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C.G. Panagiotopoulos a, V. Mantič a,⇑, T. Roubíček b,c

a Group of Elasticity and Strength of Materials, Department of Continuum Mechanics School of Engineering, University of Seville, Camino de los Descubrimientos s/n,
ES-41092 Sevilla, Spain
b Mathematical Institute, Charles University, Sokolovská 83, CZ-18675 Praha 8, Czech Republic
c Institute of Thermomechanics of the ASCR, Dolejškova 5, CZ-18200 Praha 8, Czech Republic
a r t i c l e i n f o

Article history:
Received 7 August 2013
Received in revised form 8 February 2014
Available online 28 February 2014

Keywords:
Boundary element method
Implicit time discretisation
Quasistatic linear visco-elasticity
Unilateral contact
Kelvin–Voigt rheology
Maxwell rheology
Standard linear solids
Jeffreys rheology
Burgers rheology
a b s t r a c t

A simple yet efficient procedure to solve quasistatic problems of special linear visco-elastic solids at small
strains with equal rheological response in all tensorial components, utilizing boundary element method
(BEM), is introduced. This procedure is based on the implicit discretisation in time (the so-called Rothe
method) combined with a simple ‘‘algebraic’’ transformation of variables, leading to a numerically stable
procedure (proved explicitly by discrete energy estimates), which can be easily implemented in a BEM
code to solve initial-boundary value visco-elastic problems by using the Kelvin elastostatic fundamental
solution only. It is worth mentioning that no inverse Laplace transform is required here. The formulation
is straightforward for both 2D and 3D problems involving unilateral frictionless contact. Although the
focus is to the simplest Kelvin–Voigt rheology, a generalization to Maxwell, Boltzmann, Jeffreys, and
Burgers rheologies is proposed, discussed, and implemented in the BEM code too. A few 2D and 3D
initial-boundary value problems, one of them with unilateral frictionless contact, are solved numerically.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

A large number of engineering and (e.g. geo-) physical
applications consider materials that exhibit visco-elastic behavior.
A typical example of such a behavior is the mechanical response
of polymers and polymer-matrix composites, or rocks undergoing
aseismic slip, etc. Visco-elasticity accounts for the dependence of
stresses and strains on time, and response of real visco-elastic solids
or structures is usually analyzed numerically by the finite or
boundary element methods (FEM or BEM). When inertial effects
are neglected, usually because of sufficiently slow external loading,
the model is addressed as quasistatic. The quasistatic linear visco-
elasticity theory provides a usable engineering approximation for
many applications in polymer and composites engineering, among
others. There are several models describing visco-elastic behavior
of materials obtained by a generalization of simple 1D models to
2D or 3D ones. One of these well-known models, often adopted in
designing procedures, is the Kelvin–Voigt model.

There are four main approaches to quasistatic linear visco-elastic
analysis by BEM. The first and most commonly applied approach
uses the correspondence principle to establish an associated elastic
problem solved in the Laplace transform domain. Then, the solu-
tion in time domain is recovered by a numerical inversion (Rizzo
and Shippy, 1971; Manolis and Beskos, 1981; Kusama and Mitsui,
1982; Sládek et al., 1984; Carini and Gioda, 1986; Chen and Hwu,
2011). The second approach works directly in the time domain,
however, it requires a time dependent fundamental solution (Lee
and Westmann, 1995; Cezario et al., 2011; Zhu et al., 2011). The
third, a kind of mixed, approach also solves the problem in time
domain, but uses the Laplace transformed fundamental solutions
with a convolution quadrature leading to a time stepping proce-
dure without the knowledge of the time dependent fundamental
solution (Schanz, 1999; Schanz et al., 2005; Syngellakis and Wu,
2004). The fourth, a kind of direct, approach which utilizes the
Kelvin elastostatic fundamental solution was introduced by
Mesquita et al. (2001) and Mesquita and Coda (2002) for both
Kelvin–Voigt and Boltzmann visco-elastic models. The Somigliana
displacement and stress identities are rewritten to obtain visco-
elastic boundary-integral-representations (BIRs) for these models.
After the BEM discretisation of these BIRs, a finite difference
approximation of velocities leads to a time marching scheme. This
approach was later applied to the problem of circular holes and
elastic inclusions in a visco-elastic plane (Huang et al., 2005a,b).
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A brief presentation of several BEM procedures for problems of vis-
co-elasticity may be found in Marques and Creus (2012).

The novelty of the present approach consists in a particular
application of the Rothe method (i.e. the time discretisation by
the implicit Euler formula, cf. e.g. Roubíček, 2013a) to the govern-
ing partial differential equations (PDE), where after this time dis-
cretisation, a suitable variable transform is carried out to convert
it in each time step to an auxiliary linear elastostatic problem with
proper boundary conditions. Once this linear elastostatic problem
is solved the actual displacements, stresses and strains of the vis-
co-elastic problem in this time step are recovered and used in
the next step, an efficient recursive procedure being obtained in
this way. For the sake of simplicity of explanation, the main steps
of the procedure proposed are first explained for the simple Kel-
vin–Voigt model, and then briefly generalized to other basic linear
visco-elastic rheologies. The present procedure can be imple-
mented in any elastostatic FEM or BEM code. The present work is
based on the collocation BEM formulation due to its advantages
as no domain variables appear in the solution of the problem. Addi-
tionally the stability of the present time discretisation can be
established. Although there are evident similarities with the previ-
ous work by Mesquita and Coda, the present theoretical formula-
tion is much straightforward, showing in a more transparent way
that any linear elastostatic BEM code can be applied to a linear vis-
co-elastic analysis requiring just minor modifications.

