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SUMMARY

Secondary metabolite biosynthesis in microorgan-
isms responds to discrete chemical and biological
stimuli; however, untargeted identification of these
responses presents a significant challenge. Herein
we apply multiplexed stimuli to Streptomyces coeli-
color and collect the resulting response metabo-
lomes via ion mobility-mass spectrometric analysis.
Self-organizingmap (SOM) analytics adapted forme-
tabolomic data demonstrate efficient characteriza-
tion of the subsets of primary and secondary metab-
olites that respond similarly across stimuli. Over 60%
of all metabolic features inventoried from responses
are either not observed under control conditions or
produced at greater than 2-fold increase in abun-
dance in response to at least one of the multiplexing
conditions, reflecting how metabolites encode
phenotypic changes in an organism responding to
multiplexed challenges. Using abundance as an
additional filter, each of 16 known S. coelicolor sec-
ondary metabolites is prioritized via SOM and
observed at increased levels (1.2- to 22-fold
compared with unperturbed) in response to one or
more challenge conditions.

INTRODUCTION

Microbial producers of secondary metabolites typically contain

gene clusters encoding dozens of secondary metabolite families

(Zerikly and Challis, 2009), the expression of which appears to be

tightly regulated in response to discrete chemical and/or biolog-

ical stimulus. For example, exposure of actinomycetes to mixed

fermentation conditions has demonstrated that secondary

metabolite families are produced selectively via intergeneric

(Onaka et al., 2011; Traxler et al., 2013) and interkingdom (Moree

et al., 2012) microbial interactions. Similarly, the acquisition of
Chemistry & Biology 22,
antibiotic resistance via point mutations (Hosaka et al., 2009; Ta-

naka et al., 2013), exposure to rare earth metals (Tanaka et al.,

2010; Ochi et al., 2014), exposure to small molecules (Craney

et al., 2012; Seyedsayamdost, 2014), and the formulation of

production media (Bode et al., 2002) have also been linked to

gene-cluster-specific upregulation of secondary metabolites in

actinomycetes. These data are consistent with secondary

metabolites governing adaptive organismal responses to envi-

ronmental stimuli. Identifying secondarymetabolites and associ-

ating them to gene clusters that are linked to discrete chemical

and biological stimuli can provide insight into the chemical

ecological role of secondary metabolites. Moreover, the ability

to selectively stimulate native expression of secondary meta-

bolic gene clusters via chemical or biological stimuli and detect

their corresponding products without resorting to genetic re-

combinant methods would greatly expedite microbial secondary

metabolite discovery.

If secondary and primary metabolite regulation has adapted to

selectively respond to chemical and biological stimuli, then me-

tabolites possessing selective responses may be identifiable

within metabolomes by possessing characteristic abundance

trends across multiplexed stimulus conditions. To investigate

this hypothesis and enable secondary metabolite discovery,

we herein assess the potential for stimulus-mediated production

of secondary metabolites in the native microbe by multiplexed

chemical and biological stimulation. To access a broad spec-

trum of responses, a battery of 23 perturbations in a single

growth medium was utilized from three reported categories of

activating conditions for Streptomyces coelicolor A3(2). The

resulting collected sum of detectable metabolomic response in-

ventories was analyzed by ultra-performance liquid chromatog-

raphy-ion mobility-mass spectrometric (UPLC-IM-MS) analysis.

To structure and categorize the response specificity of metabolic

features within these data, we developed and implemented a

self-organizing map (SOM)-based analysis (Goodwin et al.,

2014; Eichler et al., 2003) for the identification and prioritization

of increased metabolite production resulting from the multi-

plexed perturbations. SOM analysis converted the collectedme-

tabolomes into a navigable topological response phenotype

map and efficiently identified specific primary and secondary
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metabolites that are produced at increased levels in response to

stimuli. For example, in primary metabolism, we identified

discrete changes in guanosine and phenylalanine pools on

lanthanide exposure and evidence of unique adaptive cell wall

remodeling in several conditions. Notably, a large fraction (16 to-

tal secondary metabolites) of detected secondary metabolites

was prioritized via this workflow as the most intense response-

specific features, providing insight into the roles that secondary

metabolism play in adapting to chemical stimuli andmicrobial in-

teractions. The combination of multiplexed stimulation of native

expression and structuring of the resulting metabolomic re-

sponses comprise a generalizable method for activating and de-

tecting products of natively regulated primary and secondary

metabolism.

RESULTS

Multiplexing Stimuli of Secondary Metabolism
S. coelicolor A3(2) was cultivated under a battery of processes

known to potentiate secondary metabolism. S. coelicolor was

selected as a model microorganism because it has been exten-

sively mined for secondary metabolites (Bentley et al., 2002),

methods for native gene cluster activation have been most

commonly developed for this organism (Hosaka et al., 2009;

Luti and Mavituna, 2011; Tanaka et al., 2010; Xu et al., 2002),

and the majority of secondary metabolites isolated from this

strain have been correlated to a gene cluster (Barona-Gomez

et al., 2006; Bentley et al., 2002; Challis, 2013; Song et al.,

2006).

