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The Askey–Wilson function transform is a q-analogue of the Jacobi function
transform with kernel given by an explicit non-polynomial eigenfunction of the
Askey–Wilson second order q-difference operator. The kernel is called the
Askey–Wilson function. In this paper an explicit expansion formula for the
Askey–Wilson function in terms of Askey–Wilson polynomials is proven. With this
expansion formula at hand, the image under the Askey–Wilson function transform
of an Askey–Wilson polynomial multiplied by an analogue of the Gaussian is
computed explicitly. As a special case of these formulas a q-analogue (in one vari-
able) of the Macdonald–Mehta integral is obtained, for which also two alternative,
direct proofs are presented. © 2001 Elsevier Science (USA)

1. INTRODUCTION

The Macdonald polynomials and their orthogonality relations have an
harmonic analytic interpretation on quantum compact Riemannian sym-
metric spaces; see, e.g., Noumi [16]. In particular, the spherical Fourier
transform on the quantum SU(2) group can be identified with the
polynomial Askey–Wilson transform, which is the transform naturally
associated to the orthogonality relations of the Askey–Wilson polynomials
(see Koornwinder [13]).
In the non-compact set-up, only harmonic analysis on the quantum
SU(1, 1) group has been well understood by now; see, e.g., [10, 11]. This
has led to the study of an explicit generalized Fourier transform in
[11, 12], called the Askey–Wilson function transform. The kernel of this
transform is called the Askey–Wilson function. It is a non-polynomial
eigenfunction of the Askey–Wilson second-order q-difference operator,
given explicitly as a very-well-poised 8f7 series.
On the other hand, Cherednik [5] discussed several types of difference
Fourier transforms, which are naturally related to the spectral theory of
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Macdonald polynomials. Cherednik [5] showed that a particular theta-
function plays a role in the theory of the difference transforms which is
similar to the role of the Gaussian in the theory of Hankel transforms, see
also [7]. This led to explicit formulas for the image under the difference
Fourier transforms of a Macdonald polynomial multiplied by (the inverse
of) the analogue of the Gaussian. Furthermore, in the difference set-up
Cherednik [5] defined certain ‘‘non-polynomial’’ spherical functions as
explicit series expansions in terms of ‘‘polynomial’’ spherical functions
(=Macdonald polynomials), which seems to be purely a quantum phenomenon.
The purpose of the present paper is to incorporate the above mentioned
ideas and constructions of Cherednik into the theory of the polynomial
Askey–Wilson transform, and into the theory of the Askey–Wilson func-
tion transform. We first give an explicit expansion formula for the
Askey–Wilson function in terms of Askey–Wilson polynomials. This
expansion formula provides an explicit link between Cherednik’s construc-
tion [5] of non-polynomial eigenfunctions of q-difference operators with
the constructions of Suslov [19], Ismail and Rahman [9] using the theory
of basic hypergeometric series. We introduce the proper analogue of the
Gaussian for the Askey–Wilson theory, and we compute the image under
the polynomial Askey–Wilson transform of an Askey–Wilson polynomial
multiplied by the inverse of the Gaussian. In the special case of continuous
q-ultraspherical polynomials, these formulas were derived by Cherednik in
[6]. Furthermore, we compute the image under the Askey–Wilson function
transform of an Askey–Wilson polynomial multiplied by the Gaussian. A
special case leads to the evaluation of a q-analogue (in one variable) of the
Macdonald–Mehta integral (cf. Macdonald [14]).
The techniques employed in this paper are entirely based on basic
hypergeometric series manipulations in the spirit of Gasper and Rahman’s
book [8]. The two main ingredients are the orthogonality relations for the
Askey–Wilson polynomials (see [2]), and the inversion formula for the
Askey–Wilson function transform (see [12]).
A generalization of Cherednik’s affine Hecke algebra approach [5] to
the Askey–Wilson level leads to independent proofs of the Plancherel and
inversion formula for the Askey–Wilson function transform, and to inde-
pendent proofs of most of the formulas presented in this paper. In fact, the
affine Hecke algebra approach reduces the problem to the explicit evalua-
tion of the q-analogue of the (one variable) Macdonald–Mehta integral. I
therefore have added two alternative proofs of the evaluation of the (one
variable) q-Macdonald–Mehta integral in this paper, which do not make
use of the properties of the Askey–Wilson function transform. I will discuss
the affine Hecke algebra approach in a future paper.
The plan of the paper is as follows. In Section 2 we recall the basic
properties of the Askey–Wilson polynomials. In Section 3 we give the
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definition of the Askey–Wilson function. The expansion formula for the
Askey–Wilson function in terms of Askey–Wilson polynomials is for-
mulated in Section 4. In Section 4 we also introduce the analogue of the
Gaussian, and we explicitly compute the image under the polynomial
Askey–Wilson transform of an Askey–Wilson polynomial multiplied by the
inverse of the Gaussian. In Section 5 the Askey–Wilson function transform
and its basic properties are recalled, and the image under the Askey–Wil-
son function transform of an Askey–Wilson polynomial multiplied by the
Gaussian is computed explicitly. We also show how this leads to the
evaluation of a q-analogue (in one variable) of the Macdonald–Mehta
integral. In Section 6 some density results are discussed, which are relevant
for the L2-theory of the Askey–Wilson function transform. This leads to
explicit parameter restraints for which the formulas derived in Section 5
completely determine the Askey–Wilson function transform. Appendix A
contains a proof of (a reformulation of) the expansion formula for the
Askey–Wilson function. Appendix B contains two direct proofs for the
evaluation of the q-analogue of the (one variable) Macdonald–Mehta
integral.

Notations and Conventions. Throughout the paper we fix 0 < q < 1. The
notation C× and R× is used for C0{0} and R0{0}, respectively. The non-
negative integers {0, 1, 2, ...} are denoted by Z+. The book [8] of Gasper
and Rahman is used as main reference for notations and results concerning
basic hypergeometric series. For k ¥ Z 2 {.} we write (x1, ..., xr; q)k=
< r
i=1 (xi; q)k with (x; q).=<.

i=0 (1−xq
i) for k=. and (x; q)k=(x; q)./

(xqk; q). for k ¥ Z. Similarly, we write h(a1, ..., ar)=< r
i=1 h(ai) with

h(a)=(a, q/a; q). for (products) of renormalized Jacobi theta functions.
The series expansion

rfs 1
a1, a2, ..., ar
b1, b2, ..., bs

; q, z2=C
.

k=0

(a1, a2, ..., ar; q)k
(q, b1, ..., bs; q)k

[(−1)k q
1
2 k(k−1)]1+s−r zk

defines the rfs basic hypergeometric series. The very-well-poised 8f7 basic
hypergeometric series is defined by

8W7(a; b, c, d, e, f; q, z)

=C
.

k=0

1−aq2k

1−a
(a, b, c, d, e, f; q)k zk

(q, qa/b, qa/c, qa/d, qa/e, qa/f; q)k
.

The bilateral basic hypergeometric series rks is defined by

rks 1
a1, a2, ..., ar
b1, b2, ..., bs

; q, z2=C
n ¥ Z

(a1, a2, ..., ar; q)n
(b1, b2, ..., bs; q)n

[(−1)n q
1
2 n(n−1)] s−r zn.
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We use the branch of the square root ` · which is positive on R > 0, with
branch cut along the half-line (−., 0) of the complex plane.

2. THE ASKEY–WILSON POLYNOMIALS

In order to fix notations, we recall the basic properties of the
Askey–Wilson polynomials in this section.
The Askey–Wilson polynomials depend, besides q, on four parameters
a, b, c, d. To simplify notations it is convenient to use the short-hand
notation

a=(a, b, c, d)

for the four-tuple of parameters a, b, c, d, which we assume throughout this
section to be generically complex and subject to the condition Re(a) > 0.
We define dual parameters

as=(as, bs, cs, ds) (2.1)

by

as=`q−1abcd , bs=ab/as, cs=ac/as, ds=ad/as.

This notation turns out to be quite useful later on when we have to
compose involutions on parameter sets. Since dual parameters play an
important role throughout the paper, it is convenient to have a second, less
cumbersome notation at hand. This second notation is

as=ã, (as, bs, cs, ds)=(ã, b̃, c̃, d̃),

in accordance with [12]. The map a W ã defines an involution on the four
tuple of parameters a. Here the condition Re(a) > 0 is needed in view of
the chosen branch for ` · , see the conventions at the end of the introduc-
tion. Observe in particular that Re(ã)=Re(`q−1abcd) > 0 for generic
parameters a in view of the chosen branch for` · .

Remark 2.1. Throughout the paper we formulate the results under the
assumption Re(a) > 0 in order to be able to use the duality involution s

without worrying about the chosen branch of the square-root. In most
formulas the condition Re(a) > 0 can be easily removed by analytic
continuation.

EXPANSION OF THE ASKEY–WILSON FUNCTION 311



We define a discrete subsetS=S(a; q) … C× by

S={sm | m ¥ Z+}, sm=sm(a; q)=ãqm.