Under the above mentioned assumptions, the purpose of this
work is to present and numerically verify a simple yet efficient
methodology for BEM analysis of quasistatic visco-elastic prob-
lems, initially scrutinizing the Kelvin–Voigt material in Sections 2
and 3 and later, in Section 4, further extended to other models usu-
ally found in engineering or physical applications. The approach
may be considered as a time domain one, where no special time-
depended fundamental solution, neither domain integration, is
needed. Another important engineering problem treated in this
work is a contact of visco-elastic bodies (Graham, 1965).

2. The mixed unilateral initial-boundary-value problem for
Kelvin–Voigt visco-elastic body

The following boundary-value problem on a domain X � Rd;

d ¼ 2;3, is used in the subsequent developments, where also the
standard model of the frictionless unilateral Signorini contact is
considered, see Fig. 1,
Fig. 1. 2D schematic illustration of the geometry and notation of the boundary-
value problems considered. In the bulk, a visco-elastic rheology from Fig. 2 is
schematically depicted.
divC�þ f ¼ 0 with � ¼ �ðu; _uÞ ¼ eðuþ v _uÞ on X; ð1aÞ
u ¼ w on CD; ð1bÞ
tð�Þ ¼ C�ð ÞjC~n ¼ g on CN; ð1cÞ
u �~n 6 0; tnð�Þ � 0; ðu �~nÞtnð�Þ ¼ 0; ttð�Þ ¼ 0 on CC; ð1dÞ

where u is the displacement and e ¼ eðuÞ ¼ 1
2 ðruÞ> þ 1

2ru the
small-strain tensor, and C is the fourth order tensor of elastic
moduli, while v > 0 a given relaxation time. Furthermore, ~n ¼~nð~xÞ
is the unit outward normal to C ¼ @X at x; tnð�Þ ¼ tð�Þ �~n, and
ttð�Þ ¼ tð�Þ � tnð�Þ~n. It is straightforward to generalize the above
problem formulation and all the results below to several (visco-)
elastic solids in contact with a non-negative gap defined at a possi-
ble contact zone CC (see Section 5.3). Actually, pertinent indications
in this sense will be given at some places below. We further
consider the initial-value problem for (1a)–(1d) for time t > 0 by
prescribing the initial condition at t ¼ 0

uð0Þ ¼ u0: ð1eÞ

The mechanical 1D analog of the above model is shown in Fig. 2.
According to this figure, since the two components of the model
are arranged in parallel, the strains in each component are
identical and equal to eðuÞ, while for the stress it holds,

r ¼ CeðuÞ þ vCeð _uÞ; ð2Þ

where the actual (called also total) stress field is defined as the sum
of the elastic and viscous part. The Kelvin–Voigt model is known to
be very effective for predicting creep, but less at describing the
relaxation behavior. For this reason other advanced and more com-
plex rheological models exploiting auxiliary internal parameters
have been defined and used. Eliminating these internal parameters
leads to higher order time derivatives involved in the model,
cf. Section 4.

3. Discretisation in time and space

We perform the discretisation of the initial-boundary value
problem (1) by an implicit formula in time and by the BEM in
space.

3.1. Time discretisation

Using an equidistant partition of the time interval ½0; T� with a
time step s > 0 such that T=s 2 N, we consider:

divC�k
s þ f k

s ¼ 0 with �k
s ¼ e uk

s þ vðuk
s � uk�1

s Þ=s
� �

on X; ð3aÞ
uk

s ¼ wk
s on CD; ð3bÞ

tð�k
sÞ ¼ C�k

s
� �

jC~n ¼ gk
s on CN; ð3cÞ

uk
s �~n 6 0; tnð�k

sÞ � 0; ðuk
s �~nÞtnð�k

sÞ ¼ 0;

ttð�k
sÞ ¼ 0 on CC; ð3dÞ

with wk
s ¼ wðksÞ; f k

s ¼ f ðksÞ and gk
s ¼ gðksÞ, and proceed recursively

for k ¼ 1; . . . ; T=s with starting for k ¼ 1 from

u0
s ¼ u0: ð3eÞ
Fig. 2. Mechanical analog of the Kelvin–Voigt model.
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This implicit time discretisation is numerically stable in the
sense that the discrete solution uk

s stays bounded if s! 0 in a suit-
able norm provided the data u0; f , and g are qualified appropriately.
More specifically, this can be seen from the discrete variant (as an
upper inequality) of the continuous energy-conservation equality
(30), introduced and discussed in Appendix, i.e.

Eðuk
sÞ þ

Xk

l¼1

Z
X
vCe

ul
s � ul�1

s
s

� �
: e

ul
s � ul�1

s
s

� �
dx 6 Eðu0Þ

þ
Xk

l¼1

Z
X

f l
s �

ul
s � ul�1

s
s

dxþ
Z

CN

gl
s �

ul
s � ul�1

s
s

dS
� �

: ð4Þ

The inequality in (4) rely on convexity of the stored energy E.