We selected three known categories of activating stimuli: elic-

iting spontaneous resistance to transcription or translation-tar-

geting antibiotics, exposure to rare earth elements, and cultiva-

tion in the presence of competing microorganisms. Our specific

adaptations and standardizations of these reportedmethods are

described in the Supplemental Information. In brief, using a sin-

gle growth medium (International Streptomyces Protocol 2,

ISP2), we cultivated (1) liquid cultures in the presence and

absence of five separate scandium or five lanthanum concentra-

tions, (2) liquid cultures of ten different spontaneous rifampicin-

or streptomycin-resistance mutants, and (3) agar plate ISP2

co-cultures with three different challenge organisms, Micro-

coccus luteus, Rhodococcus wratislaviensis, or Tsukamurella

pulmonis. Hence, we generated a total of 23 conditions,

including controls, spanning these three methodologies.

Total cellular extracts were generated from fermentations via

methanol extraction, concentrated, and processed for reverse

phase UPLC analysis. Technical triplicates of extracts were

analyzed in a randomized sequence using UPLC-IM-MS (Waters

Synapt G2) with lock mass correction to provide accurate mass

measurements. During each spectral acquisition, an intact and

fragmentation spectrum was taken for all ions present (herein

referred to as MSE analysis (Plumb et al., 2006; Goodwin et al.,

2012; McLean, 2009). Fragmentation was performed subse-

quent to IM separation, which allowed for the correlation of prod-

uct ions to precursor origins through matched mobility.

Rawdata were converted to distinct mass-to-charge (m/z) and

retention time (Rt) pairs, termed features, and aligned across all

samples (Smith et al., 2006). The resultant datamatrix of discrete

features, or ions, and associated intensities for each condition
662 Chemistry & Biology 22, 661–670, May 21, 2015 ª2015 Elsevier
were averaged across technical replicates and subjected to

multivariate statistical analysis (MVSA) and SOM.

Identifying Products of Multiplexed Stimulation through
MVSA
The identification of new metabolites with characteristic re-

sponses from multiplexed microbial stimuli requires methods

for comparing and classifying co-varying ions in the response in-

ventories. Recently, we (Derewacz et al., 2013) and others (Hou

et al., 2012; Robinette et al., 2012) have presented MVSA ap-

proaches for identifying the most abundant new ions resulting

from individual stimulating microbial metabolic perturbations.

MVSA methods for data analysis are powerful tools for identi-

fying distinguishing features of small datasets (2–3 conditions)

or extracting information regarding global sample grouping,

and which metabolites contribute to coarse trends. However,

MVSA methods are not ideal for similar prioritization of metabo-

lites in multiplexed perturbations as MVSA is inherently biased

for the largest differences among perturbations and is limited

in the ability to reflect multiple stimuli in two- or three-dimen-

sional space. Therefore, it omits the lower abundance or minorly

co-varying, yet still unique, metabolic reflexes (i.e., changes in

metabolism resulting from a stimulus). In applying our previously

described MSVA workflow (Derewacz et al., 2013) to the 23 con-

ditions, as shown in Figure 1A, we can visualize the gross distinc-

tions of metabolomic profiles that exist among different stimuli.

When each perturbation is analyzed in isolation (Figures 1B–

1D), the distinct differences in global metabolism shifts are

seen. A loadings plot analysis can be used to determine which

ions contribute to sample distinction, as seen in Figure S3A.

For comparison, detected secondarymetabolites are annotated,

which highlights a significant shortcoming of MVSA-based prior-

itization for a large number of culturing conditions; the largest

contributors to sample differences are highlighted but specific

features of interest can be masked by the covariance of many

species in the dataset. To garner conditionally distinct differ-

ences, experimental subsets (see Figures 1B–1D), or even

smaller subsets (e.g., a single co-culture versus monocultures

or orthogonal partial least squares-discriminant analysis ap-

proaches) can be analyzed. Thus, MVSA is most suitable for

the interrogation of small datasets where the number of species

is low (e.g., <50). However, for 25 conditions, pairwise analysis of

multiple iterations of stimulus conditions for prioritization pur-

poses becomes a time-intensive method of prioritizing second-

ary metabolites from extracts. As a result, we have developed

and applied SOM-based methods to ion association and

filtering. The primary advantage of SOM-based methods is that

they are not prone to masking low-abundant species of interest

in the comparison of large datasets (e.g., >50).

Identifying Products of Multiplexed Stimulation
by Self-Organizing Maps
Assessing trends in a large number of biochemical or biological

conditions requires methods for the rapid visualization and orga-

nization of distinct differences in metabolic profiles across many

perturbations to sort ions in a response-dependent manner. To

address this, we developed a SOM-based approach to sort

the complete inventory of ions across all growth conditions

into regions based upon similarities in abundance profiles across
Ltd All rights reserved



Figure 1. Principal Component Analyses of Metabolomic Inventories

(A) PCA of all cultures.

