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c-Src was first identified as the cellular form of v-Src, the trans-
forming gene product of the avian tumor virus Rous sarcoma
virus (Brown and Cooper, 1996). Unlike v-Src, however, c-Src is
weakly oncogenic (Biscardi et al., 2000). The difference in path-
ogenic activity between these two proteins lies in their structure
and regulation (Brown and Cooper, 1996; Xu et al., 1999a). c-
Src is maintained in an inactive configuration by multiple intra-
molecular interactions. Mutations that capitalize on disrupting
these restrictive intramolecular interactions result in constitutive
activation, which is best demonstrated by the truncation of the
C-terminal negative regulatory domain in v-Src.

Although v-Src causes tumors in chickens, it has not been
found to be an etiological agent in human tumors. Recently, a C-
terminally truncated c-Src that exhibits constitutive catalytic
activity similar to v-Src was detected in small subsets of colon
and endometrial cancers (Irby et al., 1999; Sugimura et al.,
2000). Other studies, however, have failed to detect such muta-
tions in colon cancer patients (Wang et al., 2000; Nilbert and
Fernebro, 2000; Laghi et al., 2001), suggesting that genetic
activation of c-Src is a rare occurrence that may be restricted to
different ethnic groups.

More commonly found in colon cancer is elevated expres-
sion of wild-type (wt) c-Src. Indeed, elevated protein levels
and/or catalytic activity of c-Src have been detected in a number
of human cancers, including lung, skin, colon, breast, ovarian,
endometrial, and head and neck malignancies (reviewed in
Biscardi et al., 2000; Irby and Yeatman, 2000). Given the low
capacity of wt c-Src for cellular transformation and the paucity
of examples of mutational activation in human cancers, the
involvement of c-Src in the etiology and progression of human
cancers was doubted for many years. Recently, documentation
of its increased protein expression and/or catalytic activity and a
greater understanding of its function in cells has prompted
investigators to hypothesize that c-Src may facilitate the action
of other signaling proteins, rather than being a dominant trans-
forming agent on its own. In fact, this hypothesis has been
borne out by numerous examples.

Cooperative processes of c-Src
c-Src is a multifunctional protein involved in the regulation of a
variety of normal and oncogenic processes, including prolifera-
tion, differentiation, survival, motility, angiogenesis, and func-
tions of fully differentiated cells (reviewed in Thomas and
Brugge, 1997). To carry out these activities, c-Src interacts with
numerous cellular factors, including cell surface receptors (EGF

family, CSF-1, PDGF, and FGF receptors, as well as integrins,
cell-cell adhesion molecules, etc. [Biscardi et al., 2000; Irby and
Yeatman, 2000; Owens et al., 2000; Moro et al., 2002]), steroid
hormone receptors (Migliaccio et al., 1996, 2000;
Boonyaratanakornkit et al., 2001), components of pathways
regulated by heterotrimeric G proteins (Luttrell et al., 1999; Ma
et al., 2000), STATs (Silva et al., 2003), focal adhesion kinase
(FAK) (Kaplan et al., 1994), the adaptor proteins p130Cas
(Burnham et al., 2000) and Shc (Sato et al., 2002), and many
others. Rather than provide a comprehensive and cursory
overview of how c-Src fulfills its many potential roles, we have
chosen to focus this review on three representative partners
(effectors) of c-Src, specifically, the epidermal growth factor
receptor (EGFR) family, FAK, and steroid hormone receptors.
Each of these effectors represents a different class of proteins
and functions in unique signaling pathways for which the molec-
ular nature and biological consequences of the interactions with
c-Src have been investigated. Discussions of interactions
between c-Src and other molecules can be found in review or
research articles cited above.
c-Src and EGF receptor family members
Members of the EGFR family regulate differentiation, prolifera-
tion, survival, motility, and angiogenesis, events critical to can-
cer initiation and progression (Holbro et al., 2003). In addition to
the EGFR itself, this family includes ErbB2, ErbB3, and ErbB4.
In breast cancers, c-Src and members of the EGFR family are
overexpressed in ?70% of tumors, and in the majority of these
tumors, c-Src is co-overexpressed with at least one member of
the EGFR family (reviewed in Biscardi et al., 2000). This fre-
quency suggests that the two families of tyrosine kinases may
functionally and physically interact to promote breast cancer
development. Indeed, in model systems and in human breast
cancer tissues and cell lines that co-overexpress both c-Src and
EGFR, the biological synergy between these two tyrosine
kinases has been demonstrated (Biscardi et al., 2000).
Similarly, c-Src activity is necessary for ErbB2-mediated
anchorage-independent growth, motility, and survival (Karni et
al., 1999; Belsches-Jablonski et al., 2001; R. Ishizawar and S.
Parsons, submitted). However, the involvement of c-Src in
ErbB3- or ErbB4-regulated cell processes is much less well
understood.