3.2. Transform of the visco-elastic to an auxiliary elastic-like problem

BEM standardly uses the so-called boundary integral operators
which are explicitly known in specific static cases, here for the
homogeneous linear elastic material which we consider in what
follows. Yet, we have to calculate visco-elastic modification and
here we benefit from choosing the ansatz of the tensor of viscous
moduli as simply proportional to the elastic moduli, i.e. vC. There-
fore we can use the BEM with the same boundary integral opera-
tors as in the static case utilizing a transformation originally
proposed in Roubíček (2013b) and numerically implemented in
Roubíček et al. (2013), by defining a new auxiliary variable, in view
of (1a), as

vk
s ¼ uk

s þ vuk
s � uk�1

s
s

: ð5Þ

In terms of this new variable, one obviously has the Kelvin–Voigt
strain �k

s ¼ eðvk
sÞ, the velocity ðuk

s � uk�1
s Þ=s ¼ ðvk

s � uk�1
s Þ=ðsþ vÞ,

and the displacement recovered by

uk
s ¼ ðsvk

s þ vuk�1
s Þ

�
ðsþ vÞ; ð6Þ

which when used in (3a)–(3c), assuming CC ¼ ;, leads to the
transformed time discretized problem

divCeðvk
sÞ þ f k

s ¼ 0 on X; ð7aÞ

vk
s ¼

vþ s
s

wk
s �

v
s

wk�1
s on CD; ð7bÞ

tðeðvk
sÞÞ ¼ Ceðvk

sÞ
� �

jC~n ¼ gk
s on CN; ð7cÞ

with uk�1
s ¼ svk�1

s þ vuk�2
s

� ��
ðsþ vÞ, and proceeding recursively for

k ¼ 1; . . . T=s 2 N.
It might be easily observed from (7), that in terms of the auxil-

iary variable vk
s, which gives the equilibrium stress, the problem

has the standard form of a linear elastic one and therefore could
be numerically solved using any standard numerical procedure.
However, BEM seems to be a natural choice, especially if we con-
sider the case of zero body forces f ¼ 0, which we adopt for the rest
of this work.

What is actually computed by BEM is the auxiliary field vk
s,

while we update the elastic field uk
s by (6), keeping in mind that

uk�1
s is already known value at time step k. It is also important to

notice that transformation (5) appears also in the boundary condi-
tion on CD, see (7b), while tractions on CN are equal to tractions in
the original visco-elastic problem, as shown in (7c).

Taking into account the above explanation, the Somigliana dis-
placement identity for the auxiliary variable vk can be written as

CðnÞvk
sðnÞ þ

Z
--

C
vk

sðxÞTðx; nÞdSx ¼
Z

C
tðeðvk

sÞÞðxÞUðx; nÞdSx; ð8Þ

where, the weakly and strongly singular integral kernels Uðx; nÞ and
Tðx; nÞ are the usual Kelvin fundamental solutions in displacements
and tractions (two-point tensor fields) (París and Cañas, 1997), CðnÞ
is the coefficient tensor of the free term (Mantič, 1993), and the first
integral represents the Cauchy principal value.

3.3. Extension to multi-domain problems

In problems of several bodies, where some of them may be vis-
co-elastic or merely elastic, we need to consider compatibility of
displacements and equilibrium of tractions at common interfaces.
Special attention is needed since, while we solve the BEM system
with respect to the auxiliary field vk

s, compatibility of displacement
has to be considered for the displacement field uk

s. Thus, at the
interface between two visco-elastic solids X1 and X2 with relaxa-
tion times v1 and v2, respectively, the compatibility of displace-
ments writes as

uk;1
s ¼ uk;2

s ) s
sþ v1

vk;1
s þ

v1

sþ v1
uk�1;1

s

¼ s
sþ v2

vk;2
s þ

v2

sþ v2
uk�1;2

s ; ð9Þ

where a variable qk;i
s refers to the domain Xi at the kth time step. For

the case of elastic solids, where v ¼ 0, Eq. (9) cast to the usual equa-
tion considered in a BEM formulation, that is uk;1

s ¼ uk;2
s reduces to

vk;1
s ¼ vk;2

s , as in this case the auxiliary field vk
s obviously coincides

with the displacement field uk
s. Equilibrium of tractions is consid-

ered for the total stress field defined in (2) and consequently for
the tractions t that correspond to the auxiliary field vk

s and these
tractions are directly computed in the BEM formulation,

t1ðeðvk
sÞÞ ¼ �t2ðeðvk

sÞÞ: ð10Þ
3.4. Extension to contact problems utilizing the energetic approach in
BEM

Visco-elastic frictionless contact problems are numerically han-
dled usually by utilizing FEM, cf. (Chen et al., 1993; Barboteu et al.,
2002, 2003; Fernández et al., 2003; Fernández and Sofonea, 2004;
Mahmoud et al., 2007). To our best knowledge, except for the spe-
cific case of rolling contact (Kong and Wang, 1995), it is the first
time that a BEM formulation for contact problems of visco-elastic
solids is presented and fully explored, although it has been also
used in Roubíček et al. (2013) and originally proposed in Roubíček
(2013b). In order to solve the unilateral and/or adhesive contact
problem of an assemblage of solids under (possible) contact to
each other and/or some outer rigid obstacles, we can follow the
general framework of energetic approaches to contact problems
using BEM, as it is introduced in Panagiotopoulos et al. (2013a).
Under this framework, the minimization of the potential energy,
defined here in terms of the auxiliary variable vk

s from (5),

Gðks; vk
sÞ ¼

Z
X

1
2

Ceðvk
sÞ : eðvk

sÞdx�
Z

CN

gk
s � vk

sdS; ð11Þ

is required, assuming (7b). The same procedure has also been
utilized in Roubíček et al. (2013), however without a detailed
presentation and numerical testing of the BEM formulation for
visco-elastic problems.

