the main tool for the proof of Theorem A. A basic
ingredient in the proof of this embedding theorem is Proposition 1.1.

Given a valued fidd K = (K, v) of characteristic zero, let us denote by K, the
mixed structure assigned to the coarse valued field K = (K, ©), namely the system
(K", Gk = K*/1 + mg, UK) together with the exact sequence

1> K% — Gg——> 1K — 0.

In fact we shall consider the core field K° not only as an abstract field but also as
avaued fiedd K° = (K”, v) with the valuation naturally induced by the valuation v
of K. Thus it seems natural to consider systems & = (M, H, I, i, IT) where
M = (M, v) isavaued field of characteristic zero whose value group vM equals
the smallest convex subgroup containing vp, p = the characteristic exponent of
the residue field M, H is a multiplicative Abelian group, I is an additive totally
ordered group, i:M*— H is a group monomorphism and IT: H— I is a group
epimorphism such that the sequence

1-M—SH-25T—0

is exact. Call such asystem a minced w-structure. Thus the system K, above isthe
mixed w-structure naturally associated to K. If the residue characteristic of K is
zero, then K, = K, is the mixed O-structure

(K, Gk = K*/1+ mg, vK; 1> K*— Gx—> vK—0)

assigned to K.
Given a mixed w-structure @ = (M, H, I, i, IT), we obtain the canonic exact
sequence

0—vM = M*/05— > T—0,
where I = H/i(O3)- Thus I' inherits a natural structure of a totally ordered group
with the order given by a« < g iff either & < or 0 < 8 —a € M, with respect to

this order, vM is identified with a convex subgroup of I' and I'=TI/vM as
ordered group. Thus the mixed o-structure © may be seen also as a system &' =
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(M, H,T,i, ITy where M, H,i are as above, I' is an additive totaly ordered
group and IT : H— I" isagroup epimorphism such that the kernel of ITei: M*—T
is the group O3, of units of O,, and the value group vM = M*/03, is identified
through IT-i with a convex subgroup of I'. In the present section we prefer to use
mixed o-structures in the first acceptation reserving the second equivalent
definition for the next sections of the work.

Given two mixed w-structures &,,i = 1, 2, an embedding u: &, — &, will bea
system (u', u, u”) where u': M, —» M, is avalued field embedding, u: H, — H,isa
group monomorphism and " : I; — I3 is a monomorphism of ordered groups such
that

M¥ =5 H D5

R

i m
M; — H, — I,

is commutative.
With this preparation we are now able to state the general embedding theorem
for Henselian valued fields of characteristic zero.

Theorem 2.1. Let K = (K, v) be a valued field of characteristic zero and
L = (L, v), F = (F, v) be Hensdian valued fields extending K. Assume that F is
| L|-pseudocomplete, where| L] denotes the cardinality of L. Given a & -embedding
u:L,— F., of mixed w-structures, there exists a K-embedding n:L— F of valued
fields inducing the given &-embedding u; in other words, the canonic map
Homg(L, F)— Homy (L., Fo) is onto.

Proof. Consider the family A of pairs (L', n) where L’ is an intermediate field
between K and L, and n: L' — F is a K-embedding of valued fields inducing the
restriction embedding u |z, :L,— F, of mixed w-structures. A is nonempty since
the pair (K, K — F) beongs to A. Consider the partial order on A:

L. n)=(L", 9" iff L' <L and ' = n'],.

As the nonempty partial ordered set (A, <) is inductive, there exists by Zorn's
lemma a maximal pair (L', n) e A. We have to show that L’ = L.

Without loss of generality we may asssume that L' = K, i.e., A is the singleton
{(K, K - F)}; so we have to show that K = L. We proceed step by step as
follows. Using well-known facts concerning Henselian valued fields and Corollary
1.2, we show in the first three steps of the proof that the field extensions L/K and
L°/K* are regular.

(1) First let us show that K = (K, ©) is Hensdian. Let K' = (K’, ¥) be the
Henselization of K. AsL is Hensdlian, L = (L, ¥) is Henselian too and hence K’ is
identified with a subextension of L/K.Let K’ = (K’, v) be the fidld K’ with the
valuation induced by the valuation v of L. As the residue field K’° of K’ equals
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K, the valuation of K’ is exactly the valuation on the field K’ induced by the
valuation ¢ of K’ and the valuation v of K°. Since F is Hensdlian, F is Hensdlian
too and hence we get a canonic k-embedding n:K'— F. In fact 5 is a
K-embedding of K’ into F. It remains to check that K’ = K, in order to conclude
that (K’, n)e A and hence K’ = K by maximadlity of K. The equalities K" =K,
vK' = K are trivia, so it remain to verify that Gg = Gi. Let xe K. As
vK' = 0K, x = ay with a e K*, y € O%.. Since K'° = K°, there is b € O such that
#(y—b) > 0. It follows: x = (ab)(yb~')e K*(1 + mg.). Therefore the canonic
morphism Gz— G- is an isomorphism as contended.

Now since K is Hensdlian of residue characteristic zero, we may assume by [1,
Proposition 16] that we have the following commutative diagram of valued fields:

F

1

FPe— K° — K

N

L° — L

Note also that K, L° and respectively K, F° are linearly digoint over K”.