The Askey–Wilson polynomials Es(x)=Es(x; a; q) (s ¥S) are defined
by the series expansion

Esn (x)=4f3 1
ã sn, ã/sn, ax, a/x
ab, ac, ad

; q, q2

=4f3 1
q−n, qn−1abcd, ax, a/x

ab, ac, ad
; q, q2 (2.2)

for n ¥ Z+; see [2]. For fixed s ¥S, the Askey–Wilson polynomial Es(x) is
an eigenfunction of the Askey–Wilson second-order q-difference operator
L=L(a; q),

(Lp)(x)=C(x)(p(qx)−p(x))+C(x−1)(p(q−1x)−p(x)),

C(x)=
(1−ax)(1−bx)(1−cx)(1−dx)

(1−x2)(1−qx2)
,

(2.3)

with eigenvalue m(s), where

m(c)=−1−ã2+ã(c+c−1).

Furthermore, the Askey–Wilson polynomial Es(x) has the duality property

Es(v)=Ẽv(s), s ¥S, v ¥ S̃, (2.4)

where S̃=S(ã; q) and Ẽv( · )=Ev( · ; ã; q) for v ¥ S̃, since ãb̃=ab, ãc̃=ac
and ãd̃=ad. Let T=Ta, q be a closed, counterclockwise oriented contour
in the complex plane, for which the sequences eqZ+ (respectively e−1q−Z+)
are in the interior (respectively exterior) of T for all e=a, b, c, d. In case
|a|, |b|, |c|, |d| < 1, one can for instance take for T the unit circle T in the
complex plane.
We call a function f: C× Q C inversion-invariant if f(x−1)=f(x) for all
x ¥ C×. For ‘‘sufficiently nice’’ inversion-invariant functions f we define
the polynomial Askey–Wilson transform (Ff)(s)=(F(a, q) f)(s) of f at
s ¥S by

(Ff)(s)=
1
4piN

F
T
f(x) Es(x) D(x)

dx
x
,
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where D(x)=D(x; a; q) is the weight function

D(x)=
(x2, 1/x2; q).

(ax, a/x, bx, b/x, cx, c/x, dx, d/x; q).
,

and the constant N=N(a; q) is the Askey–Wilson integral

N=
1
4pi

F
T

D(x)
dx
x

=
(abcd; q).

(q, ab, ac, ad, bc, bd, cd; q).
;

(2.5)

see [2]. Conversely, for ‘‘sufficiently nice’’ functions g:SQ C we define
the transform (Ig)(x)=(I(a, q) g)(x) (x ¥ C×) by

(Ig)(x)=C
s ¥S

g(s) Es(x) h̃(s),

with the weight h̃(s)=h(s; ã; q) for s ¥S given by

h̃(sm)=
Res
x=sm

1 D̃(x)
x
2

Res
x=s0

1 D̃(x)
x
2

=
(1−q2m−1abcd)(q−1abcd, ab, ac, ad; q)m
(1−q−1abcd)(q, bc, bd, cd; q)m

a−2m (2.6)

for m ¥ Z+; cf. [17]. Here D̃(x)=D(x; ã; q) is the weight function D(x)
with respect to dual parameters. In this paper, we consider the transform F
respectively I with respect to two classes of functions f respectively g. We
first consider the function space A=C[x+x−1] consisting of inversion-
invariant Laurent polynomials in the variable x for F. Observe that the
Askey–Wilson polynomials {Es | s ¥S} form a linear basis of A. The
corresponding function space F0(S) for I consists of functions g:SQ C
with finite support. The set of delta-functions {ds | s ¥S}, with ds(v)=ds, v
for s, v ¥S, forms a linear basis ofF0(S). The orthogonality relations

1
4piN

F
T
Es(x) Ev(x) D(x)

dx
x
=ds, v

1
h̃(s)
, s, v ¥S, (2.7)

for the Askey–Wilson polynomials (see [2, Theorem 2.3]), imply that
F(Es)=h̃(s)−1 ds for s ¥S. On the other hand, I(ds)=h̃(s) Es by the
definition of I. This immediately leads to the following theorem.
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Theorem 2.2. F defines a linear bijection F:AQF0(S). Its inverse is
given by I:F0(S)QA.

3. THE ASKEY–WILSON FUNCTION

In this section we recall the definition of the Askey–Wilson function (see,
e.g., [9, 12, 19, 20, 21]), and give some of its basic properties. The
Askey–Wilson function is a non-polynomial eigenfunction of the
Askey–Wilson second order q-difference operator, given explicitly as a
very-well-poised 8f7 series. Recall that an explicit basis of eigenfunctions
for the Askey–Wilson second-order q-difference operator in terms of
very-well-poised 8f7 series is known; see Ismail and Rahman [9] (compare
also with Suslov [19]). See Ruijsenaars [18] for the case |q|=1, which
requires a completely different approach.
We assume that the parameters a=(a, b, c, d) are generically complex,
and subject to the condition Re(a) > 0. The Askey–Wilson function
fc(x)=fc(x; a; q) is defined by

fc(x)=
(qaxc/d̃, qac/d̃x, qabc/d; q).

(ãb̃c̃c, qc/d̃, qx/d, q/dx, bc, qb/d, qc/d; q).
× 8W7(ãb̃c̃c/q; ax, a/x, ãc, b̃c, c̃c ; q, q/d̃c), |q/d̃c| < 1.

(3.1)

Note that fc(x) is normalized differently compared with [12]. It is known
that

(Lfc)(x)=m(c) fc(x),

where L is the Askey–Wilson second-order q-difference operator (2.3), see
e.g. [9, 12, 20]. In view of Bailey’s formula [8, (2.10.10)] we can write

fc(x)=
(qabc/d; q).

(bc, qa/d, qb/d, qc/d, q/ad; q).
4f3 1

ax, a/x, ãc, ã/c

ab, ac, ad
; q, q2

+
(ax, a/x, ãc, ã/c, qabc/d; q).

(qx/d, q/dx, qc/d̃, q/d̃c, ab, ac, bc, qa/d, ad/q; q).

× 4f3 1
qx/d, q/dx, qc/d̃, q/d̃c
qb/d, qc/d, q2/ad

; q, q2 . (3.2)
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In particular, fc(x) extends to a meromorphic function in (c, x) ¥ C××C×

and is inversion-invariant in both x and c. The possible poles of fc(x) are
simple and are located at x ±1=q1+k/d (k ¥ Z+) and c ±1=q1+k/d̃ (k ¥ Z+).
It follows from (3.2) that

fs(x)=
(qabc/d; q).

(bc, q/ad, qa/d, qb/d, qc/d; q).
Es(x), s ¥S, (3.3)

and that

fc(x)=f̃x(c), (3.4)

where f̃x(c)=fx(c; ã; q) is the Askey–Wilson function with respect to dual
parameters. Formula (3.3) implies that the Askey–Wilson function is a
meromorphic continuation of the Askey–Wilson polynomial in its degree.
We will refer to formula (3.3) as the polynomial reduction of the
Askey–Wilson function. Formula (3.4) implies that the geometric param-
eter x and the spectral parameter c of the Askey–Wilson function are
interchangeable in a suitable sense. We will refer to formula (3.4) as the
duality of the Askey–Wilson function. It extends the duality (2.4) of the
Askey–Wilson polynomial.

4. THE EXPANSION FORMULA

We assume in this section that the parameters a=(a, b, c, d) are generi-
cally complex and subject to the condition Re(a) > 0. In order to formulate
the expansion formula for the Askey–Wilson function in terms of
Askey–Wilson polynomials, it is important to keep track of two involutions
on the four tuples a=(a, b, c, d). First we have the concept of dual
parameters, which we have already used extensively in the previous sections.
It is now more convenient to write the dual parameter with sub-index s, so

as=(as, bs, cs, ds)=(ã, b̃, c̃, d̃)=ã,

with as defined by (2.1). Second, we define y by

ay=(ay, by, cy, dy)=(a, b, c, q/d). (4.1)

We admit compositions of s and y, for instance we write

(as)y=asy=(asy, bsy, csy, dsy)

EXPANSION OF THE ASKEY–WILSON FUNCTION 315



for first applying s to a, and then applying y to as, i.e.,

asy=(ã, b̃, c̃, q/d̃).

Observe that

asys=aysy, ayy=a. (4.2)

Furthermore, we have seen in Section 2 that ass=a since Re(a) > 0.
Finally we use the convention that if H=H(a) is an object depending
on a, then e.g. Hsy, or Hsy, denotes the same object in which the four tuple
a is replaced by asy. We sometimes write H2=Hs to simplify notations.
We define the Gaussian G(x)=G(x; a; q) by

G(x)=(dx, d/x; q)−1. . (4.3)

The terminology stems from Cherednik’s work [5, 6] on Gaussians
associated with Macdonald polynomials.
The analytic part fanc (x)=fanc (x; a; q) of the Askey–Wilson function fc(x)

=fc(x; a; q) is defined by

fanc (x)=G
y(x)−1 Gsy(c)−1 fc(x)

=(qx/d, q/dx, qc/d̃, q/d̃c; q). fc(x). (4.4)

The properties of fc(x) as described in Section 3 imply that fanc (x) is
analytic in (c, x) ¥ C××C×.
Finally we observe thatSy=Ssy, since

sym=s
sy
m=q

m
`abc/d , m ¥ Z+. (4.5)

We can now formulate the following key proposition.