Here we assume a non-empty CC and write the discretized
condition (3d) in the form

vk
s �~n6�

v
s

uk�1
s �~n; tn e vk

s
� �� �

�0; vk
sþ

v
s

uk�1
s

� �
�~n

� �
tnðeðvk

sÞÞ¼0;

tt e vk
s

� �� �
¼0 on CC; ð12Þ

which completes the system of Eqs. (7). Following the energetic
approach in BEM, we obtain a convex minimization problem in
terms of the auxiliary field vk

s, in particular we have to solve the
quadratic-programming problem:
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minimize Gðks; vk
sÞ

subject to vk
s �~n 6 �

v
s uk�1

s �~n on CC

vk
s ¼

vþs
s wk

s �
v
s wk�1

s on CD

9>=
>; ð13Þ

with G from (11).
Since the auxiliary variable vk

s gives the equilibrium stress, in
contrast to the elastic field uk

s, the domain integral appearing in
G, under the assumption of zero body forces, can be expressed as
a boundary one through the so-called Clapeyron theorem, i.e.Z

X

1
2

Ce vk
s

� �
: e vk

s
� �

dx ¼ 1
2

Z
C

t e vk
s

� �� �
� vk

sdx; ð14Þ

and finally the stored energy in terms of vk
s that we have to mini-

mize, is given in the boundary form as

Gðks; vk
sÞ ¼

1
2

Z
C

tðeðvk
sÞÞ � vk

sdx�
Z

CN

gk
s � vk

sdS: ð15Þ

Then, the standard techniques presented in Panagiotopoulos et al.
(2013a) can be used to numerically handle the above minimization
problem with G from (15) by utilizing BEM. It is worth mentioning
that in the present implementation of this quadratic-programming
problem only the part of the auxiliary field defined on CC represents
active variables in the minimization procedure (Panagiotopoulos
et al., 2013a,b).

We sometimes are interested in visualizing the spatial distribu-
tion of the accumulated dissipated energy due to viscosity, that is
the term

R t
0 vCeð _uÞ : eð _uÞdt in (30). This is meaningful for the vast

majority of visco-elastic problems, and not only for contact prob-
lems we study in this section. It is a standard procedure in BEM,
that after solving the boundary value problem we compute dis-
placements as well as stresses and strains in the whole domain
by using the boundary values of displacements and tractions (París
and Cañas, 1997). Having computed the stress and strain tensors in
the required internal points for any time tk, we may easily compute
the above time integral for any time by using the previous time
history. Similarly, the stored elastic energy can be computed at
any time.
4. Other linear visco-elastic rheologies

The above method can be modified for other rheologies assum-
ing again like in (2) that all the viscous and the elastic responses
have the same tensorial character and thus are fully described just
by only one tensor and several scalar constants. A generalized lin-
ear visco-elastic model, consisting of an assemblage of the Maxwell
and Kelvin–Voigt elements together with free springs and dampers
in series and/or parallel, might be represented by the following
constitutive stress–strain relation in the form of a differential
equation (Brinson and Brinson, 2010):

Xn

k¼0

nk
dkr
dtk
¼ Ce

Xm

k¼0

vk
dku

dtk

 !
: ð16Þ

Obviously, certain restrictions on coefficients vk and nk exist, see
a detailed discussion in Flügge (1975).

Let us briefly present only a few special cases for which all the
manipulation can lucidly be demonstrated and which simulta-
neously cover rheological models standardly used in most applica-
tions. Nevertheless, we could routinely continue for more complex
rheologies with higher-order time derivatives on both sides, but
the algebraic manipulation would become complicated and the
requirement for an equal-tensorial character more restrictive. For
simplicity, in this section we do not consider the unilateral contact,
i.e. CC ¼ ;, and, like before, we neglect inertial and external bulk
forces. We further restrict ourselves, for implementation and
notational purposes, to the case of the second-order stress–strain
relation in (16), i.e. n ¼ m ¼ 2, which is given in the following form:

n2 €rþ n1 _rþ n0r ¼ Ceðv2€uþ v1 _uþ v0uÞ; ð17Þ

requiring some initial conditions for displacements and stresses and
their time derivatives of at most of the first order, depending on the
values of parameters vk and nk. The general form of equations that
governs the system is,

divr ¼ 0 on X; ð18aÞ
u ¼ w on CD; ð18bÞ
r~n ¼ g on CN: ð18cÞ

The implicit time discretisation of Eq. (17) assuming a fixed
time step s, leads to

n2
rk

s � 2rk�1
s þ rk�2

s
s2 þ n1

rk
s � rk�1

s
s

þ n0rk
s

¼ Ce v2
uk

s � 2uk�1
s þ uk�2

s
s2 þ v1

uk
s � uk�1

s
s

þ v0uk
s

� �
ð19Þ

and, after an elementary algebra, the time-discrete variant of (17)
and (18) reads as

divrk
s ¼ 0 with rk

s ¼ Ce
v2 þ sv1 þv0s2

n2 þ sn1 þ n0s2 uk
s �

2v2 þ sv1

n2 þ sn1 þ n0s2 uk�1
s

�

þ v2

n2 þ sn1 þ n0s2 uk�2
s

�
þ 2n2 þ sn1

n2 þ sn1 þ n0s2 rk�1
s

� n2

n2 þ sn1 þ n0s2 rk�2
s on X; ð20Þ

completed by the boundary conditions uk
s ¼ wk

s on CD and rk
s~n ¼ gk

s
on CN.