(2) Let us show that K° is algebraicaly closed in L”. Let x € L° be algebraic
over K° and K’ be the field K(x) with the valuation v induced from L. By linear
digointness we get [K’: K] = [K”(x) : K”] and hence vK’'=©K and K™ = K”(x).
The correspondence x — u'(x) defines a field K-embedding #: K — F. Moreover,
7 is a K-embedding of valued fields. Indeed, let w be the valuation of K’ induced
through n by the valuation of F. As the residue field of K’ with respect to the
coarse valuation w equals K’°, the valuations w and v of K’ induce the same
valuation on K (u’ is a K°-embedding) and w equals the valuation ¢ of K’, the
unique valuation of K’ extending the Henselian valuation v of K, it follows that
w equals the valuation v of K’, as contended. Thus it remains to show that the
canonic &-embedding #:K.— F, of mixed w-structures induced by n coincides
with the restriction of u to K.. As# coincides with u’ on K’° by definition of 7
and ¥K' = ¥K, it remains to show that the canonic monomorphism # : Gg.— Gj
induced by #n equals the redtriction of u:G;— Gf to Gg.. Let us show that
Gx = Gg(K')*. Indeed, let z e K™*. As vK' = vK,z = au with a e K*, u € O%
and hence z(1 + mg.) =[a(1+ mg)][u(l + mg)]; therefore z(1 + mg.)e G&K’*)*,
as contended. Now the statement above is immediate since u and # coincide on
G and (K'°)* by definition of 5. Consequently, (K’, n)e A and hence K’ =K,
since A = {(K, K < F)} by assumption. As x is arbitrary, we conclude that K°is
algebraicaly closed in the Hensdlian field L”. In particular, K° is Hensdlian.

(3) Moreover, we claim that K is algebraically closed in L. First let us observe
that K is Hensdlian since K is Henselian by (1) and K° is Hensdlian by (2). Let
K' <L be a finite extension of K. Note that K’ = K° by (2). Here is the point
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where we use the radical field structure of K'/K given by Corollary 1.2
K = K(t,...,t,)=K[X,,..., K,]J/I, where | is the ideal generated by r
polynomials ¢, X7 — 1, 1l si<r, with ¢,;e K* such that ¢#=1 1<i<r. Let
T = K*t{t5 - - - tZ be the multiplicative group of radicals of K'/K. Consider the
chain of isomorphisms

T/K* 5 vK'/vK 5 vK/0K =[] Z/n;Z.
Isi=r

Let us choose y,.. ., y,€ Fsuch that y,(1+mg) = u(t,(1+my)), l<isr. We
get ¢;yfie 1+ mg since ¢it=1, 1 <i=<r. Consder the polynomials f,(X) =
X" —culie O X), 1<i<r. Astf(1)> 0, of{(1) =v(n;) = 0, we get by the
Hensel lemma applied to F some eements x,,..., x, € F uniquely determined by
the conditions x* = ¢,y 0(x;—1)>0,1<i<r. Let us put z;=yx; ', 1<i<r.
The substitution ¢z, 1 <i=<r, defines a field K-embedding n:K'— F.
Moreover, n: K'— F is a valued field K-embedding since K is Hensdlian and
K'/K is agebraic. Let us show that the K,-embedding #:K.— F, of mixed
u-structures induced by n equals the restriction of u:L,— F,to K.. First note
that K> = K° and vK'/0K is finite since the extension K'/K is finite by
assumption. Conseguently, the embedding of totally ordered groups vK'— vF
induced by n equals the restriction of u":vL— #F to vK’, so it remains to show
that the group monomorphism Gg-— Gy induced by n equals the restriction of
u: Gi— G 1o Gg.. By construction of n it suffices to verify the equality
GK-. =G+ 1485, . 1%, where f; is the coset of ; modulo 1 + mg,1<is<r. In
order to do this we have to show that the canonic group morphism 7 — Gg-is
onto. Let z be an dement of K'*. AsT/K” =0K'/vK,z=tuwithteT, u e Of.
Since K =K% u=u'awithu' e Of,ael+mg. Thus z=(tu')ae T(l + mg.),
as contended.

We have shown that (K’, ) e A and hence K’ = K since A = {(K, K - F)}.
K’ being arbitrary we conclude that K is algebraicaly closed in L. The goa of the
next two steps of the proof is to show that the regular valued field extension L/K
isimmediate.

(4) Let us show that K° = L”. Assuming the contrary, let xe L°\ K”. AsK°is
algebraicaly closed in L° by (2), x is transcendental over K”. Let K’ be the
rational function field K(x) with the valuation induced by the valuation v of L.
According to [10, Chapter 6, §10, Proposition 2], the restriction of ¢ isK’ is the
unique valuation of K’ extending the valuation v of K subject to ox = 0 and
x°=x transcendental over K”. Note that K’ = 0K and K’ = K”(x); therefore
the correspondence x+— u'(x) defines a valued field K-embedding n: K'— F. It
remains to verify that the K,-embedding#:K.,— F, induced by 5 equals the
restriction of u to K. in order to get (K’, n)e A, contrary to the fact that
A={K, K- F)}. As# and p coincide on K'° by definition of n, and 9K’ = K,
it suffices to observe that Gg- = Gg(K'°)*. Indeed, any element z e K'” can be
written in the form z = au with a €e K*, u € O%., since ¥K' = vK.
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(5) Let us show that vL = uK. As K° = L° by (4), it suffices to verify that
vL = vK. Assuming the contrary, let x e L\K be such that vx ¢ oK. As K is
algebraicaly closed in L by (3) and K° = L°, the factor group vL/0K is torsion
free. Indeed, let v EL” be such that riy = va with a e K*,n= 1, i.e,
v(y"a~')=0. Since K°=L°, y"a '=bu with b € 0% u e 1 +m;. As L is
Henselian of residue characteristic zero, u = z" for some z € Of; therefore
(yz"Hh"=abe K. Simce K is algebraically closed in L, yz~'eK and vy =
v(yz" ") evK, as contended.