Investigations into the molecular basis for the biological
interactions between c-Src and members of the EGFR family
have revealed that c-Src physically associates with activated
receptors (Maa et al., 1995; Muthuswamy and Muller, 1995;
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Belsches-Jablonski et al., 2001), becomes transiently activated,
and phosphorylates downstream targets (Muthuswamy et al.,
1994; Osherov and Levitzki, 1994) (Figure 1). One target is the
EGFR itself, which can be phosphorylated on multiple sites by
c-Src, most notably Tyr 845 (reviewed in Biscardi et al., 2000).

Tyr 845 is situated within the activation loop of the catalytic
domain of the EGFR in a position that is conserved 
among all receptor and nonreceptor tyrosine kinases.
Autophosphorylation at this conserved site on other tyrosine
kinase receptors is necessary for full catalytic and biological
activity. In contrast, phosphorylation of Tyr 845 is mediated by c-
Src, not by activated EGFR, and is not associated with modulat-
ing receptor autokinase activity or ability to activate SHC and
Erk2. Nevertheless, Tyr 845 is required for mitogenesis, as sub-
stitution with phenylalanine creates a mutant EGFR that inhibits
EGF-induced DNA synthesis. Together, these results suggest
that the Erk2 pathway is not sufficient for EGF-induced prolifer-
ation and that other effectors downstream of pY845 are
required. Indeed, several mediators of pY845 signaling have
been identified, including STAT5b, a transcription factor involved
in mitogenesis (Kloth et al., 2003), and cytochrome c oxidase
subunit II (Cox II) (Boerner et al., 2004), a mitochondrially
encoded protein that is involved in oxidative phosphorylation
and postulated to regulate cytochrome c release during apopto-
sis. Thus, pY845 appears to activate at least two distinct signal-
ing pathways, one that promotes EGF-induced cell proliferation
through STAT5b and another that enhances cell survival
through Cox II.

That phosphorylation of Tyr 845 is dependent upon the cat-
alytic activity of c-Src rather than that of the EGFR suggests
that c-Src can modulate lateral activation of the EGFR by extra-
cellular stimuli other than EGF. Indeed, multiple extracellular
factors, such as G protein-coupled receptor ligands, steroids,
cytokines, extracellular matrix (ECM) proteins, ionizing radia-
tion, ultraviolet light, and certain ions can transactivate the
EGFR (Knebel et al., 1996; Prenzel et al., 2000; Wu et al.,
2002). In many cases, this transactivation requires c-Src. For
example, c-Src is necessary for integrins to associate with and
transactivate the EGFR.This event results in phosphorylation of
EGFR at multiple tyrosines, including Tyr 845 (Moro et al.,
2002). c-Src also couples EGFR to GPCRs, as evidenced by
the ability of Src-specific pharmacological inhibitors and the
Y845F EGFR mutant to abrogate lysophosphatidic acid (LPA)-
induced mitogenesis (Biscardi et al., 2000; Prenzel et al., 2000).
Wu et al. (2002) reported that c-Src-dependent phosphorylation
of Tyr 845 on the EGFR is necessary for Zn2+ activation of Ras.
Taken together, these studies demonstrate that c-Src augments
EGFR activity by integrating EGFR with other nonrelated mem-
brane receptors and intracellular signaling molecules through
pY845 (Figure 2).