The implementation of BEM relies on divrk�1
s ¼ 0 and

divrk�2
s ¼ 0, and furthermore, likewise in (5), on the definition of

an auxiliary field of the general form

vk
s ¼

v2 þ sv1 þ v0s2

n2 þ sn1 þ n0s2 uk
s �

2v2 þ sv1

n2 þ sn1 þ n0s2 uk�1
s

þ v2

n2 þ sn1 þ n0s2 uk�2
s ; ð21Þ

giving

rk
s ¼ Ceðvk

sÞ þ
2n2 þ sn1

n2 þ sn1 þ n0s2 rk�1
s

� n2

n2 þ sn1 þ n0s2 rk�2
s on X: ð22Þ

The transformed system of equations that we actually solve
using BEM has the form

divCeðvk
sÞ ¼ 0 on X; ð23aÞ
vk
s ¼

v2 þ sv1 þ v0s2

n2 þ sn1 þ n0s2 wk
s �

2v2 þ sv1

n2 þ sn1 þ n0s2 wk�1
s

þ v2

n2 þ sn1 þ n0s2 wk�2
s on CD; ð23bÞ
tðeðvk
sÞÞ ¼ Ceðvk

sÞ
� �

jC~n ¼ gk
s �

2n2 þ n1s
n2 þ n1sþ n0s2 gk�1

s

þ n2

n2 þ n1sþ n0s2 gk�2
s on CN: ð23cÞ

Solving the above system with BEM we obtain the pair vk
s and

tðeðvk
sÞÞ, for each time step k. Then, we may also compute rk

s, by
evaluating Ceðvk

sÞ in X by standard BIR (París and Cañas, 1997)
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and adding rk�1 and rk�2 according to (22). The reconstruction of
the physical displacement field is carried out by solving Eq. (21)
for uk

s,

uk
s ¼

n2 þ sn1 þ n0s2

v2 þ sv1 þ v0s2 vk
s þ

2v2 þ sv1

v2 þ sv1 þ v0s2 uk�1
s

� v2

v2 þ sv1 þ v0s2 uk�2
s ; ð24Þ

and, following (22), the total traction (physical traction) field
pk

s ¼ rk
s~n is reconstructed by

pk
s ¼ t e vk

s
� �� �

þ 2n2 þ n1s
n2 þ n1sþ n0s2 pk�1

s � n2

n2 þ n1sþ n0s2 pk�2
s : ð25Þ

All the necessary initial values, appearing above for discrete
time lower than zero, are assumed to be equal to zero. Calculation
of characteristic physical parameters is just a post-processing pro-
cedure and depends on each specific model. E.g., elastic stresses of
the Kelvin–Voigt model can be obtained recursively by applying
the elastic stress operator Ceð�Þ to (6), which is a particularization
of (24). Some of the models that could be represented by the sec-
ond order differential equation (17) are listed in Table 1; see also
(Brinson and Brinson, 2010). It is worth mentioning that the sys-
tem of equations (23) could obviously be solved by any other
appropriate numerical method (e.g., FEM as in Mesquita et al.
(2001)), and that more complicated visco-elastic models of a high-
er-order, i.e. m > 2 or n > 2 in (16), could be accomplished within
the current framework with the only difference that higher order
derivatives will appear.

Within the class of constitutive relations defined by (17), we
will consider several selected rheologies shown in Table 1. The dis-
crete energy estimates like (4) can be derived for each of them after
suitable, sometimes rather complicated manipulation (not per-
formed in this article, however).
Table 1
Some models that could be represented by the constitutive differential Eq. (17) with
pertinent coefficients vk and nk , present (– 0) indicated by U or absent (¼ 0) by �.

Fig. 3. Geometry of the problem
5. Numerical examples

The above introduced framework has been implemented in an
open BEM Java code (Panagiotopoulos, 2009) with capabilities of
2D and 3D elastostatic analysis, among others. This code is sup-
plied with all the necessary ‘‘modules’’ for the energetic approach
in BEM used for contact problems, and has also been employed in
several related works of the authors (Roubíček et al., 2013;
Panagiotopoulos et al., 2013a,b).

5.1. Visco-elastic creep behavior

This first example might be seen as a ‘‘benchmark’’, since it is
one of the most frequent examples met in the literature in order
to compare numerical to analytical solutions of visco-elasticity
(e.g. in Mesquita and Coda (2002)).

Fig. 3 depicts the geometry and boundary conditions of the
problem together with a physical interpretation of the visco-
elastic material. The physical properties and the geometry of
the problem are given in Table 2, where for the first variant of
the problem we assume a Kelvin–Voigt material with viscosity
l1, without the spring aC and the damper l2C depicted in
Fig. 3. The uniform BEM mesh for this problem has 180 linear
elements. Two time steps have been used, a coarse and a fine
one, sc = 10 (days) and sf = 1 (day) respectively, in order to
observe numerically the accuracy of the time integration scheme.
Prescribed tractions, applied on the right-hand side of the domain
for 0 < t � tr , have normal and tangential components pn = 5
(N/mm2) and pt = 0, respectively. The total time of analysis is
T = 800 (days). The external loading is removed at time tr = 400 (days),
i.e. after this time pn ¼ 0.