Let K' be the rationa function field K(x) with the valuation induced by the
valuation v of L. Since ¥K'/0K #0 is torsion free as a subgroup of vL/vK, it
follows by [10, Chapter 6, §10, Proposition 1], that

!
vK'= K@ Zox and v(z a,—x') = min (¥a; + iUx)
i=1 i

for arbitrary a;e K,1<i= 1. Let us choose an element y e F* whose coset
modulo 1 + mg isu(x(1 + my)); in particular, oy = u"(¥x) is of infinite order
modulo ¥K and hence y is transcendental over K. Thus the substitution x+w—y
defines a field K-embedding n: K’ — F. We claim that u:K'— F is a valuation
field k-embedding such that the induced vK-embedding vK'— 0F equals
restriction of u”to ¥K'. Indeed, let f(x) = X a;x € K. Then of (x) = min, (va; +

ivx). On the other hand, [10, Chapter 6, §10, Proposition 1] may also be applied
to K(y) instead of K' = K(x); we get 0f (y) = min; (va; + ivy), i.e, v(n(f(x)) =

u"(of (x)), as contended. Moreover, as K° =K' = L°,n isin fact a K-embedding
of the valued field K’ into F. Thus it remains to show that the K,.-embedding
f:K.— F, of mixed w-structures induced by 5 equals the restriction of u to KZin
order to obtain (K’, n)e A contrary to the assumption that A = {(K, K< F)}.

Since K" = K° and vK’ = 0K @ Zix, we obtain Gg. = Gg - £%, where £ is the
coset of x modulo 1 + myg-.; therefore # and p coincide on G- by definition of #.
Note that till now we did not use the assumption that F is|L|-pseudocomplete.

(6) Finaly we are ready to prove that K = L. Assuming the contrary, let
xe L\ K and K’ = K(x). The element x is transcendental over K by (3),K° = K
by (4),vK = vK’ by (5); consequently, we get dso Gx = Gk and hence K, = K.,
Thus it remains to show that there exists a K-embedding n:K'— F in order to
get (K, n) e A contrary to the assumption that A = {(K, K- F)}. As K°=K"°,
it suffices to show that there exists a k-embedding n: K’ — F.

As the proper valued field extension K'/K is immediate, there exists a
pseudoconvergent sequence a = (ag):-, in K, A <|K|, without pseudolimits in K
such that x is a pseudolimit of a. Moreover, since K is agebraically complete (as
a Hensdian field of residue characteristic zero), it follows by usua arguments [25]
that the sequence a is of transcendental type, i.e., f(8) = (f(ag))e<1— 0 for all
feK[X]\{0}. ]

Here is the point where we use the assumption that F is|Li-pseudocomplete;
therefore a has a pseudolimit y in F. Asa is transcendental, its pseudolimit y is
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transcendental over K; thus the substitution x+—y defines a field K-embedding
n:K — F. We claim that 5 is a g-embedding of the valued field K’ into F.
Indeed, let fe[X]\{0}. As a is transcendental, f(a)-»> O and hence there is
< A such that of (x) = of (ag) = of (y) foradl t<&<A. O

The next embedding criterion for Hensdlian fields of characteristic zero is an
immediate consequence of Theorem 2.1.

Corollary 2.2. Let K = (K, v) be a valued field of characteristic zero and
L = (L, v), F = (F, v) be Henselian valued fields extending K. Suppose that F is
|L| -pseudocomplete. The necessary and sufficient condition for L to be K-
isomorphically embeddable into F is that the mixed o-structure L, is K,-
embeddable in Fo.

3. Mixed structures

We have introduced in the previous section the so-called mixed o-structures
and we have seen the key role played by these ones in embedding problems for
Henselian fields of characteristic zero. The mixed o-structure K, assigned to a
valued fidd K = (K, v) of characteristic zero is constructed with the help of the
coarse valuation ¢ induced by v and hence it is not an elementary object assigned
to K, except the special case when the residue characteristic of K is zero. Asthe
model-theoretic investigation of Henselian fields requires more elementary
invariants, it seem natural to approximate the global object K, above by a family
of suitable objects that are definable in elementary terms. Posible candidates for
these elementary objects are the mixed k-structures K, k €N, defined in the
Introduction.

In abstract terms, a mixed k-structure, k eN, isasystem % = (A, H, I, 6, v),
where A is a commutative ring with 1, H is a multiplicative Abelian group, I' is an
additive totally ordered group, € is a patid map from A into H and
V:(A\ {0} U H— I isamap subject to the next conditions:

(1.1) For a, b e A\{0}, a divides b, (written a|b) iff va=< vb;

(1.2) For a, b e A\{0} such that ab+#0,v(ab) = vu + vb; in particular, vu =0
for al ae A\ {0} and vu=0for al unitsu e A” by (1.1); set by convention v0 =«
with the usual rules for the symbol ;

(1.3) For a, b € A, v(a + b) = min(va, vb); thus A is a local ring with maximal
ideal m, ={ae A: vu>0};let p be the characteristic exponent of the residue
fiddd A = A/m,;

(1.4) The image VA := v(A\ {0}) equals the convex subset I, ={aeI:0=<
a <vp*} of I'; consequently, A\ {0} = {a € A: a| p*}, the characteristic ex-
ponent of A is p**'and A=A iff p =1;

(2) The restriction v|,:H—I' isagroup epimorphism;
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(3.1) The domain of the partial map 6 is the complement in A of the ideal
My .= {a € A: va > vp*};
(3.2) Diagram

Via

A\{0} —> L, —> T

I

A\mA'k ————————— H

commutes,

(3.3) For a, b e A\m, ; such that ab ¢ m, ., 8(ab) = 6(a)8(b); in particular,
8| 4x: A” — H is a group morphism;

(3.4) Ker(v|y) < 0(A%); in fact we have equality by (3.2);

(35) For a, b e A\m,,, 6(a)=06(b) iff v(a— b) >uvp* + vb; thus A*/1 +
M.« =Ker(v|) by (3.4).