Proposition 4.1. For s ¥Sy=Ssy and c ¥ C×,

(Fy(fanc ))(s)=
Gysy(s)
Gysy(sy0)

Esys (c). (4.6)

The proof of the proposition, which is based on direct calculations using
the theory of basic hypergeometric series, is given in Appendix A.
Proposition 4.1 leads to the following expansion formula for the analytic
part fanc (x) of the Askey–Wilson function.
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Theorem 4.2 (The Expansion Formula).

fanc (x)=G
ysy(sy0)

−1 C
s ¥S

y

hys(s) Gysy(s) Esys (c) E
y
s(x)

= C
.

m=0
4f3 1

q−m, qmabc/d, ax, a/x
ab, ac, qa/d

; q, q2

× 4f3 1
q−m, qmabc/d, ãc, ã/c

ab, ac, bc
; q, q2

×
(1−abcq2m/d)(abc/d, ab, ac; q)m
(1−abc/d)(q, qb/d, qc/d; q)m

1 −1
ad
2m qm(m+1)/2

(4.7)

for all (c, x) ¥ C××C×.

Proof. First observe that the terms hys(s) Esys (c) E
y
s(x) for s ¥Sy in the

expansion sum (4.7) are well defined in view of (4.5). Observe furthermore
that the second expansion sum in (4.7) converges absolutely and uniformly
for (c, x) in compacta of C××C× due to the Gaussian type factor qm(m+1)/2

(use, e.g., [8, (7.5.13)] to control the convergence of the 4f3’s in the
expansion sum). In particular, the second expansion sum in (4.7) is analytic
in (c, x) ¥ C××C×. We can now verify the second identity in (4.7) term-
wise using the explicit expression for the Askey–Wilson polynomial as a
balanced 4f3 series (see (2.2)), and using the identities

Gysy(sym)
Gysy(sy0)

=
(bc; q)m
(qa/d; q)m
1 −a
d
2m qm(m+1)/2

and

hys(sym)=
(1−abcq2m/d)(abc/d, ab, ac, qa/d; q)m
(1−abc/d)(q, bc, qb/d, qc/d; q)m

a−2m

for m ¥ Z+. So it remains to prove the first identity in (4.7). Denote kc(x)
for the right hand side of (4.7), which we consider for arbitrary, fixed
c ¥ C× as an analytic, inversion-invariant function in x ¥ C×. Recall that
the defining expansion sum for kc(x) converges absolutely and uniformly
for x in compacta of C×. In particular, when applying the polynomial
Askey–Wilson transform Fy to kc, it is allowed to interchange summation

EXPANSION OF THE ASKEY–WILSON FUNCTION 317



and integration. Combined with the orthogonality relations (2.7) for the
Askey–Wilson polynomials, we obtain for s ¥Sy,

(Fy(kc))(s)=Gysy(s
y
0)
−1 C
v ¥S

y

hys(v) Gysy(v) Esyv (c)(F
y(Eyv))(s)

=
Gysy(s)
Gysy(sy0)

Esys (c)

=(Fy(fanc ))(s),

where the last equality follows from Proposition 4.1. Since any analytic,
inversion-invariant function f: C× Q C is uniquely determined by its image
under the polynomial Askey–Wilson transform Fy, we conclude that
kc(x)=fanc (x) for all x ¥ C×, as desired. L

Remark 4.3. The right hand side of the expansion formula (4.7)
resembles the (non-symmetric) Poisson-kernel for Askey–Wilson polyno-
mials, see [1]. The essential difference is the occurrence of the Gaussian
Gysy(s) in the expansion sum (4.7), which is not present in the Poisson-
kernels. It is also due to this extra factor that the expansion sum (4.7) has
better convergence properties.

We explore now the implications of formula (4.6) for the polynomial
Askey–Wilson transform F and its inverse I. Let F(S) be the space of
functions g:SQ C.

Proposition 4.4. For s ¥Sy=Ssy, we have

F(EysG
−1)=

(bc, bc, d/a, ad, q/ad, bd, cd; q).
(abcd; q).

Gysy(s) Esys G
sy (4.8)

as functions inF(S).

Proof. Let s ¥Sy and v ¥S. It follows from the polynomial reduction
(3.3) of the Askey–Wilson function, (4.4) and (4.6), that

(F(EysG
−1))(v)=

(bc, d/a, ad, bd, cd; q).
(abcd; q).

(F(fysG
−1))(v)

=
(bc, d/a, ad, bd, cd; q).

(abcd; q).
Gysy(s)(F(fan, ys ))(v)

=
(bc, d/a, ad, bd, cd; q).

(abcd; q).

Gysy(s) Gsy(v)
Gsy(s0)

Eysyv (s).
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Now S=Ssys and Sy=Ssy=Ssyss, so we conclude from (4.2) and from
the duality (2.4) of the Askey–Wilson polynomials that

Eysyv (s)=E
sys
v (s)=E

sy
s (v). (4.9)

Furthermore, Gsy(s0)=(bc, q/ad; q)
−1
. , hence

(F(EysG
−1))(v)=

(bc, bc, d/a, ad, q/ad, bd, cd; q).
(abcd; q).

Gysy(s) Esys (v) G
sy(v),

as desired. L

Remark 4.5. Observe that

G(x)−1D(x)=
(x2, 1/x2; q).

(ax, a/x, bx, b/x, cx, c/x; q).

is the orthogonality weight function for the continuous dual q-Hahn poly-
nomials. Formula (4.8) thus computes the constant term of the product of
twoAskey–Wilsonpolynomials (withparameters (a, b, c, q/d)and (a, b, c, d)
respectively) with respect to the continuous dual q-Hahn orthogonality
measure. This observation leads to the following alternative way to prove
Proposition 4.4. First use the explicit expansion of the Askey–Wilson
polynomial as linear combination of continuous dual q-Hahn polynomials
(see [8, (7.6.8) and (7.6.9)], and be aware of the fact that a factor (q; q)n is
missing in the numerator of [8, (7.6.9)]), and substitute these for the two
Askey–Wilson polynomials Eys (s ¥Sy) and Ev (v ¥S) in (F(EysG

−1))(v).
Using the orthogonality relations for the continuous dual q-Hahn poly-
nomials we arrive at a single sum, which is easily seen to give the same
result as (4.8).

Cherednik’s formulas [6, (1.15)] involving continuous q-ultraspherical
polynomials can now be generalized to the level of Askey–Wilson poly-
nomials as follows.

Theorem 4.6. The polynomial Askey–Wilson transform F=F(a; q)
defines a linear bijection

F:AG−1Q (AGsy)|S …F(S),

with inverse

I: (AGsy)|S QAG−1.
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Explicitly, we have

F(EysG
−1)=

(bc, bc, d/a, ad, q/ad, bd, cd; q).
(abcd; q).

Gysy(s) Esys G
sy,

I(Esys G
sy)=

(abcd; q).
(bc, bc, d/a, ad, q/ad, bd, cd; q).

Gysy(s)−1 EysG
−1,

(4.10)

for s ¥Sy=Ssy.

Proof. In view of the previous proposition, it suffices to prove the
explicit formula for I(Esys G

sy).
Let s ¥Sy=Ssy, then I(Esys G

sy)(x) is given by a series expansion in
Askey–Wilson polynomials Ev(x) (v ¥S) which converges absolutely and
uniformly on compacta of x ¥ C×, compare with the proof of Theorem 4.2.
In particular, I(Esys G

sy) is an inversion-invariant, analytic function.
Furthermore, when applying F to I(Esys G

sy) we may interchange summation
and integration. The orthogonality relations (2.7) for the Askey–Wilson
polynomials then show that

F(I(Esys G
sy))=Esys G

sy.

On the other hand, (4.8) shows that Esys G
sy ¥F(S) is the image under F of

the analytic, inversion-invariant function

(abcd; q).
(bc, bc, d/a, ad, q/ad, bd, cd; q).

Gysy(s)−1 EysG
−1.

Since any inversion-invariant, analytic function f: C× Q C is uniquely
determined by its image under the polynomial Askey–Wilson transform F,
we conclude that

I(Esys G
sy)=

(abcd; q).
(bc, bc, d/a, ad, q/ad, bd, cd; q).

Gysy(s)−1 EysG
−1,

as desired. L

Remark 4.7. The explicit formula (4.10) for I(Esys G
sy) (s ¥Ssy) can

also be derived from the polynomial reduction (3.3) for the Askey–Wilson
function and from the expansion formula (4.7), since

EysG
−1=
(bc, d/a, ad, bd, cd; q).

(abcd; q).
G−1fys

=
(bc, d/a, ad, bd, cd; q).