Other substrates of c-Src include clathrin and dynamin
(Wilde et al., 1999; Ahn et al., 2002), two proteins involved in
internalization of multiple types of membrane receptors (includ-
ing EGFR) (Figure 1). Clathrins assemble in a protein lattice to
form the coated pits into which ligand-bound receptors are sort-
ed and internalized. Dynamin governs separation of the endo-
cytic vesicles from the plasma membrane. Phosphorylation of
clathrin and dynamin by c-Src enhances the endosomal pool of
activated receptors that continue to signal until degraded
(Figure 1).

In addition to modulating internalization, c-Src appears to
regulate EGFR degradation. Ligand-activated EGFR is ubiquiti-
nated by Cbl, which promotes receptor endocytosis and degra-
dation (reviewed in Thien and Langdon, 2001). In this process,
c-Src facilitates the ubiquitination and proteasomal degradation
of Cbl, thereby reducing levels of Cbl and retarding EGFR
downregulation. These events promote receptor recycling back
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Figure 1. Physical and functional interactions between c-Src and the EGF
receptor

Ligand activation of the EGFR results in physical association of c-Src with
the EGFR (most likely via an SH2/pTyr interaction), transient activation of c-
Src, phosphorylation of Tyr 845 on the EGFR by c-Src, and stimulation of
mitogenic and survival pathways (see Figure 2). c-Src phosphorylation of
clathrin and dynamin also enhances receptor internalization and endoso-
mal signaling, while at the same time reducing receptor degradation by
phosphorylating the ubiquitinating enzyme, Cbl, and inducing its degra-
dation. This results in recycling of the receptor to the cell surface and
renewed rounds of signaling. Panels 1�7 represent the various steps that
are noted above, indicated on the figure, and discussed in more detail in
the text.
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to the plasma membrane and extend EGFR signaling (Bao et
al., 2003) (Figure 1).
c-Src and focal adhesion kinase
c-Src also interacts with focal adhesion kinase (FAK), a 120 kDa
tyrosine kinase that is postulated to play a key role in cancer
metastasis by modulating the formation and turnover of focal
adhesions (reviewed in Parsons, 2003). Focal adhesions are
dynamic intracellular structures that link the extracellular matrix
(ECM) to the actin cytoskeleton through cell surface integrins
(reviewed in Burridge and Chrzanowska-Wodnicka, 1996). As a
component of focal adhesions, FAK interacts with multiple cellu-
lar proteins to translate integrin signaling into cell spreading,
motility, and invasion. Exploitation of FAK activity in human
tumors occurs through elevated expression, a situation that cor-
relates with increased cancer cell motility, invasiveness, and
proliferation (Owens et al., 1995; Parsons, 2003).

FAK and c-Src have been shown to form a transient, active
complex following integrin engagement by ECM proteins or lig-
and stimulation of the EGF or PDGF receptors. These cell sur-
face molecules interact with the N-terminal portion of FAK,
which results in the autophosphorylation of FAK at Tyr 397.
Multiple SH2-containing signaling molecules, such as c-Src, 85
kDa subunit of phosphoinositide-3-kinase, phospholipase Cγ,
and Grb7, are recruited to pTyr 397 (reviewed in Parsons, 2003;
Schlaepfer and Mitra, 2004). The association between c-Src
and FAK results in activation of c-Src and the phosphorylation
of FAK on Tyr 576, 577, 861, and 925, which enhances FAK
kinase activity and generation of docking sites for Grb2 and
other signaling proteins. The FAK/c-Src complex also phospho-
rylates the cytoskeletal adaptor proteins paxillin and Cas.
Together with FAK, these molecules recruit and activate regula-
tors of ERK, Jun kinase (JNK), and Rho signaling pathways,
which modulate multiple gene expression events of both tran-
scription factors and target proteins involved in cell motility and
invasion (reviewed in Schlaepfer and Mitra, 2004). That the
interplay between c-Src and FAK is important to these events is