Computed displacements are plotted in time in Fig. 4 together
with the analytic solution, which can be easily deduced for this
simple problem. Both numerical solutions for a coarse and a fine
time step, are plotted. Notice that the fine-time-step solution is
not shown in the plot for all time steps but only for those of
the coarse partition of the time interval. An excellent agreement
of the fine-time-step solution with the analytic one is observed,
the coarse-time-step solution being also very good. Fig. 5 shows
the evolution in time of the total stresses at the geometric center
of the solid. Recall that for the present case of the Kelvin–Voigt
model, the total stress field, rk

s ¼ Ceðvk
sÞ, corresponds directly to

the auxiliary field vk
s, while the elastic stress field, Ceðuk

sÞ, corre-
sponds to the uk

s field. Then, the viscous stresses can be computed
as the difference of the total minus elastic stresses.
and physical interpretation.

Table 2
Viscoelastic and geometrical properties of the models
used in examples of Section 5.1.

L (mm) 800
h (mm) 100

l1 (days) 45.454545
E (kN/mm2) 11
m 0.0



Fig. 4. Displacement for the Kelvin–Voigt material, fine time partition solution shown here with one time point per ten steps.

Fig. 5. Stress rxx , for the Kelvin–Voigt material, at the centroid of the solid with one time point shown per ten steps, which means that only 80 time points are plotted, instead
of 800 that actually have been calculated.

Fig. 6. Deformed configuration, for the Kelvin–Voigt material, for the case of
vertical loading, at time t ¼ T=2.
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In the second variant of this problem, the prescribed tractions
on the right-hand side have components pn = 0 and pt = 5 (N/
mm2), with the loading applied from the time ti ¼ 80 (days) to
tr ¼ 533:33 (days), while T ¼ 800 (days). Numerical results are ob-
tained using time step s=1 (day). In this case we show the spatial
distribution of the dissipated energy density due to the viscosity
over the time interval ½0; T� for the Kelvin–Voigt model, and com-
pare the kinematic response of several visco-elastic rheologies pre-
sented in this article.

Fig. 6 shows the BEM mesh (used for both variants of the prob-
lem) together with a deformed configuration for the case of vertical
loading. In Fig. 7 the spatial distribution of the dissipated energy
density

R T
0 vCeð _uÞ : eð _uÞdt, in (J/m2), is visualized. It can be ob-

served there, that the main part of the dissipated energy is accu-
mulated, during the evolution in time, in a region close to the
left fixed side of the solid where the highest normal stresses rxx

can be expected.
For the other visco-elastic models studied we use the parameter
values a ¼ 2;l2 ¼ l1, where their nonzero values are required. For
example, we may assume existence of the damper l2 and the
spring of stiffness C, with simultaneous absence of the other two
components, in order to simulate the Maxwell model. The results



Fig. 7. Spatial distribution of the dissipated energy density
R T

0 vCeð _uÞ : eð _uÞdt, in
(J/m2), for the case of vertical loading and the Kelvin–Voigt material.
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are shown in Fig. 8, where models have been divided into two cat-
egories: (a) solid-type and (b) fluid-type, because of different order
of response values. It might be observed in this figure the ability of
the algorithm to compute a jump in displacement due to a jump of
forces for the case of both the Hooke and Boltzmann models in
contrast to the Kelvin–Voigt model, where a smoother increase
of displacement takes place.
5.2. 3D analysis of an ellipsoidal cavity embedded in an infinite
medium

This example shows the capabilities of the procedure developed
and implemented also for 3D visco-elastic problems, see (Schanz
et al., 2005; Guo and Peng, 1991), for other 3D BEM implementa-
tions. The problem of an ellipsoidal cavity in a visco-elastic
medium under remote stress field is solved. The Kelvin–Voigt
material considered has Young’s modulus E = 70 (GPa), Poisson’s
ratio m = 0.35 and relaxation time v = 45.454545 (days). The remote
(a)
Fig. 9. (a) Undeformed and deformed BEM mesh of cube with the embedded ellipsoida
magnify displacements.

(a)
Fig. 8. Vertical displacement of the right-hand edge computed by six differ
stress field is applied on a cube with side length L = 36 (m) repre-
senting an infinite visco-elastic medium with an embedded ellip-
soidal cavity placed in its center. The geometry of the ellipsoid is
defined in Cartesian coordinates by the equation

x2

a2 þ
y2

b2 þ
z2

c2 ¼ 1; ð26Þ

with a = 0.8 (m), b = 0.9 (m) and c = 1 (m). The BEM mesh of the
ellipsoid consists of 264 four node isoparametric quadrilateral ele-
ments, while the cube boundary is discretised by 96 elements, see
Fig. 9. Uniform normal tractions rx = 25 (GPa), ry = 25 (GPa) and
rz = 100 (GPa) are applied on the cube faces perpendicular to the
x-, y- and z-axis, respectively. The cavity boundary is free. The time
pattern of the load has three parts: initially the load increases line-
arly with time, then it is constant in time, and finally it jumps down
to zero, as can be seen in Fig. 10. As only Neumann boundary con-
ditions are prescribed, to avoid rigid body motions we apply the F1
method of Blázquez et al. (1996); to the best of our knowledge, first
time implemented in the 3D case.