(abcd; q).
Gysy(s) fan, ys
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=
(bc, d/a, ad, bd, cd; q).
(abcd; q). Gsy(s0)

Gysy(s) C
v ¥S

hs(v) Gsy(v) Eysyv (s) Ev

=
(bc, bc, d/a, ad, q/ad, bd, cd; q).

(abcd; q).
Gysy(s) C

v ¥S

hs(v) Gsy(v) Esys (v) Ev

=
(bc, bc, d/a, ad, q/ad, bd, cd; q).

(abcd; q).
Gysy(s) I(Esys G

sy),

where the fourth equality follows from (4.9).
Remark 4.8. The special case s=sy0 in the formula (4.10) for I(E

sy
s G

sy)
gives

(dx, d/x; q).=
(bc, ad, q/ad, bd, cd; q).

(abcd; q).
(I(Gsy))(x)

=
(ad, bd, cd; q).
(abcd; q).

× C
.

m=0

(1−q2m−1abcd)(q−1abcd, ab, ac; q)m
(1−q−1abcd)(q, bd, cd; q)m

1−d
q
1
2a
2m qm

2

2 Esm(x),

which may be viewed as a generalization of Jacobi’s triple product identity
[8, (1.6.1)] to the level of the Askey–Wilson polynomials. Specializing
x=ss0=a in this formula leads to a limiting case of Rogers’ [8, (2.7.1)]
summation formula of a very-well-poised 6f5 series,

5f5 1
ã2, qã, −qã, ab, ac
ã, −ã, bd, cd, 0

; q, d/a2=(abcd, d/a; q).
(bd, cd; q).

.

The special case (F(G−1))(ã) of (4.10) is the evaluation of the Askey–
Wilson integral with one of the four parameters equal to zero; cf. Remark
4.5. In Cherednik’s terminology [5], both (F(G−1))(ã) and (I(Gsy))(a) are
(polynomial) q-analogues of the (one variable) Macdonald–Mehta integral.

5. THE ASKEY–WILSON FUNCTION TRANSFORM

In [12], Koelink and the author defined and studied a generalized
Fourier transform called the Askey–Wilson function transform, whose
kernel is given by the Askey–Wilson function. In this section we show that
Proposition 4.1, together with the inversion formula [12, Theorem 1] for
the Askey–Wilson function transform, leads to an explicit expression for
the image under the Askey–Wilson function transform of an Askey–Wilson
polynomial multiplied by a Gaussian. These explicit formulas lead to a
non-polynomial analogue of Theorem 4.6.
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We start by recalling the definition and the main properties of the
Askey–Wilson function transform, see [12] for more details. We use slightly
different conventions and normalizations compared with [12].
We fix a five tuple

b=(a, t)=(a, b, c, d, t) ¥ R5

satisfying the conditions

t < 0, 0 < b, c [ a < d/q,

bd, cd \ q, ab, ac < 1.
(5.1)

The parameters b, c, d then automatically satisfy b, c < 1 and d > q. The
dual parameter ts=t̃ is defined by

ts=t̃=
1
adt
. (5.2)

Note here the slightly different convention compared with [12, (4.4)]. The
dual parameters bs=b̃=(ã, t̃) satisfy the same conditions (5.1) as
b=(a, t), see [12, Lemma 1]. In fact, b W bs defines an involution on the
five tuples b=(a, t) satisfying (5.1). For an object H=H(b) depending on
b, we write Hs, or H2 , for H(bs).
A new weight functionW(x)=W(x; b; q) is defined by

W(x)=D(x) G(x),

where D(x)=D(x; a; q) is the weight function for the Askey–Wilson
polynomials and G(x)=G(x; b; q) is the quasi-constant

G(x)=
h(dx, d/x)

h(dtx, dt/x)
. (5.3)

For generic parameters b such that the weight functionW has simple poles,
we define a measure m=m(· ; b; q) by

F f(x) dm(x)=
1
4pi

F
x ¥ T
f(x) W(x)

dx
x

+
1
2

C
x ¥ D
(f(x)+f(x−1)) Res

y=x

1W(y)
y
2 , (5.4)

where D=D+ 2 D− is the infinite, discrete set given by

D+={aqk | k ¥ Z+ : aqk > 1},

D−={dtqk | k ¥ Z : dtqk < −1}.
(5.5)
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We can extend the definition of the measure m to a positive measure for all
parameters b satisfying (5.1), using the fact that the discrete weights
m({x})=m({x−1}) for x ¥ D depend continuously on b; see [12, (5.7)
and (5.8)].
Let L2+(m) be the Hilbert space of L

2-functions f with respect to the
measure m satisfying f(x)=f(x−1) m-a.e. The Askey–Wilson function
transform J=J(b; q) is now defined by

(Jf)(c)=
1
K

F f(x) fc(x) dm(x)

for compactly supported functions f ¥ L2+(m), with K=K(b; q) the posi-
tive constant

K=
Ny

`h(adt, bdt, cdt, qt)

=
(qabc/d; q).

(q, ab, ac, bc, qa/d, qb/d, qc/d; q).

1

`h(adt, bdt, cdt, qt)
, (5.6)

where N is the Askey–Wilson integral, see (2.5).
We can now restate [12, Theorem 1] as follows.

Theorem 5.1. The Askey–Wilson function transform J uniquely extends
by continuity to an isometric isomorphism

J: L2+(m)Q L
2
+(m

s).

The inverse of J is given by Js: L2+(m
s)Q L2+(m).

Combined with (4.6), we obtain the following main result of this section.

Theorem 5.2. Suppose that the parametersb=(a, t) satisfy the conditions
(5.1). Let s ¥Sy=Ssy, then

(J(EysG
y))(c)=

1

`h(adt, bdt, cdt, qt)

Gys(sy0)
Gys(s)

Esys (c) G
s(c)−1 Gs(c)−1,

(J(EysG
−1G−1))(c)=`h(adt, bdt, cdt, qt)

Gsys(s)
Gsys(sy0)

Esys (c) G
sy(c),

(5.7)

as identities in L2+(m
s).
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Proof. Observe that the factor h(adt, bdt, cdt, qt) appearing in the formulas
is invariant under the parameter involution s. In view of Theorem 5.1 it
thus suffices to prove the explicit evaluation formula for J(EysG

−1G−1)
with s ¥Sy. We show that it is in fact a reformulation of (4.6).
Observe that EysG

−1G−1 ¥ L2+(m), since it is a compactly supported
function (use here that G−1 vanishes on the discrete mass points D− of the
measure m). For the moment we assume that the parameters b=(a, t)
satisfy the conditions (5.1) and that they are generic. Recall that the
conditions (5.1) on the parameters b imply that 0 < b, c < 1 and d > q. By
Cauchy’s Theorem we thus conclude that

1
4pi

F
T
y
f(x) Dy(x)

dx
x
=
1
4pi

F
T
f(x) Dy(x)

dx
x

+
1
2

C
x ¥ D+

(f(x)+f(x−1)) Res
y=x

1Dy(y)
y
2

for analytic, inversion-invariant functions f: C× Q C, where D+ is given by
(5.5). Since G−1 vanishes on the discrete mass points D− of the measure m,
and since

fc(x) G(x)−1 G(x)−1W(x)=fc(x) Gy(x)−1 Dy(x)

=Gsy(c) fanc (x) Dy(x),

we obtain for s ¥Sy,

(J(EysG
−1G−1))(c)=

1
K
3 1
4pi

F
T
y
Eys(x) fanc (x) Dy(x)

dx
x
4 Gsy(c)

=
Ny

K
(Fy(fanc ))(s) G

sy(c)

=
Gysy(s) Ny

Gysy(sy0) K
Esys (c) G

sy(c),

where the last equality is due to (4.6). The desired identity now follows
from (4.2) in view of the explicit expression (5.6) of the constant K. The
generic conditions on the parameters b can be removed by continuity. L

Consider the sub-spaces Vcl=Vcl(b; q) and Vstr=Vstr(b; q) of L
2
+(m)

defined by

Vcl=AG−1G−1, Vstr=AGy,
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cf. (the proof of) Theorem 5.2. The subscripts cl and str stand for ‘‘classical’’
and ‘‘strange,’’ respectively. This terminology is justified by the harmonic
analytic interpretation of the Askey–Wilson function transform, see [11].
Indeed, when we regard m as the Plancherel measure for the quantum
SU(1, 1) group, then the functions f ¥ Vcl are supported on the ‘‘classical
part’’ of the measure m, which is the part of the measure representing the
contributions of the principal unitary series representations and of the
positive discrete series representations to the Plancherel measure. This
translates to the property that all functions f ¥ Vcl vanish on the discrete
mass points D− of the measure m. The functions Vstr on the other hand also
have support on the ‘‘strange part’’ D− of the measure m, which is the part
of the measure representing the contributions of the strange series repre-
sentations to the Plancherel measure.
Obviously Vcl 5 Vstr={0} since any f ¥ Vcl is zero on D− . Note that
Vcl À Vstr … L2+(m) is not an orthogonal direct sum decomposition, since for
all s, u ¥Sy,

F
Eyu(x)
G(x) G(x)

Eys(x) G
y(x) dm(x)=

Ny

hys(s)
ds, u

by the orthogonality relations (2.7) for the Askey–Wilson polynomials; cf.
the proof of Theorem 5.2. In the next section it is shown that Vcl À Vstr is a
dense sub-space of L2+(m) if we impose an extra condition on the allowed
parameter values for b (see Proposition 6.4). For these parameters b, the
explicit formulas (5.7) thus completely determine the Askey–Wilson func-
tion transform. In particular, Vstr then completely takes care of the ‘‘strange
part’’ D− of the measure m.
The formulas (5.7) immediately lead to the following result.