evidenced by results of Src and FAK pharmacological inhibitor
studies and homozygous deletion and rescue experiments
(Parsons, 2003; Schlaepfer and Mitra, 2004).
c-Src and sex steroid hormone receptors
Like peptide growth factors, sex steroid hormones, such as
estrogen, progesterone, and androgen, influence a plethora of
cellular functions, including mitogenesis, survival, and differen-
tiation, and are known to be important for breast and prostate
cancer progression. Receptors for these hormones are well rec-
ognized as ligand-dependent transcriptional activators that
require hours to days for their effects to be manifest
(Mangelsdorf et al., 1995). However, many recent reports
describe rapid effects (within seconds to minutes) of these hor-
mones on cell membrane/cytoplasmic signal transduction path-
ways that do not require changes in gene transcription or
protein synthesis. For example, estrogen, progesterone, and
androgen can stimulate the c-Src/p21ras/ERK pathway in
breast and prostate cancer cells, respectively (Migliaccio et al.,
1996, 1998, 2000). Considerable confusion remains, however,
regarding the details of this activation and whether the pathway
mediates steroid receptor-mediated cell proliferation. One
group reports that progesterone activation of the ERK pathway
via c-Src requires direct interaction of the progesterone recep-
tor (PR) with the estrogen receptor (ER) (Ballare et al., 2003),
while another group provides evidence that the PR interacts
directly with c-Src (Boonyaratanakornkit et al., 2001). The latter
findings are supported by an earlier study in which elevated c-
Src activity correlated with the presence of PR in human breast
cancer tissue but not with the presence of ER (Lehrer et al.,
1989).That activated c-Src can phosphorylate the ER has been
reported numerous times, but the functional significance of this
phosphorylation to breast cancer progression remains uncer-
tain (Arnold et al., 1997). Another report suggests that estrogen
activation of the c-Src/ERK pathway is dependent upon the
GPCR homolog, GPR30, which is required for transactivation of
the EGF receptor and stimulation of downstream signaling cas-
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Figure 2. c-Src regulates biological processes that are critical for oncogenesis

As described in the text, c-Src regulates intracellular pathways that control proliferation, survival, cell-cell adhesion, migration, and angiogenesis. Some of
these pathways utilize the EGF receptor and a specific site on the receptor that is phosphorylated by c-Src, i.e., Tyr 845. Others include proteins that regulate
focal adhesion dynamics (FAK) and hormone-regulated events (sex steroid hormone receptors).
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cades through release of HB-EGF (Filardo et al., 2000). Finally,
a scaffold protein (MNAR—modulator of nongenomic activity of
ER) has been found to physically bridge ER and c-Src in a
trimeric complex, resulting in activation of c-Src and enhanced
ER transcription (Wong et al., 2002). While no one model can
accommodate all the data, together, these studies suggest that
steroid hormone receptors exist in multiprotein complexes that
include c-Src, and that these complexes may play critical roles
in the development of sex hormone-responsive cancers.
Assessment of the requirement of the c-Src/steroid receptor
pathways in cancer pathology is currently an active topic of
investigation.