(B) Co-culture of S. coelicolor (SC) with M. luteus (ML), R. wratislaviensis (RW), and T. pulmonis (TP).

(C) Metabolomic profiles in response to rare earth metals.

(D) Comparison of antibiotic-resistant mutants selected by plating on rifampicin and streptomycin.
experiments. This method is particularly well suited for second-

ary metabolite prioritization, as secondary metabolites are the

end products of biochemical pathways and accumulate during

fermentation. Differentially expressed, high abundance ions

may be ranked subsequent to SOM analysis using the percent

contribution of an ion to a region of interest (ROI) on the self-

organized map. These ROIs exclusively contain features that

respond specifically to a particular perturbation, while other

loosely regulated metabolites will cluster outside these priori-

tized regions. This method then prioritizes metabolites in a

response-specific manner that performs well for the comparison

of large datasets. Note that, statistically, MVSA and SOM

perform similar comparisons but represent the resulting compar-
Chemistry & Biology 22,
isons in a different graphical manner. In fact, many SOM ap-

proaches approximate a similar graphical presentation to

MVSA when the datasets decrease to a small number of com-

parisons (ca. 10–50). Thus, the choice of one approach versus

the other directly depends on how a specific query is framed

and the corresponding number of features to be compared

across datasets.

Figure 2 demonstrates the general workflow of the SOM-

based approach as applied to multiple perturbing conditions.

Experimental and control conditions are processed by UPLC-

IM-MS (step 1), significant m/z retention time features are iden-

tified, and integrated intensity trends lines are generated for

each feature. SOM analysis of these feature trends is performed
661–670, May 21, 2015 ª2015 Elsevier Ltd All rights reserved 663



Figure 2. The General Self-Organizing Map-Based Approach to Feature Prioritization

(1) This method begins with extracts from cultures of an organism cultivated under a battery of perturbing conditions. (2) Extracts are analyzed using UPLC-IM-

MSE (or other feature-producing methodology) and converted into a matrix of discrete, aligned peaks with associated intensities for each culturing condition.

(3–5) These features are then organized based upon intensity trends across culturing conditions. (6) Subsequently, extracts are represented as heat maps based

upon the sum abundance of each organized metabolite in a region. (7) Differential analysis comparing data from perturbed cultures with controls allows gen-

eration of regions of interest.
using the Gene Expression Dynamics Investigator (GEDI) soft-

ware (step 2) (Eichler et al., 2003). For a more in-depth descrip-

tion, see Figure S2. Conceptually, detected ion abundance

trends are first randomly seeded into a user-defined asymmetric

grid (step 3). The coordinates of the grid are only meaningful in

relation to other grid locations and have no associated dimen-

sions. Feature intensity trends are then iteratively organized

based upon intensity similarities across experiments in a

competitive-cooperative process analogous to a tile puzzle

(step 4) (Kohonen, 1998). As a result, metabolites that are pro-

duced as similar responses to the experimental conditions

occupy the same or close coordinates in the grid. This sorts fea-

tures in a data-driven manner into regions of correlated feature

response (step 5).

The presumed correspondence of secondary metabolite

expression profiles to responses is premised on the hypothesis

that microorganisms use secondary metabolites to respond to

discrete external stimuli (e.g., antibiotic challenge, competition,

and metal exposure). The metabolic profile of each sample or

experimental condition is then depicted as a topological heat

map, which is a function of the intensity of each ion in that sample

(step 6). Features occupying the same coordinates in the SOM

are summed. These heat maps (cf. Figure 3), or metabolic pro-

files, are then differentially compared with unperturbed meta-
664 Chemistry & Biology 22, 661–670, May 21, 2015 ª2015 Elsevier
bolic profiles, resulting in heat maps with prioritized ROIs, indi-

cating metabolic responses to experimental conditions

(step 7). Each pixel or node within the heat maps contains m/z

Rt feature lists, which are used for subsequent feature identifica-

tions. We selected six ROIs based on visual comparison of the

differential phenotype heatmaps, generated tables of co-varying

features via summing islands of high intensity within the heat

maps, and ranked features by percentage (for more details,

see the Supplemental Information). The species occupying these

ROIs are then prioritized for further identification using accurate

mass and fragmentation data acquired using MSE technology. A

given ROI may comprise only one or several species. To ascer-

tain rank within a given ROI, percent contributions of each

species to the total ROI intensity may be determined (see Sup-

plemental Information). Through self-organization, features cor-

responding to fragment ions, adducts, and isotopes are also all

clustered for rapid triage. Determination of the molecular identity

of features is facilitated by untargeted fragmentation acquisition,

accurate mass measurements, retention time, ion mobility drift

time, and other fragmentation interpretation afforded by the ion

mobility separation dimension, as described in Figure S2.