Corollary 5.3. The restriction of the Askey–Wilson function transform
J to the sub-space Vcl … L

2
+(m) defines a linear bijection J |Vcl : Vcl Q V

s
str.

The inverse of J |Vcl is given by J
s |Vsstr .

The transform J |Vcl is closely related to the polynomial Askey–Wilson
transform Fy acting upon the sub-space AGy−1. In fact, for generic b

satisfying the conditions (5.1), we have

(J(EysG
−1G−1))(v)=

(qabc/d; q). Ny

(bc, q/ad, qa/d, qb/d, qc/d; q). K
(Fy(Ev Gy−1))(s)

(5.8)

for all v ¥S and s ¥Sy by the polynomial reduction (3.3) of the Askey–
Wilson function, compare with the proof of Theorem 5.2. Observe in
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particular that the explicit formulas (4.10) for the polynomial Askey–
Wilson transform Fy acting on AGy−1 are direct consequence of (5.8) and
the explicit formulas (5.7) for J |Vcl .
On the other hand, by the strong convergence of the Gaussian Gy(x) as
|x| tends to zero it is possible to rewrite J |Vstr as a completely discrete
transform by shrinking the radius of the integration circle T in m to zero
while picking up residues.
These remarks show that the Askey–Wilson function transform J con-
tains a continuous, polynomial (‘‘compact’’) type transform and a discrete,
non-polynomial (‘‘non-compact’’) type transform in a natural way, which
are essentially each-others inverses. In the opposite direction, one may view
the Askey–Wilson function transform J as a self-dual transform obtained
by glueing a continuous, compact type transform and a discrete,
non-compact type transform together.

Remark 5.4. Cherednik’s affine Hecke algebra approach [5] extended
to the present Askey–Wilson set-up shows that there is a natural flexibility
in the choice of the measure m. More precisely, it turns out that for several
different choices of measure m, the associated Fourier transform Jm admits
explicit formulas which have a similar structure as the formulas (5.7) for
the Askey–Wilson function transform. This provides another explanation
for the similarities between Theorem 4.6 and Theorem 5.2. The ‘‘proper
choice’’ of measure m (and hence of Fourier transform Jm) thus depends
on the applications which one has in mind. For harmonic analysis on the
quantum SU(2) and quantum SU(1, 1) group, the ‘‘proper choice’’ is the
polynomial Askey–Wilson transform F and the Askey–Wilson function
transform J, respectively (see [11, 13], respectively).

We have used the inversion formula for the Askey–Wilson function
transform (see Theorem 5.1) to explicitly compute the Askey–Wilson func-
tion transform J acting upon functions f ¥ Vstr, see Theorem 5.2. On the
other hand, the formulas (5.7) can be used to reprove the inversion formula
and Plancherel formula for the Askey–Wilson function transform for those
parameter values b such that Vcl À Vstr … L2+(m) is dense (see Proposition
6.7 for the related density result). It would therefore be of interest to have
an alternative proof of the formulas (5.7) without referring to the main
results of [12]. This is also of interest for the study of multivariable gener-
alizations of the present results.
An alternative proof for the key formulas (5.7) is indeed possible using
Cherednik’s theory [5, 6] of affine Hecke algebras, together with some
elementary elliptic function theory. We do not go into details here, but only
remark that these techniques reduce the explicit computation of J on Vstr
to the evaluation of (J(Gy))(ã), which is a q-analogue of the (one variable)
Macdonald–Mehta integral; cf. Macdonald [14]. The integral (J(Gy))(ã)
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can also be viewed as a ‘‘non-polynomial’’ analogue of the (one variable)
q-Macdonald–Mehta integrals as discussed in Remark 4.8. The evaluation
of (J(Gy))(ã) is equivalent to the following explicit identity.

Theorem 5.5 (One variable q-Macdonald–Mehta integral). For generic
parameters a, b, c, u ¥ C× with q < |u| < 1 and |a|, |b|, |c| < 1, we have

1
4pi

F
T

(x2, 1/x2; q).
(ax, a/x, bx, b/x, cx, c/x; q). h(ux, u/x)

dx
x

+C
.

k=1
Res
x=uq−k
1 (x2, 1/x2; q).
(ax, a/x, bx, b/x, cx, c/x; q). h(ux, u/x) x

2

=
1

(q, ab, ac, bc; q).

h(abcu)
h(au, bu, cu)

. (5.9)

Proof. For generic parameters b satisfying (5.1) and satisfying |a|, |b|,
|c| < 1 and q < |dt| < 1, we compute (J(Gy))(ã) in two different ways. The
first way is by substituting the definition of the Askey–Wilson function
transform J and using the polynomial reduction (3.3) for the Askey–
Wilson function. This gives the left hand side of (5.9) with u=dt, mul-
tiplied by the constant

(q, ab, ac; q).
(q/ad; q).

`h(adt, bdt, cdt, qt) .

The second way to compute (J(Gy))(ã) is by using (5.7) (take s=sy0 and
c=ã in the first formula of (5.7)). This gives the explicit infinite product
evaluation

(J(Gy))(ã)=
1

`h(adt, bdt, cdt, qt)

h(qt, abcdt)

(bc, q/ad; q).
.

Combining both expressions for (J(Gy))(ã) gives (5.9) with u=dt. The
conditions on the parameters can be removed by analytic continuation. L

Due to its independent interest, two alternative, direct proofs of (5.9) are
given in Appendix B.

6. DENSITY RESULTS

We next address the question whether Vcl À Vstr is a dense sub-space of
L2+(m), i.e., whether the explicit formulas (5.7) completely determine the
Askey–Wilson function transform. Surprisingly, the solution to this
problem can be derived from density results related to the polynomial
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Askey–Wilson transform F. We therefore first discuss the L2-theory of F
and of its inverse I.
For our purposes it suffices to restrict attention to parameters

a=(a, b, c, d) satisfying the conditions

(i) a, b, c, d ¥ R,
(ii) d < 0 < a and abcd > 0,
(iii) ab, ac, ad, bc, bd, cd < 1.

Under these conditions, at most two of the four parameters have moduli
\ 1. If two parameters have moduli \ 1, then they have opposite sign. For
future reference, we write Vpol for the set of four-tuples a=(a, b, c, d)
satisfying the conditions (i), (ii), and (iii).
For generic a ¥ Vpol and for sufficiently regular, inversion-invariant func-
tions f (e.g. for f ¥A or f ¥AG−1), we can rewrite the Fourier transform
(Ff)(s) (s ¥S) by Cauchy’s Theorem as

(Ff)(s)=F f(x) Es(x) dn(x), (6.1)

with n=n( · ; a; q) the positive measure

F f(x) dn(x)=
1
4piN

F
T
f(x) D(x)

dx
x

+
1
2N

C
x ¥ F
(f(x)+f(x−1)) Res

y=x

1D(y)
y
2 , (6.2)

with F=F(a; q) the finite, discrete set

F={eqk | e ¥ {a, b, c, d}, k ¥ Z+ such that |eqk| > 1}

and with N the Askey–Wilson integral (2.5). By continuity in the param-
eters a, both (6.1) and (6.2) may be extended to all parameters a ¥ Vpol. We
use the notation L2+(n) for the L

2-functions f: C× Q C with respect to the
measure n satisfying f(x)=f(x−1) n-a.e. Sometimes it is convenient to
think of the measure n as a positive measure n̂ on the real line supported on

[−2, 2] 2 F̂, F̂={x+x−1 | x ¥ F},

by the change of variable y=x+x−1. The measure n̂ is then given by

F f(y) dn̂(y)=
1

4pN
F
2

−2
f(y)

D̂(y)

(1−y2/4)
1
2
dy+C

y ¥ F̂
f(y) n̂({y}),
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with the weight function D̂ satisfying D̂(x+x−1)=D(x) and with the
discrete weights

n̂({x+x−1}) :=n({x})+n({x−1})=2n({x}), x ¥ F.

The Hilbert space L2+(n) can then be identified with the Hilbert space L
2(n̂)

of L2-functions with respect to the measure n̂ (cf. [2]). Observe that the
space C[x] of polynomials with complex coefficients is dense in L2(n̂) since
n̂ is compactly supported. Equivalently,A … L2+(n) is a dense sub-space.
For a ¥ Vpol we define the discrete measure m=m( · ; a; q) supported on S
by

F g(x) dm(x)= C
s ¥S

g(s) h̃(s).

Observe that m is a positive measure since the inverse quadratic norm h̃(s)
(see (2.6)) of the Askey–Wilson polynomial Es is strictly positive for
a ¥ Vpol. Let L2(m) be the corresponding L2-space. By continuity, Theorem
2.2 implies the following result.