Note aso that the image of the map 6 equals {he H: 0 =< vh < up”}. For
suppose a @  A\mA K, i.e, va < up*; we get v6(a) = va < up* by (3.2). Con-
versdy, let h e H be such that 0 < vh <wup*. By (1.4) there is a € A such that
w=Vh. AS a¢m,,, weget v8(a) = vu = vh by (3.2). Thus h6(a)™' € Ker(v|y)
and hence h6(a)' = 8(b) for some b € A* by (3.4). It follows. h = 8(a)8(b) =
8(ab) by (3.3).

Given k, k'eN,k= k', an Abelian totally ordered group I', a mixed
k-structure % = (A, H, I,6,v) and a mixed K'-structure %A’ = (A’, H’, I’, 8', V")
such that A and A’ have the same residue characteristic exponent, say p, a
restriction map I1: A— A’ isamap IT:AU H-t A U H’ subject to the next
conditions:

(i) M|, is a unitary ring morphism from A onto A’ which induces an
isomorphism A/m, ,=A’; in particular, I1|, induces an isomorphism of residue
fidds A= A’;

(ii) if ae A\my 5. then vu = v'II(a); in particular, for k’ >0, we get
up = V'p;

(iii) 1| is a group epimorphism from H onto H’ such that vh = v’ IT(k) for al
heH;

(iv) I1(6(a))=6'(Il(a)) for Al ae A \m, ;..

Note that the restriction map IT induces an isomorphism H/6(1+m, ,)=H".
For suppose a €1+ mi, 4, i.€, v(a— 1) >vp*. By (ii) we get v'IT(a— 1) >up*,
ie.,Il(a) e 1+my, , and hence 6'(II(a)) = 1 since A™*/1+ m,. ;. =Ker(v'|y)
by (3.5). On the other hand, I1(8(a)) = 68'(I1(a))=1 by (iv). Conversdy, let
h e H be such that IT(k) = 1. In particular, vh =0 by (iii) and hence there is
aeA” such that h = 6(a) since A*/1+m,, ~Ker(v|,). By (iv), we obtain
0'(I1(a)) = II(6(a)) = 1I(h) = 1; therefore MM(a)e 1 + m,.,.. According to (ii)
ael+ m, , follows, as contended.

By a projective system of mixed structures we mean a system A =
Wee; I ren k=i, Where A, = (A;, Hy, I, 6,,v,) is a mixed k-structure with
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L,=T foral keN, and IT, ,: A,— A, for k <1is a restriction map as defined
above such that IT, ; = IT, ;o IT, ; for k <s < | and I, ; = 1y,.

To a mixed w-structure & = (M, H, T, 68,v) one assigns naturally a projec-
tive system of mixed structures PB(S) = (&; i, Dken i< Where &, =
(Om200 Hie, T, 6, vi) With Opgon = Og/ Mg 50, He = HIB(1 + myy i) and 6, : Oy, \
(Mag, 1/ Mpg 26) = Hy, Vs : Opg 0 U Hy — T U {0}, induced respectively by 6: M* <
H,v:H—T, and I, ;: ©,— &, for k <! are the canonic restriction maps. Note
that 8(©) is identified with & if the residue characteristic of M is zero.

As we are interested in organizing the projective systems of mixed structures
into a category, we have to define morphisms between such objects.

First we define the embeddings of mixed k-structures for given ke N. Let
A=(A H I8,v and A’ = (A, H’, I'",8',v’) be mixed k-structures. An
embedding ¢: A—->A'isamapp:AUHUT— A’ UH'UT" subject to the next
conditions:

(i) ¢l is aring embedding of A into A’";
(ii) @|n is a group embedding of H into H’;
(iii) @|r is an ordered group embedding of I'into I'’;
(iv) v'@(a) = p(va) for dl ae A;
(v) v'@(h) = @(vh) for al he H;

(Vi) 8'(@p(a))= @(6(a))forall a € A\m .

Now, given the projective systems of mixed structures A = (Uy; I Jren k=t
and A’ = (Wi Ik Dren k<, @0 embedding of A into A’ is afamily g, : A, — A, of
embeddings of mixed k-structures, k eN, subject to the compatibility condition
@Il = I @, for k <.

If A, B are respectively mixed k-structures, o-structures, projective systems of
mixed structures, denote by Hom(%, ‘ 23) the set of embeddings of A into 8.

Cal a mixed o-structure @ = (M, H, I8, v) complete if M is Cauchy
complete, i.e, Oy =1im Oy, and His Cauchy complete with respect to the
topology given by the system of open neighbourhoods of 1,

{0 +mpr)fhen, 1€, H =1lim H/O(1 + my, ).

The next lemmas are immediate.

Lemma 3.1. Given a mixed w-structure &, there exists a complete mixed
o-structure G and an embedding i :&— © such that for every embedding
@:S— &' with &' complete, there is a unique embedding y:&— &’ subject to
@ = Y.

Call the mixed o-structure & above, the completion of ©;S is unique up to an
isomorphism over &.

Lemma 3.2. Let © and &’ be mixed w-structures and assume &' is complete. The
cunonic map Hom(S, ©')— Hom(*B(S), P(S')) is bijective.
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Given k eN, the category of mixed k-structures, with embeddings as morph-
isms, can be seen as the category of models of atheory T, in a suitable first-order
language L,. We may consider the mixed k-structures as one-sorted structures, as
well as (finitely) many-sorted structures with sorts for the ring A, the group H
and the ordered group I'; we choose in the following the many-sorted approach.
The languages 2, k €N, are related each to other thanks to the next trandation
procedure.

Lemma 3.3. Let k, /eN be such that k </. Given an &-formula y(x),
x=(xy,...,x,),one may assign effectively to it an &,-formulatr, (y) (X; Y),
where y is a new variable of sort A, in such a way that for every restriction map IT
defined on a mixed I-structure 2 of residue characteristic exponent p with values
into a mixed k-structure A’ and for every a = (ay,...,a,) in A of suitable sorts,

Ary(Il(a)) f A'ktr (y)(a;p).