Figure 3 demonstrates the utility of the SOM-based approach

for molecular prioritization using this workflow across the multi-

plexed inducing conditions reported for enhanced secondary
Ltd All rights reserved



Figure 3. Differential Metabolic Phenotype Heat Maps Representing Increased Production/Decreased Consumption of Molecules Using a

Single Growth Medium

Representative extracts from each culturing condition are shown above, with regions of interest (ROIs) boxed and labeled. Corresponding putative identifications

and structures for each ROI are labeled, and comprehensive catalogs of inhabiting features for each region, including relative abundance and percent contri-

bution to total ROI intensity, are presented in the Supplemental Information.
metabolite production. For heat maps of all tested conditions,

please refer to Figure S3. Each heat map is representative of

2,154 detected features (including detected isotopologs)

observed in S. coelicolor grown with a unique perturbation or

condition, following subtraction of the unperturbed culture

extract. In the case of monoclonal cultures (i.e., streptomycin-

and rifampicin-selected point mutations, rare element expo-

sure), this baseline subtraction is simply subtraction of the

ISP2 unperturbed culture metabolic profile. In co-culturing con-

ditions, metabolic profiles from both wild-type S. coelicolor and

competing organismmonoculture were subtracted, resulting in a

map of feature inventories that are produced at increased levels

in each mixed culture in comparison with the constituent mono-

cultures. Hence, caveats in interpreting mixed culture data are

that increased feature production can be a result of either organ-

ism, and the output of the mixed culture is likely more than the

sum of its parts. Six dominant ROIs are indicated as boxed re-

gions in Figure 3 and identified ions that occupy these regions

are annotated (for a full list of all features occupying these re-

gions, see the Supplemental Information, Tables S2 and S3). A

majority of the annotated ions corresponds to secondary metab-

olites thatS. coelicolor is known to produce (Challis, 2013). How-

ever, we gain additional biological insight into the microbial

response to the various stimuli by observing the other biochem-

ical results that are sorted with these secondary metabolites

(e.g., deoxyguanosine, phenylalanine).

Measuring and Structuring Metabolic Perturbations
Each inducing condition provoked unique metabolic responses,

as observed in the differential profiles in Figure 3. In total, of the

2,154 significant features detected, 1,318 were found to be
Chemistry & Biology 22,
either previously undetected or produced in at least 2-fold abun-

dance in at least one perturbed system relative to control (see the

Supplemental Information). This corresponds to induced over-

production of �61% of all detected species. For the subset of

known secondary metabolites, 16 were observed in at least

one S. coelicolor expression condition (<20 ppm mass accu-

racy), including monoclonal culturing in liquid culture or agar.

Molecular ions, corresponding mass accuracies, and compara-

tive relative intensities appear in the Supplemental Information

(Table S4; Figure S4). We found increased production of

each of the 16 detected metabolites in at least one perturbed

culture compared with the matched unperturbed control. The

magnitude of amplification is shown in Figure 4. In certain cases,

a nearly 22-fold increase in production was found (i.e.,

undecylprodigiosin).

Response Profile Analysis
Secondary metabolic gene clusters in microorganisms are often

organized into operons, and within a given organism, gene clus-

ters share common regulatory elements programmed to

respond to specific cellular states (e.g., pleiotropic signals)

(Bibb, 2005). Correspondingly, we hypothesize that secondary

metabolite features that are differentially produced as a result

of multiplexed chemical and biological stimuli will structure into

grouped regions in a SOM of metabolites based on similarity of

production response profiles. Herein, we describe and demon-

strate the application of this approach, which ameliorates the

limitations of MVSA-based analytics for multiplexed stimuli

data interpretation. One practical advantage of the SOM

approach is that dozens of chemical, biochemical, or genetic

perturbations may be analyzed using a single computation (in
661–670, May 21, 2015 ª2015 Elsevier Ltd All rights reserved 665



Metabolitea Heavy 
Metals

Antibiotic 
Resistance Co-culture

Undecylprodigiosin 98% 470% 2200%
Germidicidin A 120% 180% 130%
Germicidin B 140% 250% 140%
Germicidin D 250% 480% 84%
Methylenomycin A 110% 170% 98%
N-Acetylhistidinol 130% 220% 18%
Juglomycin D 160% 200% 20%
2-O-α-D-Mannopyranosyl
-myo-inositol 300% 200% 62%

Streptorubin B 250% 110% 1300%
Coelichelin 100% 150% 16%
γ-Actinorhodin 170% 500% 29%
ε-Actinorhodin 100% 120% 61%
Antibiotic CDA 4A 130% 330% 87%
Ferrioxamine E 50% 150% 120%
Desferrioxamine B 280% 130% 220%
Indole-3-lactic acid 4600% 3400% 84%
Ectoine 250% 290% 240%

Figure 4. Maximum Resultant Metabolite Production Abundances

Compared with Matched Control Cultures in ISP2 Medium

Color scale: 0% (red); 100% (yellow); 200% (green). Heavymetal and antibiotic

resistance performed in liquid cultures and co-culture performed on agar

medium. aPutative metabolite identification of metabolites reported to be

produced by S. coelicolor based on accurate mass measurement and frag-

mentation pattern, when available.
this case 25 3 3 analyses, comprising >780,000 spectra, in

excess of 58 gigabytes of data, spanning three classes of stim-

uli), resulting in the generation of sets of simple and easily navi-

gable metabolic phenotype graphical representations that still

retain the attributes of MVSA-based analytics. In addition,

although features within an ROI can be ranked by abundance,

SOM organizes features by intensity trends, so low-intensity fea-

tures can also be identified even in the presence of large

datasets.