Corollary 6.1. Let a ¥ Vpol. The polynomial Askey–Wilson transform F
and its inverse I extend by continuity to isometric isomorphisms

F: L2+(n)Q L
2(m),

I: L2(m)Q L2+(n).

Furthermore, I : L2(m)Q L2+(n) is the inverse of F : L
2
+(n)Q L

2(m).

Combined with Theorem 4.6 we obtain the following lemma.

Lemma 6.2. Let a ¥ Vpol. The orthocomplement of AG−1 in L2+(n)
(respectively of (AGsy)|S in L2(m)) is finite dimensional. In both cases, the
dimension of the orthocomplement is

#{n ¥ Z+ | |dqn| > 1}.

In particular, AG−1 … L2+(n) (respectively (AG
sy)|S … L2(m)) is dense if

and only if |d| [ 1.

Proof. Let a=(a, b, c, d) ¥ Vpol. Let Ĝ be the meromorphic function
satisfying Ĝ(x+x−1)=G(x). Let F̂0 be the intersection of the polar divisor
of Ĝ with the set F̂ of discrete mass points of n̂. It is easy to verify that

F̂0={dqn+d−1q−n | n ¥ Z+ : |dqn| > 1}.
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The closure of C[x] Ĝ−1 in L2(n̂) is exactly the sub-space of functions
f ¥ L2(n̂) which vanish on F̂0, since n̂ is compactly supported. Hence the
orthocomplement of C[x] G−1 in L2(n̂) is a #F̂0-dimensional sub-space
of L2(n̂). Equivalently, the orthocomplement of AG−1 in L2+(n) is a
#F̂0-dimensional sub-space of L

2
+(n).

The identities in Theorem 4.6, which were proven for generic parameters
a, are valid for all a ¥ Vpol since they are regular at a ¥ Vpol. By Theorem 4.6
and Corollary 6.1 the previous results on AG−1 … L2+(n) thus imply that
the orthocomplement of (AGsy)|S in L2(m) is a #F̂0-dimensional sub-space
of L2(m). L

Remark 6.3. Suppose that a ¥ Vpol with |d| > 1. It follows from
Corollary 6.1 and from the proof of Lemma 6.2 that the functions
fn ¥ L2(m) (n ¥ Z+: |dqn| > 1) defined by

fn(s)=Es(dqn)=4f3 1
ãs, ã/s, adqn, q−na/d

ab, ac, ad
; q, q2 , s ¥S

form an orthogonal basis for the orthocomplement of (AGsy)|S in L2(m).
The quadratic norm of fn (n ¥ Z+ : |dqn| > 1) in L2(m) is given by

F |fn(s)|2 dm(s)=
N

Res
y=dqn
1D(y)
y
2

for the generic parameters a ¥ Vpol such that the pole of D(y) at y=dqn is
simple.

Corollary 6.4. Let u, v ¥ R× with |u| [ 1 and v > 0. Let r=ru, v be the
positive discrete measure given by

F f(x) dr(x)=C
.

k=0
f(uqk+u−1q−k) vkqk(k−1) (6.3)

and let L2(r) be the associated L2-space. Then C[x] is dense in L2(ru, v) if
and only if v [ 1.

Proof. Let a=(a, b, c, d) ¥ Vpol. Observe that the condition a ¥ Vpol
implies ã < q−

1
2, so sn+s

−1
n =sm+s

−1
m for m, n ¥ Z+ iff n=m, where (recall)

sn=ãqn. Hence we can define a positive, discrete measure r̂ supported on
sn+s

−1
n (n ¥ Z+), with weights

r̂({sn+s
−1
n })=|G

sy(sn)|2 m({sn}), n ¥ Z+.
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The corresponding L2-space L2(r̂) is isomorphic to L2(m) via the surjective
isometric isomorphism T: L2(m)Q L2(r̂) defined by

(Tf)(sn+s
−1
n )=G

sy(sn)−1 f(sn), n ¥ Z+.

Furthermore, the image of (AGsy)|S under T is exactly the space
C[x] … L2(r̂) of polynomials with complex coefficients. It thus follows
from the previous lemma that C[x] is dense in L2(r̂) iff |d| [ 1.
A direct computation using (2.6) shows that

r̂({sn+s
−1
n })=c(sn+s

−1
n ) rã, d2({sn+s

−1
n }), n ¥ Z+

with ru, v the positive, discrete measure defined by (6.3) and with

c: supp(r̂)=supp(rã, d2)Q R > 0

a strictly positive, bounded function with bounded inverse. We conclude
that C[x] is dense in L2(rã, d2) iff |d| [ 1.
Choose now v > 0 and 0 < u [ 1 arbitrarily. Then there exist parameters

a=(a, b, c, d) ¥ Vpol such that

d2=v, ã=u.

This proves the corollary in case 0 < u [ 1. The corollary for −1 [ u < 0
follows from the result for 0 < u [ 1, using the surjective isometric
isomorphism S: L2(ru, v)Q L2(r−u, v) defined by (Sf)(x)=f(−x). L

Remark 6.5. Borichev and Sodin [4, Theorem A] formulated criteria
for the density of the space of polynomials C[x] in a Lp-space (p \ 1) when
the associated measure is supported on the zero set of a Hamburger class
function B; see [4] for more details. The measure ru, v is of this particular
form, with the associated Hamburger class function B given by

B(z)= D
l ¥ supp(ru, v)

11− z
l
2 .

It is a nice exercise to re-prove Corollary 6.4 using these general criteria of
Borichev and Sodin.

Remark 6.6. By a result of Riesz (see, e.g., [3, Lemma A]), it is easy to
verify that the measure ru, v for u, v ¥ R× with |u| [ 1 and v > 0 corresponds
to a determinate moment problem if and only if 0 < v [ q2. In particular,
ru, v is a N-extremal measure (or, in the terminology of [4], a canonical
measure) if and only if q2 < v [ 1. If ru, v is determinate (i.e. if v [ q2), then
ru, v has a finite index of determinacy, which can be computed explicitly
(see Berg and Duran [3] for a detailed study of measures with finite index
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of determinacy). On the other hand, if ru, v is indeterminate and the poly-
nomials are not dense in L2(ru, v) (i.e. if v > 1), then the dimension of the
orthocomplement of C[x] in L2(ru, v) equals #{k ¥ Z+ | |vq2k| > 1} by, e.g.,
[4, Proposition A1.4]. This observation nicely relates to Lemma 6.2.

We now use Corollary 6.4 to derive the following density result for the
linear sub-space Vcl À Vstr … L2+(m).

Proposition 6.7. Let the parameters b=(a, t) satisfy the conditions
(5.1). Let k ¥ Z be the unique integer such that 1 < |dtqk| [ q−1.
The sub-space

Vcl À Vstr … L2+(m)

is dense if and only if |ãtqk| \ 1. Furthermore, the (non-empty) set of
parameters b satisfying (5.1) and satisfying the condition |ãtqk| \ 1 is
invariant under the duality involution s.

Proof. We first prove the last part of the proposition. Suppose that the
parameters b satisfy (5.1) and |ãtqk| \ 1, where k ¥ Z is the unique integer
such that 1 < |dtqk| [ q−1. The dual parameters b̃=bs then satisfy the
conditions (5.1) in view of [12, Lemma 1]. It remains to verify the inequal-
ity |at̃q r| \ 1, where r ¥ Z is the unique integer such that 1 < |d̃t̃q r| [ q−1. By
the definition of dual parameters the condition 1 < |d̃t̃q r| [ q−1 is equivalent
to the condition q [ |ãtq−r| < 1. In particular, −r > k. But then

|at̃q r| \ q−1 |at̃q−k|=q−1 |d−1t−1q−k| \ 1,

which is the desired inequality.
We now focus on the first part of the statement. We fix parameters b

satisfying the conditions (5.1). Via the change of variable y=x+x−1 we
can rewrite the measure m as a positive measure m̂ on R supported on
Dcl 2Dstr, where

Dcl=[−2, 2] 2 {aqn+a−1q−n | n ¥ Z+ : aqn > 1},

Dstr={uqn+u−1q−n | n ¥ Z+},

with u=d−1t−1q−k. Here k ¥ Z is the unique integer such that 1 < |dtqk|
[ q−1. Under the change of variable y=x+x−1, the Hilbert space L2+(m) is
isomorphic to the Hilbert space L2(m̂) of L2-functions with respect to
the measure m̂ (compare with the identification of L2+(n) and L

2(n̂) as
discussed at the beginning of this section).
Consider V̂cl=C[x] j and V̂str=C[x] Ĝy as linear sub-spaces of L2(m̂),
where j and Ĝy are the meromorphic functions satisfying

j(x+x−1)=G(x)−1 G(x)−1, Ĝy(x+x−1)=Gy(x).