Proof. We define the trandation map tr, ;: ¥, — ¥, by induction on the com-
plexity of the formula .

(1) Assuming vy atomic, we distinguish the next cases:

(i) ¥ = (f ) = 0), where feZ[x], x = (x,,...,x,) variables of sort A; let us
put tre ,(y) :=vf (x) > vy*;

(ii) y:=(@=1)wheretis aterm of sort H, i.e, ¢ isaword w§'---w? with
Ry, ..., n,eZ and w; has either the form 6(f (x)) with feZ[x],x = (x,,..., x,,)
variables of sort A, or it is a variable of sort H; define tr, ,(y) := [(3z)(v(z —
1) > vy*)A(8(z) =¢)], where z is a new variable of sort A;

(i) y:=(£=0), where & is a term of sort I, i.e, & = X%, n,a; With
ny,...,n,€Z and o, has either the form vf (x) with f e Z[x], x = (x,,..., x,)
variables of sort A, or the form vt, where ¢ isaterm of sort H or is a variable of
sort I; let us put tr, () :=(E=0);

(iv) ¥ : = (&> 0), where £ isaterm of sort I'; set tr, ,(y):=(£> 0).

(2) tri (Y1 A ) =t (Y1) At (92)5

(3) tri, () :="tr, (W);

(4) tr ((2) Y(2)) := (F2) tr (v(2)). O

Similarly we may interpret the category of projective systems of mixed
structures, with embeddings as morphisms, as the category of moddls of a theory
T, in a suitable first-order w-sorted language 2, with sorts for the rings A,,
k eN, the groups H,, k € N, and the ordered group I'. The next lemma is an
immediate consegquence of Lemma 3.3.

Lemma 3.4. Let y(xy,..., x,) be an &-formula. For 1 <i=n, let

_ {k, if x; is of sort A, or H,,
=10, ifx;is o sort T,
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One may assign effectively to ¥ a natural number m = max;(m;) and an
L,.-formula (yy, . . . , ¥»; 2) in such a way that for every projective system of
mixed structures U = (U ; I ren x= Of residue characteristic exponent p and for
arbitrary a,, ..., a,, in %, of suitable sorts,

Uk Y(IL,, m(a1), ..., I, .(a,) iff A, k@, ..., a:;p).

Given an uncountable cardina k, a projective system of mixed structures
A = (Wy; I Dren k=1 IS K-saturated if for every set @ of £,-formulas with
parameters from 2 (i.e., involving constants for elements A) the following holds:
if @ has cardinality less than x and every finite set of formulas from @ is realized
in A, then all formulas from @ are simultaneously realized in 2.

Lemma 35. Let ©=(M,H,TI,0,v) &9 =M® HO, 19 09,v9),i=1 2,
be embeddings of mixed g-structures. Suppose that ©® is complete and R(S?)
is K-saturated for some cardinal «>|S®|-|H"|. The next statements are
equivalent:

(i) Homg(©&®,&P) is nonempty;

(ii) Homg (G,&P) is nonempty for all k € N.

Proof. The implication (i)— (ii) is obvious.

(i)+ (i) As &2 iscomplete, it suffices to show that Homge,(B(SV, B(SP)
is nonempty, according to Lemma 3.2. Let X = {X,: a e B(&EW)\B(S)} be a set
of &-variables such that x, has the same sort as a, and consider the set ¢ of al
basic &,-formulas (atomic and negated atomic formulas) e(x,,,...,x,) with
parameters in R(S) subject to V(SP)Eg(a,,..., a,). Obviously,
Homge)(B(SD), B(S?P)) is nonempty iff @ is realized in B(S?). By the
K-saturation property of (&) it suffices to show that each finite subset of @ is
realized on P(S?). Let @i(x4, ..., %), 1 <i=m, be formulas from &.
According to Lemma 3.3, we may assume without loss of generaity that there is
k eN such that all parameters occurring in ¢;, 1 <i<m, denote constants from
©,; we may also assume that a,, ..., a belong to &{. Since Homg,,
(B, &Q) isnonempty by assumption, we conclude that the formula @, A @, A
-+ AQ,, isredized on &2 and hence it is also redlized on B(S?@). Cl

4. Proof of the main results

Denote by & the first-order language of valued fields, whose vocabulary
contains, besides the logical symbols, constants 0, 1, function symbols for the field
operations (+,-,—, %) (with convention 0~' = 0) and one unary predicate £
which in a valued field is interpreted as the valuation ring. The axioms of valued
fields, as well as the axioms of Henselian valued fields can be formulated in this
language.
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The language £ and the languages £, of mixed k-structures, k € N, introduced
in Section 3, are related via the following trandlation procedure.

Given avalued fidd K = (K, v) of characteristic zero and a natural number k,
let us consider the canonic maps I, ,:Ox— Ok = Ox/Wg , I}y o : K*—
K*/1 + mg 4.

Lemma 4.1. Let k eNand ¥(xy,..., X5 ¥, Y3 &1, ..., &) be an L,-
formula, where the x;’s are variables of sort A, the y,’s are variables of sort H and
the &’s are variables of sortI.Oneassigns effectively 1o ¢ an R-formula tr, ()
(z1, 22, .., Zusm+1+1 insuch a way that for every valued field K of characteristic
zero and residue characteristic exponent p, and for arbitrary a,eOg,1<i<n,
g,eK-, n+lsisnt+m+]l,

K Fy(Ily y(a):1<sisn Iy (a):n+1l<isn+m;

vasn+tm+l<sisn+m+l)

lﬁKttrk(w)(al; s Qnmsb P)

The proof is immediate.
The next embedding theorem for Hensdlian fields of characteristic zero is a
conseguence of Corollary 2.2 and Lemma 3.5.