At least 22 gene clusters within the S. coelicolor genome have

been assigned involvement in secondary metabolite production

(Bentley et al., 2002). Of these 22 clusters, SOMmaps prioritized

metabolites associated with 8 of the 22 gene clusters, which are

listed in Table S1, of which all display elevated secondary

metabolite production in some capacity as a result of the intro-

duction of challenges (Figure 4). Putative metabolite feature

intensity trends are shown in Table S2. In all cases, feature inten-

sity profiles map consistently to the ROI. In some cases, how-

ever, putative features show false-positive intensity values due

to coincident features of similar mass/retention time. For

instance, actinorhodins and desferrioxamines are not produced

by the challenge organisms, although features with a similar ac-

curate mass were found. For a full table of relative abundances

across all conditions, we direct the reader to Table S3. The

analytical strategy presented prioritizes secondary metabolites

generated from these gene clusters fromwithin themetabolomic

pool, yet this begs the question as to the biological rationale of

these lower abundance, yet overproduced, species. Signifi-

cantly, an increase in the production of germicidins (Figure 3,

ROIs 5 and 6) was observed in both mixed fermentation condi-

tions and selected antibiotic-resistant strains. Metabolomic

analysis indicated that the process of culturing S. coelicolor on

agar versus the liquid cultures affected the production of germi-

cidins. However, germicidins A and B were present in higher

concentrations in the mixed fermentation cultures versus the

monoclonal cultures grown on agar, in addition to all germicidins

observed in increased abundances in many of the antibiotic-
666 Chemistry & Biology 22, 661–670, May 21, 2015 ª2015 Elsevier
resistant cultures. The production of germicidins inhibits spore

germination and is a self-regulatory mechanism in the produc-

tion response to high population densities (Aoki et al., 2011). In

addition, mixed fermentation resulted in the enhanced produc-

tion of undecylprodigiosin (22-fold increase when co-cultured)

and streptorubin B (13-fold increase when co-cultured) (Figure 3,

ROI 3), known secondary metabolites of S. coelicolor with anti-

microbial and other clinically relevant properties (Williamson

et al., 2006). This is consistent with previous studies that linked

undecylprodigiosin and streptorubin B production to external

factors, including mixed fermentation with Bacillus subtilis (Luti

and Mavituna, 2011) and salt stress (Sevcikova and Kormanec,

2004). Within this same ROI, we observe the enhanced produc-

tion of siderophores functioning as an iron scavenger for nutrient

acquisition in all perturbed conditions (Barona-Gomez et al.,

2006). This response is likely a concerted rebuttal to the microbi-

al competition encountered in the mixed fermentation environ-

ment. A variant of calcium-dependent antibiotic production

was observed to be upregulated (3.3-fold increase) specifically

in agar culturing and co-culturing conditions with T. pulmonis

(Figure S4). This Gram-positive targeting metabolite may be

attributed to T. pulmonis production of mycolic acid, which acti-

vates secondary metabolite production in once silent clusters

(Onaka et al., 2011) and underpins the necessity of multi-condi-

tional culturing. We also observed altered production of poten-

tially exo-polysaccharides (Figure 3, ROI 4) as a result of these

persistent resistant mutations.

Furthermore, 2-O-a-D-mannopyranosyl-myo-inositol (3-fold

increase in rare element exposure) was observed in increased

abundance in mutant- and rare element-exposed cultures (Fig-

ure 3, ROI 2), the production of which has been demonstrated

previously in liquid culture (Pospisil et al., 2007), supported by

the absence in mixed fermentation conditions. Elevated produc-

tion of ectoine (2.8-fold increase) was observed as a general

response to perturbations and is consistent with previous results

we have observed within rifampicin- and streptomycin-resistant

mutants in Nocardiopis (Derewacz et al., 2013). This osmopro-

tectant has been shown to provide enzyme activity stabilizing

effects (Lippert and Galinski, 1992) and stimulate growth in

osmotically inhibitory environments (Jebbar et al., 1992).

DISCUSSION

Microbial genome sequencing has revealed a vast reservoir of

secondary metabolite-encoding gene clusters, suggesting

largely untapped molecular diversity with potential biomedical

application. Advances in sequencing have outpaced the devel-

opments of the requisite steps to produce, study, and ultimately

purify the encoded metabolites: gene cluster expression and

translation, identification and purification of the resulting pro-

duced metabolites, and structure elucidation. Two complemen-

tary strategies for addressing the expression component of

these processes consist of refactoring targeted gene clusters

for increased expression, typically in heterologous hosts (Me-

dema et al., 2011; Wilkinson and Micklefield, 2007; Yamanaka

et al., 2014), or expression of gene clusters in their native hosts

using nonrecombinant chemical or biochemical methods to

stimulate native expression (Walsh and Fischbach, 2010; Zerikly

and Challis, 2009), or via systematic modification of cultivation
Ltd All rights reserved



parameters, also called OSMAC (One Strain-Many Compounds)

(Bode et al., 2002). In either case, the analysis of the resulting

metabolomes for upregulated or otherwise perturbed metabo-

lites potentially becomes the next rate-limiting step. Rapid

unbiased identification and prioritization of newly produced me-

tabolites is an essential prerequisite for what remain the most

labor-intensive steps of secondary metabolite discovery: purifi-

cation, isolation, and structure elucidation.