5.3. Visco-elastic solid in contact

A problem including frictionless contact between a viscoelastic
solid and a rigid obstacle is solved by the BEM, to the best of our
knowledge, for the first time. The Kelvin–Voigt rheology is
assumed. In particular, the indentation of a half disk against a rigid
foundation is considered under plane strain conditions. In this
advancing contact problem the length of the contact zone depends
on the load value. The problem geometry is shown in Fig. 11. The
radius of the disk is r = 0.75 m. The potential contact zone is defined
(b)
l cavity, shown in detail in (b), at time t ¼ 400 (sec). Scale factor of 500 is used to

(b)
ent rheology models, distinguished as (a) solid-type and (b) fluid-type.



Fig. 10. Time evolution of the displacement of the positive Z pole of ellipsoid, normalized by the maximum value of this displacement in the elastic case (umax
e ¼ 2:224 mm).

(a) Elastic material, (b) Visco-elastic Kelvin–Voigt material (the maximum value of this displacement is umax
v ¼ 2:218 mm). The time evolution pattern of the external loading

coincides with the displacement evolution in the elastic case.

Fig. 11. A visco-elastic half disk pressed against the rigid foundation.

(a) (b)
Fig. 12. (a) Total resultant vertical force on the horizontal side of the half disk versus the absolute value of the vertical displacement of the central point of this side.
(b) Normal elastic tractions along the possible contact zone at the time of peak loading tp .

2268 C.G. Panagiotopoulos et al. / International Journal of Solids and Structures 51 (2014) 2261–2271
by the angle / = 13.5(�). Normal tractions are increased linearly in
time from zero to pn ¼ �250 (GPa) at time tp = 250 (days) and then
they are removed. We study the response up to the total time
T = 500 (days). Tangential tractions along the whole straight edge
of the half disk are zero. Due to the problem symmetry only the
quarter disc is modeled. The Kelvin–Voigt material has Young’s



(a) (b)
Fig. 13. (a) Elastic resultant force with time. (b) Viscous resultant force with time.
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modulus E = 70 (GPa) and Poisson’s ratio m ¼ 0:35. For comparison
purposes, three relaxation times are considered: v ¼ 0, 22.5 (days)
and 45 (days).

The numerical solution of this problem, which includes the
determination of the contact zone, is accomplished as described
in Section 3.4, through the minimization of the potential energy.
The BEM mesh of the quarter disk consists of 270 linear elements
with 60 elements along the possible contact zone defined by the
angle /, 170 elements for the rest of the circular curve and 20 ele-
ments for each one of the two straight lines. The time step of
s ¼ 2:5 (days) is used, for the three relaxation times considered,
resulting in 200 time steps.

The advancing contact problem is non-linear and this can be
verified from Fig. 12(a), where for the non-viscous case and after
the loading is removed the solution directly returns to the initial
configuration. It might be seen there, that the straight line that
connects the ‘‘peak’’ loading point back to the initial configuration
is different from the non-linear path computed from the initial
undeformed configuration to the peak point. The behavior of the
visco-elastic cases is different, where we observe that the greater
the viscosity the greater the difference from the elastic case. For
the viscous cases, we notice that after the loading vanishes at the
time tp, the total force jumps to zero as well, while elastic and vis-
cous forces of opposite signs still remain and vanish progressively.
It is also easily verified from Fig. 12(b) that the length of the con-
tact zone depends on v value. It can been observed there that the
greater the viscosity, lower the length of the contact zone and low-
er the maximum absolute value of the normal elastic tractions.
This last observation may also be noticed in Fig. 13(a), where the
evolution in time of the elastic part of the resultant force is plotted
for all three viscosity cases. Finally, in Fig. 13(b) the evolution of
the viscous part of the resultant force is plotted, where it is inter-
esting to observe a jump and a finite peak in these viscous forces at
the time of the loading removal tp for v > 0.
6. Conclusions

In this paper, an advanced formulation for the solution of quasi-
static linear visco-elastic problems for a broad spectrum of rheolo-
gies, which further develops the original proposal by Mesquita,
Coda and co-workers (Mesquita et al., 2001; Mesquita and Coda,
2002), has been presented. The resulting problem can be solved
using standard numerical methods such as FEM and BEM.

We have confined ourselves to materials responding on the
mechanical loading in such a way that, roughly speaking, the ten-
sorial and the rheological features are separated; this means only
one tensor is used to describe all the elastic and viscous processes
which then are distinguished only be scalar constants. Since, we
have been able to cast the problem using boundary formulas only,
the BEM appears as the most reasonable method to solve both 2D
and 3D problems. After a certain ‘‘computationally cheap’’ alge-
braic manipulation, only the standard Kelvin’s fundamental solu-
tion of elasticity is required for the BEM implementation.
Furthermore, an extension and implementation to contact prob-
lems of visco-elastic continua is presented as well.

Using this formulation, the well known Kelvin–Voigt model has
been scrutinized and it has been shown that several other, more
complex models, can be confronted. A quite detailed presentation
has been given for several models using the Maxwell, Boltzmann,
Jeffreys and Burgers rheologies.