Theorem 4.2. Let K = (K, v) be a valued field of characteristic zero and L, F be
Henselian valued fields extending K. Suppose that the valued field F is K-saturated
for some cardinal «>|L|. The necessary and sufficient condition for the valued
field L to be K-embeddable into F is that the mixed k-structure L, is K-
embeddable into F, for all ke N.

Proof. An implication is trivial. Conversely, assume that Hom (L., F) iS
nonempty for all k eN. By the K-saturation property of F, it follows that the
mixed o-structure F, is complete, the projective system B(F,) is K-saturated and
the valued field F is |L|-pseudocomplete. According to Lemma 3.5,
Homy (L., F.) is nonempty and hence L is K-embeddeble into F by Corollary
22. O

Proof of Theorem A. An implication is obvious. Conversely, let us assume that
the mixed k-structures L., F, are elementarily equivaent over K, (written
L, =g, F,) for dl k eN.We may assume without loss of generality that F
is K-saturated for some cardinal «>|L|. For otherwise we may consider a
K-saturated elementary extension F’ of F according to [30, Theorem 16.41. In
order to get L =, F it suffices to show that there exists a K-embedding ¢ : L— F
such that the induced K,-embedding of mixed k-structures ¢y :L,— F; is an
elementary one for al k eN. For in this case we may construct by iteration an
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infinite commutative diagram

FO=F > FIO F? — -
/ & e
T,r«n:‘r I‘rm\ Tq,m
K—s IW=] — [V — @& .

where LYTV/L®, FE+HY/FO are dementary extensions, L¢*Y is|F|*-saturated,

F® is|L;]*-saturated and @{: LY — FQ, p@: FP— L{*Y are elementary
embeddings for al kenN.Let F =lim F(” =lim L?. By the Tarski-Vaught
theorem [30, Theorem 10.11, F*’/L and nd F)/F are elementary extensions and
hencelL =, F.

Thus it remains to show that there exists a K-embedding ¢ : L— F with the
required properties. As L, =g, F, is K-saturated, «>|L|=|L,|, there exist
elementary K-embeddings L, — F, for al k eN; therefore, by a dight adjust-
ment of Lemma 3.5, we obtain a K.-embedding ¢, :L,— F, of mixed w-
structures inducing elementary K,-embeddings ¢, : L,— F, for al ke N. It
remains to extend ¢, to a K-embedding ¢ : L— F by Theorem 2.1 O

Proof of Theorem B. Let p be either 1 or a fixed prime number. Denote by &,
the Z-theory of Henselian valued fields of characteristic zero and residue
characteristic exponent p. Let ¢(x), x =(x,,...,x,), be an L-formula. Denote
by W the set of sentences in the language £ augmented with the constants
c=(cy, ..., c,), consisting of:

(i) the axioms of T,;

(i) the sentence g(c);

(iii) the sentences of the form

T[Afe) A tr(y)(fie)gi(e) "t L<i<m;p)],

where A(x) is a quantifierless C-formula, kis a natural number, y(y) with
Y =01,.. -, ym)isan X$formulaand f;, g; € Z[x], 1 <i=<m, such that

T, HAE) A tr () (fi(x)gilx) T Lsi<m; p)] - p(x).

We clam that W is inconsistent. Assuming the contrary, let us choose, by
Godel’s completeness theorem [30, Theorem 7.11, a model (L; c) of W. In
particular, L = (L, v) isaHensdlian valued field of characteristic zero and residue
characteristic exponent p, and c = (cy, ..., c,)€ L”. Let K =(Q(c), v) be the
smallest valued subfield of L containing the ¢;’s. Denote by D(K) the diagram of
K, i.e, the set of basic sentences (atomic and negated atomic) in the language of
K that are true on K, and by D(L/K) the set of al sentences having the form
tr.(y)(a; p), where k eN, ¢ (y) withy = (3, . . ., ym) IS an &-formula and
a=(a,y,..., a,)e K™ suchthat IT,(a) makes sense (i.e., a;€ O if y; isavariable
of sort A, a;e K*if y, is a variable of sort H or I'; then IT.(a;) is respectively
11,4 2(a), Iy i(ay), va;) and Ly F (IT(a)). According to Theorem A, the theory
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S=2%,UDK)UD(L/K)1s complete; therefore St ¢(c), since L kS and LE
@(c). Consequently, there are finitely many sentences 4,,....a € p),
N1, ..., n€D(L/K) such tha

z, "/i\ A A //\ n;— @(c).

Let A(x) be a quantifier less &formula such that A(e) <> /\ A;. On the other hand,
by Lemma 3.3, there exist keN, an &-formula ¥(y),y =, ..., ym), and
some polynomials f, g; € Z[x] such that

tr(W)(fi(e)g(e) ™ 1 < i <m;p) o An,
Thus

T, [Ax) A (@) (fix)g(x) T 1< i< m; p)] > p(x)
since ¢ does not ocur in £,,; therefore

LE-[A(e) A tr(@)(fi(c)gi(e) : 1<i=<m;p)]
since (L, c) isamodel of W, a contradiction.
We conclude that W is inconsistent and hence there exist quantifierless
L-formulas A,(x),..., A(x), natural numbers kq,...,k, &,-formulas y;(y),
1sj<sl y=(y,.-.,¥Yn), and polynomids f, g€ Z{x],1<i=<m, such that

T Holx) « 15\,-/51 [A,(x) A tr (Y)(filx)gi(x):1<i<m; p)].

Using again Lemma 3.3, we may assume that k,=k,=---=k;:=k. O

5. Application to p-adically closed fields

In the last section of the work we shall show that Macintyre's theorem [23] on
quantifier elimination for p-adic fields and its generalization to p-adically closed
fields [24, Theorem 5.6], can be obtained as consequences of the general
Theorem B.