Then Vcl À Vstr … L2+(m) is dense iff V̂cl À V̂str … L2(m̂) is dense.
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Let m̂cl=m̂|Dcl (respectively m̂str=m̂|Dstr ) be the restriction of the
measure m̂ to Dcl (respectively Dstr), and denote L2(m̂cl) (respectively
L2(m̂str)) for the associated L2-space. We define surjective, continuous
linear mappings

pcl : L2(m̂)Q L2(m̂cl), pstr : L2(m̂)Q L2(m̂str)

by pcl(f)=f|Dcl and pstr(f)=f|Dstr .
Observe that pcl(j) is non-zero m̂cl-a.e. due to the conditions (5.1) on the
parameters b. Since the measure m̂cl is compactly supported, we conclude
that the sub-space pcl(V̂cl) … L2(m̂cl) is dense, compare with the proof of
Lemma 6.2.
Let Hcl … L2(m̂) be the closed sub-space of functions f ¥ L2(m̂) with
support contained in Dcl. Then V̂cl …Hcl since j vanishes on Dstr, and
pcl |Hcl : Hcl Q L

2(m̂cl) is a surjective isometric isomorphism. It follows that
V̂cl …Hcl is dense.
Since V̂cl …Hcl is dense we have that V̂cl À V̂str … L2(m̂) is dense iff

pstr(V̂str) … L2(m̂str) is dense. It thus suffices to prove that pstr(V̂str) …
L2(m̂str) is dense iff the parameters b satisfy the extra condition |ãtqk| \ 1.
Observe first that −1 < u=d−1t−1q−k < 0 by the conditions (5.1) on the
parameters b and by the definition of the integer k. Furthermore, for any
discrete mass point yn=uqn+u−1q−n ¥Dstr (n ¥ Z+), we have

|Ĝy(yn)|2 m̂str({yn})=c(yn) ru, v({yn}), v :=ã−2t−2q−2k,

with r=ru, v the measure (6.3) and with c: Dstr Q R > 0 a bounded function
with bounded inverse (we have used here the explicit expression for the
weights m̂str({yn}), see [12, (5.8)]). It follows that pstr(V̂str) … L2(m̂str) is
dense iff C[x] … L2(ru, v) is dense, cf. the proof of Corollary 6.4. The
desired density result is now a direct consequence of Corollary 6.4. L

7. APPENDIX A

Proof of Proposition 4.1

In this appendix we give a proof of the formulas (4.6), which can be
rewritten as

(Fy(fanc ))(s
y
m)=

(bc; q)m
(qa/d; q)m
1 −qa
d
2m qm(m−1)/2

× 4f3 1
q−m, qmabc/d, ãc, ã/c

ab, ac, bc
; q, q2 (7.1)

for m ¥ Z+.
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Throughout the proof of (7.1) we fix m ¥ Z+, and we set s=s
y
m. We

substitute the expression (3.2) for the Askey–Wilson function fc(x) in the
integral

(Fy(fanc ))(s)=
1

4piNy
F
T
y

fanc (x) E
y
s(x) Dy(x)

dx
x

=
1

4piNyGsy(c)
F
T
y

fc(x) E
y
s(x)

Dy(x)
Gy(x)

dx
x

and we use that

Eys(x)=
(bc, qb/d; q)m
(ac, qa/d; q)m

1a
b
2m

4f3 1
q−m, qmabc/d, bx, b/x

ab, bc, qb/d
; q, q2

by Sear’s transformation formula [8, (2.10.4)] with a, b, c, d, e and f in
[8, (2.10.4)] taken to be qmabc/d, ax, a/x, ab, ac and qa/d, respectively.
We arrive at

(Fy(fanc ))(s)=
(bc, qb/d; q)m
(ac, qa/d; q)m

1a
b
2m{I1(c)+I2(c)}, (7.2)

with I1(c) given by

I1(c)=
(qabc/d, qc/d̃, q/d̃c; q).

(bc, qa/d, qb/d, qc/d, q/ad; q).

× C
m

n=0
C
.

k=0

(ãc, ã/c; q)k (q−m, qmabc/d; q)n
(q, ab, ac, ad; q)k (q, ab, bc, qb/d; q)n

qk+n

×
1

4piNy
F
T
y

(x2, 1/x2; q).
(qkax, qka/x, qnbx, qnb/x, cx, c/x; q).

dx
x
,

and with I2(c) given by

I2(c)=
(qabc/d, ãc, ã/c; q).

(ab, ac, bc, qa/d, ad/q; q).

× C
m

n=0
C
.

k=0

(qc/d̃, q/d̃c; q)k (q−m, qmabc/d; q)n
(q, qb/d, qc/d, q2/ad; q)k (q, ab, bc, qb/d; q)n

qk+n

×
1

4piNy
F
T
y

(x2, 1/x2; q).
(qnbx, qnb/x, cx, c/x, qk+1x/d, qk+1/dx; q).

dx
x
.

Now the integrals in the expressions for I1(c) and I2(c) can be evaluated as
special case of the evaluation of the Askey–Wilson integral; see (2.5). The
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resulting sum over k in both I1(c) and I2(c) can then be rewritten as a
non-terminating 3f2. This leads to the identity

I1(c)+I2(c)=C
m

n=0

(q−m, qmabc/d; q)n
(q; q)n (bc; q).

qn

×3 (qc/d̃, q/d̃c; q).
(q/ad; q). (qb/d; q)n

3f21
ãc, ã/c, qnab
ab, ad

; q, q2

+
(ãc, ã/c; q).

(ad/q; q). (ab; q)n
3f2 1

qc/d̃, q/d̃c, qn+1b/d
q2/ad, qb/d

; q, q24 .

Applying the three-term transformation formula [8, (3.3.1)] for 3f2’s with
parameters a, b, c, d, and e in [8, (3.3.1)] specialized to q−n, ãc, ã/c, ab and
bc(=qã/d̃) respectively, shows that

I1(c)+I2(c)=C
m

n=0

(q−m, qmabc/d; q)n
(q, qb/d; q)n

qn3f2 1
q−n, ãc, ã/c

ab, bc
; q, qn+1b/d2 .

(7.3)

Formula (7.1) now immediately follows from (7.2), (7.3), and the following
lemma.

Lemma 7.1. The following identity is valid:

C
m

n=0

(q−m, qmabc/d; q)n
(q, qb/d; q)n

qn3f2 1
q−n, ãc, ã/c

ab, bc
; q, qn+1b/d2

=1 −qb
d
2m qm(m−1)/2 (ac; q)m

(qb/d; q)m
4f3 1

q−m, qmabc/d, ãc, ã/c

ab, ac, bc
; q, q2 .

Proof. Denote the left hand side of the desired identity by fm(c). It is
clear that fm(c) is a polynomial of degree m in c+c−1. In the expansion

fm(c)=C
m

k=0
ak(ãc, ã/c; q)k,

the coefficients ak are explicitly given by

ak=C
m

n=k

(q−m, qmabc/d; q)n (q−n; q)k
(q, qb/d; q)n (q, ab, bc; q)k

qn 1q
n+1b
d
2k.
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Changing the summation variable to r=n−k and simplifying the sum
yields

ak=
(q−m, qmabc/d; q)k
(q, q, ab, bc, qb/d; q)k

1qk+2b
d
2k

× C
m−k

r=0

(qk−m, qm+kabc/d; q)r
(qk+1, qk+1b/d; q)r

(q−r−k; q)k q (k+1) r.

Now applying [8, (1.2.37)] to the q-shifted factorial (q−r−k; q)k appearing
in the right hand side of the last formula for ak, leads to

ak=
(q−m, qmabc/d; q)k
(q, ab, bc, qb/d; q)k

qk(k−1)/2 1 −q
2b
d
2k
2f1 1

qk−m, qm+kabc/d
qk+1b/d

; q, q2 .

The terminating 2f1 is summable by the q-Vandermonde formula [8, (1.5.3)].
Simplification of the resulting expression then shows that

ak=1
−qb
d
2m qm(m−1)/2 (ac; q)m

(qb/d; q)m

(q−m, qmabc/d; q)k
(q, ab, ac, bc; q)k

qk,

as desired. L

8. APPENDIX B

Evaluations of the One Variable q-Macdonald–Mehta Integral

In this appendix we give two alternative proofs of the q-analogue of the
(one variable) Macdonald–Mehta integral, see Theorem 5.5. The first proof
is based on Nassrallah and Rahman’s integral representation [15] of
the very-well-poised 8f7 series. The second proof uses the fact that the
q-analogue of the Macdonald–Mehta integral in one variable can be
rewritten in a completely discrete form using Cauchy’s Theorem. The
evaluation then follows from limit cases of the summation formulas of the
very-well-poised 6f5 series and of the very-well-poised 6k6 series, together
with some elementary elliptic function theory (the second proof is in
the spirit of Askey and Wilson’s original proof [2] of the evaluation
of the Askey–Wilson integral).