This study analyzes three categories of microbial stimulus

(antibiotic-induced resistance, heavy metal exposure, and co-

culture) on a single metabolomic platform. To convert the

microbial metabolomic responses from 23 distinct conditions

spanning these three perturbations into navigable phenotypic

maps, we develop and implement SOM analytics for multiplexed

responses to microbial metabolomics. This approach localizes

metabolomic features that co-vary across conditions into ROIs

that can be used to identify metabolic features that are similarly

regulated, or that respond similarly to challenge. Secondary me-

tabolites are the end products of metabolic pathways, accumu-

late, and are slowly degraded. As a result, they are well suited for

the application of SOM analytics that not only prioritize features

but also illuminate trends in similarly responding metabolites.

Previous studies of biological, biochemical, and chemical micro-

bial challenge are consistent with the hypothesis that the upre-

gulation of secondary metabolism may be an adaptive response

to challenge stimuli (Derewacz et al., 2013; Ochi et al., 2014; Ta-

naka et al., 2009). Moreover, the current study confirms the

recent analysis of metabolomic dynamics engendered by a

cohort of interspecies interactions (Traxler et al., 2013) and

analyzed by nanospray desorption electrospray ionization.

These results provide additional support for the broad-reaching

effects of chemical and biological stimulus and a new means for

identification of important microbial response chemicals.

Strategies using topological clustering of metabolomic data

are finding increasing application in secondary metabolite dis-

covery. For example, a molecular network analysis tool has

recently been developed and applied to aid in the organization

of exometabolic inventory analysis and to prioritize secondary

metabolite discovery (Nguyen et al., 2013; Traxler et al., 2013).

Metabolite molecular network analysis uses numerical clustering

of tandemmass spectra similarity as an organizing principle and

provides a map based on chemical similarity. This method also

permits simultaneous graphical visualization of structural relat-

edness networks for multiple stimuli conditions or organisms

and is excellent for dereplication and prioritization by chemical

structure. The SOM method described herein is distinct from

this method in that the organizing principle is not structure (in-

ferred from fragment data) but rather response trends across

more than two dozen conditions. Indeed, because SOM ROIs

can contain hundreds of correlating features, molecular network

analysis can potentially be used as a method to prioritize

responsive features identified by SOM analytics, underlining

the complementary nature of these methods. Other comparative

metabolomics methods, such as bubble plot visualization, pro-

vide a straightforward and easily interpretable tool for deter-

mining differences in metabolomic feature production, but are

generally only applicable to binary comparison and do not render

correlations in ion profiles across many experimental conditions

(Patti et al., 2012a). However, meta-XCMS procedures may find
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significant utility in this type of secondary metabolite prioritiza-

tion (Patti et al., 2012b). Some unique advantages of the SOM

method described here are that it can analyze the response pat-

terns of 25+ stimuli conditions simultaneously and secondary

metabolites can be identified from response trends via simple

subtractive analysis using the trained map template as an orga-

nizing principle.

As accumulating dead ends of metabolic pathways, second-

ary metabolites are ideal candidates for the application of SOM

analytics; however, the utility of this approach extends beyond

secondary metabolism. For instance, we have recently applied

the SOM metabolomics to the analysis of mouse serum and

used it to identify diagnostic features in mice addicted to

cocaine, demonstrating the general utility of this method for

both abundant and nonabundant comparative metabolomics

(Goodwin et al., 2014). In addition, Kohonen’s SOM analytics

has been used to understand time-dependent metabolite

changes in rice plants, identifying synchronously fluctuating

metabolites (Sato et al., 2008). Importantly, as datasets incorpo-

rate ever-increasing amounts of data (e.g., time, perturbation,

etc.) the corresponding ROIs provide correspondingly higher

specificity.

From a genome mining perspective, we observed substantial

metabolomic expansion of the biomolecular inventory of

S. coelicolor grown in a single medium using multiplexed chem-

ical and biochemical inductionmethods. Of the nearly 2,200 total

detected molecular features, 61%were found to be either unde-

tected in control cultures or produced in at least 2-fold greater

amounts, relative to control, in at least one culture challenge.