Incorporation of this framework to existing BEM codes is very
easy, at least for problems of visco-elasticity, since just a trans-
formed auxiliary field has to be defined. After solving the problem
for this auxiliary field, the actual stresses and displacements can be
easily reconstructed. For unilateral contact problems, further fea-
tures of the energetic approach in BEM are needed. Numerical
solutions of problems presented in this paper are accomplished
by an in-house open BEM code, implemented in Java.

Some standard problems of 2D and 3D visco-elasticity as well as
a problem of contact mechanics have been numerical solved and
analyzed in order to validate the suitability of the methodology
developed for solving realistic visco-elasticity problems.

An extension of the current framework to problems of adhesive
contact or also to more complex problems, where interface damage
and/or interface plasticity are taken into account, is possible and
into some extent has already been accomplished in other concur-
rent works of the authors (e.g. Roubíček et al., 2013; Kružík
et al., 2014).
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Appendix: The energetics of selected rheological models

All rheological models above allow for clear energetic balance,
which is important in many respects. We will illustrate it only
for the standard linear solid and, as special cases, for the Maxwell
and the Kelvin–Voigt models, i.e. (16) for m � 1 and n � 1.
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The energetics for the standard linear solid (and for Maxwell
material too) needs an introduction of one internal variable with
the meaning of a strain, let us denote it by p, acting in an additive
decomposition of the total strain eðuÞ, i.e.

eðuÞ ¼ eel þ p: ð27Þ

The elastic strain eel occurs on the ‘‘serial’’ elastic spring (let us
denote its elastic-moduli tensor by CM) while p occurs on the ‘‘par-
allel’’ elastic spring (with the elastic moduli CKV) and on the dam-
per (with the viscous moduli tensor D), cf. the 5th row in Table 1.
The stored energy is then

Eðeel;pÞ ¼
Z

X

1
2

CMeel : eel þ
1
2

CKVp : p
� �

dx ð28Þ

while the dissipation rate is D _p : _p. Abbreviating Eðu;pÞ ¼
EðeðuÞ � p;pÞ, testing (18a) by _u and using the rheological ansatz
(16) and the boundary conditions (18b), (18c), after a little calculus
one obtains the total energy balance in the form:

EðuðtÞ;pðtÞÞ þ
Z t

0

Z
X

D _p : _pdxdt

¼ Eðu0;p0Þ þ
Z t

0

Z
X

f � _udxþ
Z

CN

g � _udS
� �

dt: ð29Þ

For simplicity, here we assumed homogeneous Dirichlet condi-
tion w ¼ 0. The time integrals on the left- and right-hand side of
(29) represent the dissipated energy due to viscosity and the work
of external forces done over the time interval ½0; t�, respectively.
Note that we need to prescribe the initial conditions both
uð0; �Þ ¼ u0 and pð0; �Þ ¼ p0. In a general case if w – 0, one can first
make a substitution of u� �w with an extension �w of the boundary
data w inside the bulk domain and then formulate an energy bal-
ance for a ‘‘shifted’’ solution satisfying homogeneous Dirichlet con-
dition but with a modified loading f and g while the internal
variable p remains unaffected.

As a special case, we can get both the Kelvin–Voigt model and
the Maxwell model. The former model results as the limit for
CM !1, which yields eel ¼ 0 so that simply eðuÞ ¼ p and, for
D ¼ vC, the energy balance (29) simplifies as

EðuðtÞÞ þ
Z t

0

Z
X
vCeð _uÞ : eð _uÞdxdt

¼ Eðu0Þ þ
Z t

0

Z
X

f � _udxþ
Z

CN

g � _udS
� �

dt; ð30Þ

with EðuÞ ¼
R

X
1
2 CeðuÞ : eðuÞdx. The Maxwell model results as the

limit for CKV ! 0; the splitting (27) and in particular the internal
variable p remains in this model.

The other higher-order models need more involved consider-
ations and we will not present it here. In particular, the 4-param-
eter solid uses again (27) but the Burgers rheology, having two
‘‘free nodes’’ (cf. the rheological scheme at the 7th row in Table 1),
needs introduction of two internal variables and decomposition of
eðuÞ in (27) into 3 terms.

Under appropriate qualification of the external loading and the
initial conditions, energy balance (30) gives also a priori estimates
of the solutions in respective norms by using typically the Gron-
wall, the Young, and the Hölder inequalities. Due to convexity of
the energy Eð�Þ, this manipulation can be reflected to the implicit
time-discretisation schemes considered in this paper, yielding
numerical stability and convergence of such schemes for s! 0.
In our linear situation, this convergence is indeed simple.

Evaluation and visualization of the spatial distribution of the
energies occurring in balances like (29) or (30) may be of a special
interest, since it shows in which regions of the body the dissipation
takes place, see the numerical example of Section 5.1 or Roubíček
et al. (2013). This energy dissipation leads to a heat production
(not considered here, however), and thus its spatial distribution
would be important when solving the heat-transfer problem in a
possibly full thermomechanical coupling. These forms of energet-
ics are also of interest, since they could be used to solve contact
problems of visco-elastic bodies, see Section 5.3, or even more
complex problems where also inelastic phenomena take place on
the boundaries (or interfaces) of the viscous bodies, cf. (Roubíček
et al., 2013). Techniques for the evaluation of these energies in
combination with BEM have been briefly described in Sections
3.4 and 4, and employed in Section 5.
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