Let us fix in the following a prime number p. A vaued field K = (K, v) is called
p-valued if K is of characteristic zero, the residue field K is of characteristic p and
the F,-space Ox/pOx is finite. Call the dimension of the space Ox/pOx the
p-rank of the p-valued field K.

The above condition implies that the residue field K is finite, say K =T, with
g =p’, f =[K:F,] and the absolute ramification index e of K, i.e, the number of
positive elements in vK which are <wvp, is finite. The p-rank d of the p-valued
field K satisfies the relation d = ef.

A p-valued fiddd K of p-rank d is cadled p-adically closed if K does not admit
any proper p-valued agebraic extension of the same p-rank. It turns out by [24,
Theorem 3.11, that a p-valued field K is p-adicdly closed iff K is Hensdian and its
value group vK is a Z-group, i.e, the coarse value group vK is divisible.
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Given p and d = 1, let us consider the augmentation £ of the language £ of
valued fidds with d — 1 new constants u,, ..., u,. The class of p-valued fields of
p-rank d is axiomatizable by universal axioms in the language “ in such a way
that for any p-valued field K of p-rank d the constants u; = 1, u,,...,u,; dencte
an F,-basis of Ox/pOx. With respect to the modified language 2, every
substructure of a p-valued field of p-rank d is again a p-valued field of p-rank d.
Note also, by [24, Theorem 3.11, that the class of p-adicaly closed fields of
p-rank d is axiomatizable in € and hence in £“.

Now extend again the language £ by unary predicates P,, neN, and add to
the £@-axioms for the theory 7, , of p-adically closed fields of p-rank dthe new
defining axioms

P.(x) ©@y)xy"=1.

The basic result of Prestel and Roquette [24, Theorem 5.61, including Macintyre's
result [23] as a specia case, can be stated as follows.

Theorem 5.1. In the language ¥’ extended by unary predicates P,,neN, the
theory T, , together with the defining axioms above admits elimination of
quantifiers.

The main goal of this section is to show that Theorem 5.1 is a conseguence of
Theorem B. First of al we state an equivalent version of Theorem 5.1.

Extend the language L by unary predicates W, ,, n, k eN, and add to the
L@-theory T, , of p-adically closed fields of p-rank d the defining axioms

W, «(x) < (3y)A - xy")~'p* ¢ 0.

We show that Theorem 5.1 is equivaent with the following statement.

Theorem 5.1.a. In the language £’ extended by unary predicates W, ;,n, k eN,
the theory T, , together with the defining axioms above admits elimination of
quantifiers.

Proof of the equivalence (5.1) <« (5.1.a). (5.1)— (5.1.8): Given neN, letleN
be such that ! =2v,(n), where v,(n) is the p-adic vaue of n, i.e, n=p*»™m
with (m, p) = 1. By Newton's lemma, P,(x) <> W, ,(x) on any Hensdlian valued
field of characteristic zero and residue characteristic p; in particular we obtain
T, at Pi(x) & W, (x).

(5.1.a)— (5.1): Givenn,keN, let /eN be such that /> max(k, 2v,(n)). It
suffices to show that

d d
T, atWoi(x) < \V [P,,(E oz,u,»x) A v(l -> oziu,-) > kvp],
( N i i=1

i=1
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where S={(a;,..., a;)eZ\©,...,0):0sa<sp'~1,1<i<d}. Let K=
(K, v) be a p-adicaly closed field of p-rank d and u, = 1, u,,..., u, be the given
constants in Og defining a basis of Ok/pOk. Clearly, the u;’s define dso a
Z/p'Z-basis of Ok/p'Ox. Given a eK, let us asume Kk W,,,(a), i.e, v(l —
ab”) > kvp for some be K. As ab” € O, there exists ( a4, ..., a,) e S such that

d
v(l -> a/,-u,-ab") = |vp.
i=1

As!>2v,(n), it follows by Newton's lemma that
d
(Z aqu,a)(bc)" =1 for fome ce K,
i=1
i.e, KEP,(ZL a;u;a). On the other hand,
d d d
v(l -> cy,u,-) =v[(@ -2 az,u,-ab") - <2 af,-u,»>(1 - ab")] > kup
i=1 i=1 F=1I

snce v(ZL, ayu;)=0and I > k.
Conversely, let us assume that there exists (a,, ...,a,)e S such that

d d
v <1 -> a,-ui) >kvp and D, auab”= 1 for some be K.
i=1 i=1
Then ab” € O and
d
v(l —ab™)= v(ab"(Z au; — 1)) > kup,
i=1
ie, KEW, (a). O

As the residue rings Ok, = Ox/Mk 4, k €N, are finite with |O .| <p®**"7,
any formula about such rings is equivaent to a quantifierless formula involving
the constants u, = 1, u,, ..., u,. On the other hand, it follows by induction that
on the mixed k-structures K, an arbitrary formula is equivaent with a Boolean
combination of formulas of the ring language, involving only variables of Ok 5,

and formulas of the system GK,,C—”"—> vK involving variables of this system and
some Of the finitely many constants 6,(a) for a € Ok 2, \ (Mg /Mg 2) @nd vi(a)
for a e Og . \{0}.

Consequently, Theorem 5.1.a is an immediate consequence of Theorem B and
of the elimination of quantifiers for the structures defined as follows.

Given a finite Abelian group A, let us consider the systems (H, I, v,t) where
(H,-, 1) is an Abelian group, (I, +, <, 0) is a totally ordered Abelian group,
V:H—T is agroup epimorphism and ¢ is an element of H such that Ker v =A
and vt is the smallest positive element of I'. The class of these systems can be
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axiomatized by universal axioms in a first-order language 2, whose vocabulary
contains symbols for group operations on H and I', a predicate for the order on
I', a function symbol for the map v and constants for the elements of A, the
neutral element 0 of I" and the distinguished element ¢ of H.