Indeed, using these methodologically simple and rapid nonre-

combinant techniques, we have observed the increased produc-

tion of all 16 of the secondary metabolites detected, comprising

products of up to 8 of 22 annotated gene clusters in at least one

unique culturing condition, and prioritizing eight natural products

within ROIs. These results challenge the notion of silent gene

clusters in native hosts and support the potential of systematic

induction of native secondary metabolism as a method of ac-

cessing the hidden reservoirs of secondary metabolic diversity

in microorganisms. Indeed, with a comparatively small set of

stimuli, which can be generated and analyzed in less than a

month, the majority of known secondary metabolism was acti-

vated. Future studies combining analysis of transcriptional and

metabolomic covariance with stimuli offer the potential to target

the activation of specifically regulated gene clusters with a

rationally selected set of challenges. In this way, chemistry

and biology may be rationally manipulated in the future to

quickly elicit the expression of cryptic or silent gene clusters in

cultivatable organisms or alternatively in the assessment of

heterologously or endogenously refactored gene clusters in

microorganisms.

SIGNIFICANCE

We hypothesize that the inventory of metabolic features re-

sulting from a microorganism’s exposure to multiple chem-

ical and biological stimuli can be used to identify induced

expression of secondary metabolites. Central to this

approach is the premise that microbial secondary metabo-

lites are produced to respond to environmental stimuli. It
661–670, May 21, 2015 ª2015 Elsevier Ltd All rights reserved 667



follows that their production can be revealed by examining

the patterns of metabolomic feature responses across mul-

tiple stimuli. This responsomics approach has been applied

here to the well-characterized actinomycete S. coelicolor,

revealing that production of the majority of secondary me-

tabolites in this strain can be induced by simple stimuli and

subsequently identified by comparative metabolomics

analysis via self-organizing maps. Regions of interest

within the response maps reveal those metabolites that

are characteristically modulated by multiplexed stimuli

and ranking these by abundance provides a means of prior-

itizing compounds for isolation studies. The advantages of

self-organizing map analytics are that it ranks features via

response profile, not by intensity, permitting the identifica-

tion of low-intensity features contributing to a response

phenotype, it carries out the comparison of large numbers

of datasets (up to 25 in this study) in a single computation,

and provides easy to navigate heat maps of metabolic

response phenotypes. In addition to providing a work flow

for the identification of secondary metabolites, the ability

to inventory metabolites that are modulated consistently

via multiplexed stimuli may be used to identify features

relevant to microbial physiology, development, and chemi-

cal ecology.
EXPERIMENTAL PROCEDURES

Materials and Methods

All reagents were obtained from Sigma-Aldrich unless otherwise specified.

S. coelicolor A3(2) was obtained from the John Innes Center, T. pulmonis

from the American Type Culture Collection (ATCC 700081), and

R. wratislaviensis was obtained via dilution plating from hypogean sediments.

Eliciting Antibiotic Resistance and Fermentations

To generate antibiotic-resistant mutants, the spore inoculum of S. coelicolor

was uniformly spread on GYM (glucose 0.4%, yeast extract 0.4%,malt extract

1%, peptone 0.1%, sodium chloride 0.2%, agar 2%) agar plates containing

streptomycin at one of two concentrations (100 mg/ml, 300 mg/ml) or rifampicin

at either 200 mg/ml or 400 mg/ml (concentrations of antibiotics were chosen so

they exceed the minimum inhibitory concentration for S. coelicolor on GYM

medium). After 2 weeks of incubation at 30�C, the agar plates were inspected

for the presence of resistant colonies, which were then aseptically transferred

to antibiotic-free ISP2 (glucose 0.4%, yeast extract 0.4%, malt extract 1%,

agar 2%) plates. Each S. coelicolor mutant was then inoculated to 20 ml of

ISP2 liquid seed culture and incubated for 7 days, and from seed culture to

50 ml of liquid ISP2 fermentation culture for 7 days of incubation at 30�C. Pro-
genitor S. coelicolorwas incubated under the same conditions to generate the

control culture.

Rare Earth Element Fermentations

For rare element additives, the spore suspension of S. coelicolor was inocu-

lated on ISP2 agar plates for incubation at 30�C for 7 days, then inoculated

from plates into 20 ml of liquid seed culture and from seed culture to 50 ml

of liquid ISP2 production cultures containing various concentrations of scan-

dium chloride (20 mM, 50 mM, 100 mM, 200 mM, 500 mM) or lanthanum chloride

(1500 mM, 1700 mM, 1900 mM, 2100 mM, 2500 mM) for 7-day incubations at

30�C. To generate a control, S. coelicolor was incubated in 50 ml of addi-

tive-free ISP2 medium under the same conditions.

Extraction of Liquid Fermentations

Total culture metabolite extracts from liquid cultures were generated by add-

ing 50 ml of methanol to each fermentation flask and shaking the flasks on a

rotary shaker for 1 hr. Mycelia were then separated on a centrifuge and super-

natants were dried in vacuo to yield crude extracts.