c-Src as a chemotherapeutic target
Because c-Src is a critical component of so many different
processes that promote cancer progression, it is becoming rec-
ognized as a valid chemotherapeutic target. Strategies to inhibit
c-Src include reducing its protein-protein interactions, protein
stability, and catalytic activity. Within the first category, several
small-molecule nonkinase inhibitors, such as AP22408,
AP22161, and UCS15A, have been developed. AP22408 was
designed to mimic the pTyr structure of binding proteins in com-
plex with the SH2 domain of c-Src (Shakespeare et al., 2000).
AP22408 exhibits an osteoclast-selective antibone resorptive
activity, suggesting that SH2 domain inhibitors may be useful
agents for the treatment of bone metastases (such as those
found in breast and prostate cancers) and chemotherapy-
induced osteoporosis. UCS15A, which disrupts SH3 domain-
mediated protein-protein interactions (Sharma et al., 2001),
blocks the interaction of the SH3 domain of c-Src to multiple pro-
teins, including Sam68, Grb2, cortactin, and PLC-γ (Oneyama et
al., 2002), suggesting that this inhibitor can target multiple path-
ways regulated by the c-Src SH3 domain. While inhibitors of c-
Src protein-protein interactions hold promise for the future, their
effectiveness in cancer cells has yet to be tested.

Triggering protein instability or preventing maturation of
newly synthesized protein is another approach to diminishing c-
Src activity. The chaperone Hsp90 guides the maturation of c-
Src and other oncoproteins to a fully functional conformation
and intracellular localization (Xu et al., 1999b). The ansamycin
class of drugs disrupts association of Hsp90 with c-Src and
shows promising, specific inhibition of cancer cells in Phase I
trials (Neckers, 2002), suggesting that disruption of the matura-
tion process of critical oncoproteins, including c-Src, may be an
effective antitumor strategy.

During the maturation process, c-Src is posttranslationally
modified at its N terminus by addition of a myristoyl moiety
(Resh, 1994). This modification directs c-Src to cellular mem-
branes and is required for the functional activity of the protein
(Wilson et al., 1989). Interestingly, several colon cancer cell
lines and gallbladder tumors exhibit elevated N-myristoyltrans-
ferase levels that correlate with poor prognosis (Rajala et al.,
2000), suggesting that targeting the enzyme that mediates
myristoylation may be another mechanism of inhibiting c-Src
and other myristoylated signaling proteins involved in cancer
progression.

ATP analogs, such as tyrophostins and pyrimidine com-
pounds, directly inhibit the tyrosine kinase activity of c-Src
and/or related kinases (Altmann et al., 2002). Two well-recog-
nized agents among this class are STI571 (Imatinib/Gleevec),
the BCR-Abl/c-kit inhibitor (Druker and Lydon, 2000), and
ZD1839 (Gefitinib/Iressa), an EGFR inhibitor (Wakeling et al.,

2002). Surprisingly, in a small subset of non-small cell lung can-
cers, specific somatic mutations in the ATP binding pocket of
EGFR have been found to confer not only a heightened aggres-
siveness to the disease but also greater sensitivity to ZD1839
inhibition (Paez et al., 2004; Lynch et al., 2004). These results
make a strong argument for the design and use of highly specif-
ic inhibitors. Also in support of this approach is the idea that
specific inhibitors of c-Src need to be developed that will avoid
the generalized toxicity brought about by inhibiting other Src
family members and their critical functions in normal cells. In
contrast to these notions is the finding that resistance to STI571
(due to mutations in the catalytic domain of BCR-Abl) (Shah
and Sawyers, 2003) can be overcome by the use of broad-spec-
trum Src family inhibitors (Shah et al., 2004). Thus, arguments
can be made for both high- and low-specificity inhibitors, sug-
gesting that trials are necessary in each case to assess their
ultimate clinical effectiveness and appropriate use.

Because c-Src and its family members are critical media-
tors of multiple signaling pathways that regulate all stages of
cancer progression (from initiation to metastasis) in multiple cell
types, one can envision the use of c-Src inhibitors in a wide
range of malignancies at all stages of disease. Their use as sin-
gle agents or in combination with other targeted therapies, stan-
dard chemotherapies, or radiation may dictate their ultimate
effectiveness and whether they function as cytostatic or cytolyt-
ic agents. In any event, there is great hope that the promising
effects of some of the c-Src inhibitors in model systems will
translate into greater benefits for patients undergoing cancer
therapy.
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