Denote by %, and £,4-theory whose models are the systems (H, I, v,t) above
satisfying the supplementary condition that I" isa Z-group, i.e., I'/Zvt is divisible.

Now extend the language ¥, by unary predicates R,,n eN, and add to the
axioms for the theory <, the defining axioms

R,(x) @«(qyeH) x=y".

Proposition 5.2. Inthe language £, extended with unary predicates R,,, N eN, the
theory &, together with the defining axioms above admits elimination of
quantifiers.

Proof. Let H' = (H’, I'",v, 1), H" = (H", I'",v,t) be modds of £, and H =
(H, I, v, t) be a common £,-substructure of H', H” such that H'*NH = H" | H
for al n eN. According to [30, Theorem 13.21 we have to show that H' =, H".

Denote by T(H'/H) ={xe H’: \/,=,x" € H} the group of the torsion elements
of H' over H. As an ¥,-structure, T(H'/H) isamodel of T, since H'/T(H'/H)
is torsion free and I'"/nI"=27/nZ for dl n eN. First of al we show that
T(H'/H)=4 T(H"/H). It suffices to show that T(H'/H) is H-embeddable into
H”. For suppose that ¢:T(H'/H)— H" is an H-embedding, and let y €
T(H"/H); we have to show that y € Im(¢). Let ae H, n= 1 be such that y" = a.
AsS H” NH =H" NH, there is xeT(H'/H) such that x" = a. It follows that
(p(x)y~""=1and hence p(x)y 'e A=Ker v. ASA c H, we get y eIm(g), as
contended.

Thus it remains to show that T(H'/H) is H-embeddable into H". Since the
equation x" = awith aeH has finitely many solutions in H’ (assume x,eH’ isa
solution of the equation above; then any other solution has the form x,u with
ueA), it suffices, by a standard compactness argument (the projective limit of a
directed projective system of nonempty finite sets is nonempty), to show that any
intermediate group G between H and T(H'/H) which is finitely generated over H
can be embedded over H (as an ¥ ,-structure) into H”. Let G be such a group. As
G/H isfinite, let us consider a direct decomposition into finite cyclic groups:

G/H=C,XCy%x---xC,

Let n, be the order of C;; then n,--- n,=n:=(G:H).Let x; € G be such that x;
generates C; modulo H; then x; is of order n, modulo H and hence x/ =g, H,
1=<i=<1 By assumption there exist y,e H” such that y7 =q;for L <i=<1 The
substitution x;— y;, 1 <i =</, defines a group morphism over H, ¢ : G — H". First
note that ¢ isinjective. Indeed, let ze G be such that ¢(z) = 1. In particular,
@(z") = 1 and hence z" = @(z”) = 1 since z" ¢ H; it follows ze A = H and
z=@(z) = 1, as contended. Next let us show that ¢ is an £,-embedding, i.e,
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ve(z)= 0 for al ze G subject to vz=0. Consider such an element z; as
z"=beH andvz= 0, we get vb =0, @(2)" = b and hence v¢(z) = 0.

Thus we have shown that T(H'/H) and T(H"/H) are H-isomorphically as
L ,-structures. ldentifying T(H'/H) = T(H"/H), it suffices to show that H’ and
H" are elementarily equivalent over T(H'/H) (rather than over H). Hence after
replacing H by T(H'/H) we may assume that H is amodel of T ,. The required
fact H' =, H" is an immediate consequence of the following model completeness
result.

Proposition 5.3. The £4-theory T, is model complete, i.e, if H < G is an
R ,-embedding of models of T4, then G is an elementary extension of H.

Proof. By Robinson’s test [12, Proposition 3.171 it suffices to show for each such
embedding H — G that any primitive existential sentence with parameters from H
which holdsin G aso holdsin H.

First let us show that each primitive existential sentence with parameters from
H has the form

(Ix) p(x), where x =(xy,...,x,)

and o) ( \ Wie=a)a( A vWiw =)

<j= +1l=i=m

with W(x) = H xji, s;€Z, a;€ H.

1=i=<n

It suffices to observe that

Tihx #¥y © (vx#vy)v(l\/ y = xu) o (v(xy =)

¢ueA

v (v(yx H=v)v <1$\u/eAyx_l =u)

and
Tutx<0 & ux '=wr

So let p(x) be as above and assume G E(3x) ¢(x); let b = (b,,..., b,) e G*
be such that G k g(b). Consider the subgroup G' = H-b%-bZ---bZ of G. As
G/H is torsion free, the finitely generated subgroup G'/H isfree by [22, Chapter
1, §10, Theorem 7]; in particular, G’ has a direct decomposition G = H & G'/H.
Letc=(cy,. .., ) €G* besuchthat G =~H® L, cZ Thus each b, admits a
unique representation

k
bi':a,'l_‘[chii, 1Si$n,
j=1
with ¢;e H, a;; € Z.

Putting x,=a;IIf_, ¥, 1=<i=n, the equalities which occur in @(x) become
identities trivialy satisfied thanks to the above direct decomposition of G'. The
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inequalities which occur in @(x) become inequalities in the new variables
Y1, .. Y Of the form

k
2 By, zva, l+i<ism, *)
j=1

with B; € Z, a; e H. The system of inequalities (*) admits the solution c e G'*. By
model completeness of the theory of Z-groups [28], we obtain y,,..., y,cvH
such that L., B,v;=va;, | + 1 <i<m. Let d,,...,d,e H be such that vd; =y,
for1<sj<k, and ¢, = g, H,’;l difor 1<i=<n. Then HE @(ey, ..., e,) and hence
H k (3x) @(x), as contended. O
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