Co-culture

Co-culture plates were prepared by addition of 40 ml of sterile ISP2medium to

a one-well OmniTray plate. Cryogenic spore suspensions of S. ceolicolorwere
668 Chemistry & Biology 22, 661–670, May 21, 2015 ª2015 Elsevier
cultivated on agar plates (1003 15 mm) containing 30 ml of ISP2 medium and

incubated at 30�C until the production of spores occurred. The spores were

removed from the surface of the plate using a sterile loop and suspended in

25 ml of ISP2 liquid medium at a concentration of approximately 108 spores/

ml as determined via hemocytometer. This suspension was homogenized

and decanted into a one-well plate as a reservoir. The pins of a 96-well repli-

cator were submerged into the spore solution and applied to the surface of

the solid support within the previously prepared one-well OmniTray plate

without puncturing the surface (Figure S1). The plates were incubated for

24 hr at 30�C. Cryogenically storedM. luteuswas inoculated into 5 ml of sterile

ISP2 medium 8 hr prior to application to the co-culture plate. R. wratislaviensis

stock was inoculated into 5 ml of sterile ISP2 medium 24 hr prior to application

to the co-culture plate. Cryogenically stored T. pulmonis stock was inoculated

into 5ml of sterile heart infusionmedium 24 hr prior to application to the co-cul-

ture plate. For all competing organisms, once an OD600 of �1 was achieved,

the 5-ml sample was diluted into 30 ml of medium in separate one-well plate

reservoirs. The pins of a 96-well replicator were submerged into the solution

and applied to the surface of the solid support within the one-well OmniTray

plate without puncturing the surface in an offset manner relative to the previ-

ously inoculated actinomycete. After 7 days, co-cultures plates were cut into

13 1 cm segments and extracted with equal volumes of methanol by shaking

for 3 hr at 170 rpm and 30�C.

UPLC-IM-MS Data Acquisition and Processing

Extract samples were resuspended in methanol at a concentration of

200 mg/ml. UPLC-IM-MSE data acquisition was performed with a 25-min

gradient. Mobile phase A consisted of H2O with 0.1% formic acid and mobile

phase B consisted of acetonitrile with 0.1% formic acid. A 13 100mm 1.7-mm

particle BEH-T3 C18 column (Waters) was used for chromatographic separa-

tions with a flow rate of 75 ml/min and a column temperature of 40�C. An auto-

sampler with a loop size of 5 ml held at 4�C was used for sample injection. The

initial solvent composition was 100% A, which was held for 1 min and ramped

to 0% A over the next 11 min, held at 0% A for 2 min, and returned to 100% A

over a 0.1-min period. The gradient was held at 100% A for the next 10.9 min

for equilibration. Prior to analysis of the sample queue, ten sequential column-

load injections were performed with 5 ml of the quality control. This protocol in-

creases retention time stability and is critical to reproducible analyses. Quality

control injections were then performed after every ten sample injections to

ensure instrument stability. Quality controls comprised pooled equal aliquots

of all samples analyzed.

IM-MSE spectra were acquired at a rate of 2 Hz from 50 to 2000 Da in pos-

itive ion mode for the duration of each sample analysis on a Synapt G2 HDMS

platform (Waters). The instrument was calibrated to less than 1 ppm mass ac-

curacy using sodium formate clusters prior to analysis. A two-point internal

standard of leucine enkephalin was infused in parallel to the sample at a

flow rate of 7 ml/min and data were acquired every 10 s. The source capillary

was held at 110�Cand 3.0 kV, with a desolvation gas flow of 400 l/hr and a tem-

perature of 150�C. The sampling cone was held at a setting of 35.0, with the

extraction cone at a setting of 5.0. In the MSE configuration, low and high

energy spectra were acquired for each scan. High energy data provided a colli-

sion energy profile from 10 to 30 eV in the trapping region, providing post-

mobility fragmentation. Ion mobility separations were performed with a wave

velocity of 550 m/s, a wave height of 40.0 V, and a nitrogen gas flow of

90 ml/min, with the helium cell flow rate at 180 ml/min. Internal calibrant

correction was performed in real time.

Data were converted to mzXML format using the msconvert tool from the

ProteoWizard package (Kessner et al., 2008). Peak picking and alignment

were performed using XCMS in R (Smith et al., 2006). See Figure S2 for details

and package locations. The resulting data matrix contained 2,154 detected

features and was formatted for analysis using both GEDI and Umetrics.

Formatting for GEDI is outlined below; formatting for Umetrics was performed

by extracting and transposing the sample-feature intensity matrix generated

from XCMS and importing it into Umetrics software. Prior to GEDI and

MVSA, analytical triplicates were averaged. For GEDI analysis, a grid of

253 26 was generated. Software-specific parameters include 100 first phase

training iterations with an initial training radius of 10.0, a learning factor of 0.5, a

neighborhood block size of 20, and a conscience of 5.0; and 160 second-

phase training iterations with a neighborhood radius of 1.0, learning factor of

0.05, neighborhood block size of 2, and conscience of 2.0. A random seed
Ltd All rights reserved



of 10 with a Pearson correlation distance metric and random selection initial-

ization was used.

Metabolite identifications were performed using accurate mass measure-

ments and fragmentation spectra extracted from IM-MSE data. Utilizing drift

time correlations, product ions were correlated appropriately to precursors

for extraction of high energy spectra.
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