8.1. First Direct Proof of Theorem 5.5. We fix generic parameters
a, b, c, u ¥ C× satisfying |abcu| > q and |a|, |b|, |c|, |u| < 1. We write

L1=
1
4pi

F
T

(x2, 1/x2; q).
(ax, a/x, bx, b/x, cx, c/x; q). h(ux, u/x)

dx
x

336 JASPER V. STOKMAN



and

L2=C
.

k=1
Res
x=uq−k
1 (x2, 1/x2; q).
(ax, a/x, bx, b/x, cx, c/x; q). h(ux, u/x) x

2 ,

respectively. The aim is to evaluate L1+L2. For L1, we use the integral
representation [8, (6.3.8)] of the very-well-poised 8f7 series due to
Nassrallah and Rahman [15], with parameters a, b, c, d, f, and g in
[8, (6.3.8)] specialized to a, b, c, u, q/u and 0, respectively. The 8W7 then
reduces to a 3f2, and we obtain

L1=
(abcu, qabc/u; q).

(q, ab, ac, bc, au, qa/u, bu, qb/u, cu, qc/u; q).

× 3f2 1
ab, ac, bc
abcu, qabc/u

; q, q2 . (8.1)

On the other hand, a straightforward residue computation shows that

L2=−
(u2/q2; q).

(q, q, qa/u, qb/u, qc/u, au/q, bu/q, cu/q, u2/q; q).

× 7f7 1
q2/u2, q2/u, −q2/u, q, qa/u, qb/u, qc/u
q/u, −q/u, q2/u2, q2/au, q2/bu, q2/cu, 0

; q,
q2

abcu
2 .

Applying [8, (3.8.9)] with the parameters a, c, d, e, and f in [8, (3.8.9)]
replaced by q2/u2, q, qa/u, qb/u, and qc/u, respectively, we arrive at

L2=−
(q/bc; q). h(u2/q2)

(q, q, qa/u, qb/u, qc/u, au/q, u2/q; q). h(bu/q, cu/q)

× 3f2 1
q/au, qb/u, qc/u
q2/u2, q2/au

; q,
q
bc
2 .

Now applying the transformation formula [8, (3.2.7)] for 3f2’s with the
parameters a, b, c, d, and e in [8, (3.2.7)] specialized to q/au, qb/u, qc/u,
q2/u2, and q2/au, respectively, we obtain

L2=−
(q2/abcu; q). h(u2/q2)

(q, qa/u, qb/u, qc/u, u2/q; q). h(au/q, bu/q, cu/q)

× 3f2 1
q/au, q/bu, q/cu
q2/u2, q2/abcu

; q, q2 . (8.2)
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Now combine (8.1) and (8.2), and simplify the terms using

h(qx−1)=h(x), h(qx)=(−x)−1 h(x). (8.3)

Then we obtain

L1+L2=
1

(q, qa/u, qb/u, qc/u, au, bu, cu; q).

×3(abcu, qabc/u; q).
(ab, ac, bc; q).

3f2 1
ab, ac, bc
abcu, qabc/u

; q, q2

−
q
abcu

(q2/abcu, q2/u2; q).
(q/au, q/bu, q/cu; q).

3f2 1
q/au, q/bu, q/cu
q2/u2, q2/abcu

; q, q24 .

By the three term transformation formula [8, (3.3.1)] for the 3f2 basic
hypergeometric series with the parameters a, b, c, d, and e in [8, (3.3.1)]
specialized to qc/u, ac, bc, qabc/u, and qc/u, respectively, we obtain

L1+L2=
(qabc/u; q). h(abcu)

(q, ab, ac, bc, cu, qa/u, qb/u; q). h(au, bu) 2
f1 1 ac, bcqabc/u

; q,
q
cu
2 .

Application of the q-Gauss sum [8, (1.5.1)] yields

L1+L2=
1

(q, ab, ac, bc; q).

h(abcu)
h(au, bu, cu)

.

The evaluation of the one variable q-Macdonald–Mehta integral (5.9)
follows from this last formula by analytic continuation.

8.2. Second Direct Proof of Theorem 5.5. For generic values of the
parameters a, b, c, u ¥ C× satisfying |a|, |b|, |c| < 1 and q < |u| < 1, we can
rewrite the left hand side of (5.9) as

1
2

C
e ¥ {a, b, c}
k ¥ Z+

Res
x=eqk
1 (x2, 1/x2; q).
(ax, a/x, bx, b/x, cx, c/x; q). h(ux, u/x) x

2

+
1
2

C
k ¥ Z

Res
x=uqk
1 (x2, 1/x2; q).
(ax, a/x, bx, b/x, cx, c/x; q). h(ux, u/x) x

2

(8.4)

by shrinking the radius of the integration circle to zero while picking up
residues, cf. [8, Sect. 4.10]. The first three sums over k ¥ Z+ with fixed
e ¥ {a, b, c} in (8.4) can be evaluated by the limit case dQ. in Rogers’
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summation formula [8, (2.7.1)] of a very-well-poised 6f5 series. For
instance, the case e=a yields

C
k ¥ Z+

Res
x=aqk
1 (x2, 1/x2; q).
(ax, a/x, bx, b/x, cx, c/x; q). h(ux, u/x) x

2

=
(1/a2; q).

(q, ab, b/a, ac, c/a; q). h(ua, u/a) 5
f5 1 a

2, qa, −qa, ab, ac
a, −a, qa/b, qa/c, 0

; q,
q
bc
2

=
(q/bc; q).
(q, ab, ac; q).

h(1/a2)
h(b/a, c/a, au, u/a)

.

The sums for e=b, c can be obtained by interchanging the role of a and e
in the above formula. The fourth sum in (8.4) (over k ¥ Z) can be evaluated
by the limit case eQ. in Bailey’s summation formula [8, (5.3.1)] of a
very-well-poised 6k6 series, yielding

C
k ¥ Z

Res
x=uqk
1 (x2, 1/x2; q).
(ax, a/x, bx, b/x, cx, c/x; q). h(ux, u/x) x

2

=
(1−1/u2)

(q, q, au, bu, cu, a/u, b/u, c/u; q).

× 5k6 1 q/u, −q/u, a/u, b/u, c/u
1/u, −1/u, q/au, q/bu, q/cu, 0

; q,
q
abcu
2

=
(q/ab, q/ac, q/bc; q).

(q; q).

h(1/u2)
h(au, bu, cu, a/u, b/u, c/u)

.

Set q=log(u). Then it remains to evaluate

f(q)=
(q/bc; q).
(q, ab, ac; q).

h(1/a2)
h(b/a, c/a, aeq, eq/a)

+
(q/ac; q).
(q, ab, bc; q).

h(1/b2)
h(a/b, c/b, beq, eq/b)

+
(q/ab; q).
(q, bc, ac; q).

h(1/c2)
h(b/c, a/c, ceq, eq/c)

+
(q/ab, q/ac, q/bc; q).

(q; q).

h(e−2q)
h(aeq, beq, ceq, ae−q, be−q, ce−q)

,

which we consider as a meromorphic function in q ¥ C, with fixed (generic)
parameters a, b, c. We consider first the meromorphic function

g(q)=h(aeq, beq, ceq) f(q).
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Observe that the possible poles of g are located at log(e)+L for e=a, b, c,
where L … C is the lattice

L=Z log(q)+Z 2pi.

Furthermore, the poles are at most simple for generic parameter values. We
show now that g is in fact analytic. Observe that g is 2pi-periodic.
Furthermore, by (8.3),

g(q+log(q))=1 −1
abceq
2 g(q),

i.e., g is quasi-periodic with quasi-period log(q). So g is quasi-periodic with
respect to the period lattice L. In view of the symmetry of g in the param-
eters a, b and c, we conclude that g is analytic if the residue of g(q) at
a :=log(a) is zero. This follows from the observation that

lim
qQ a
(1−eq−a) g(q) =

(q/bc; q).
(q, q, q, ab, ac; q).

h(1/a2, ab, ac)
h(b/a, c/a)

−
(q/ab, q/ac, q/bc; q).

(q, q, q; q).

h(1/a2)
h(b/a, c/a)

=0.

We conclude that the function

h(q)=
g(q)

h(abceq)
=

h(aeq, beq, ceq)
h(abceq)

f(q)

=
(q/bc; q).
(q, ab, ac; q).

h(1/a2, beq, ceq)
h(b/a, c/a, eq/a, abceq)

+
(q/ac; q).
(q, ab, bc; q).

h(1/b2, aeq, ceq)
h(a/b, c/b, eq/b, abceq)

+
(q/ab; q).
(q, bc, ac; q).

h(1/c2, aeq, beq)
h(b/c, a/c, eq/c, abceq)

+
(q/ab, q/ac, q/bc; q).

(q; q).

h(e−2q)
h(abceq, ae−q, be−q, ce−q)

defines an elliptic function with respect to the period lattice L, with at most
one pole in a fundamental domain of C/L. Thus h is constant, so in
particular,

f(q)=
h(abceq)

h(aeq, beq, ceq)
h(−a), a=log(a).
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By the explicit expression for h we have

h(−a)=
2

(q, ab, ac, bc; q).
,

hence the left hand side of (5.9) is equal to

1
2
f(log(u))=

1
(q, ab, ac, bc; q).

h(abcu)
h(au, bu, cu)

,

which completes the proof of Theorem 5.5.
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