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Abstract

We study some problems related to lazy 2-cocycles, such as: extension of (lazy) 2-cocycles to a Drinfeld
double and to a Radford biproduct, Yetter–Drinfeld data obtained from lazy 2-cocycles, lifting of projective
representations afforded by lazy 2-cocycles.
© 2006 Elsevier Inc. All rights reserved.
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Introduction

A left 2-cocycle σ :H ⊗H → k on a Hopf algebra H is called lazy if it satisfies the condition

σ
(
h1, h

′
1

)
h2h

′
2 = σ

(
h2, h

′
2

)
h1h

′
1, ∀h,h′ ∈ H.

This kind of cocycles were used in [7] as a tool to compare the Brauer groups of Sweedler’s
Hopf algebra with respect to the different quasitriangular structures. See also [9] and [10] for an
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application of this technique to other sort of Hopf algebras. Lazy cocycles and lazy cohomology
were also used in [20] to give a generalized version of Kac’s exact sequence. A general theory
of lazy cocycles and lazy cohomology started to be developed recently in [2]. The remarkable
fact is that the set Z2

L(H) of normalized and convolution invertible lazy 2-cocycles on H form
a group (this was noted in [11]), and that one can also define lazy 2-coboundaries B2

L(H) and
the second lazy cohomology group H 2

L(H) = Z2
L(H)/B2

L(H), generalizing the second Sweedler
cohomology group of a cocommutative Hopf algebra (note that for cocommutative Hopf algebras
any 2-cocycle is lazy). The group H 2

L(H) can be regarded as a subgroup of Bigal(H), the group
of Bigalois objects of H , and the examples in [2] show that it is much easier to compute H 2

L(H)

than Bigal(H).
In general, the results in [2] suggest that, for an arbitrary Hopf algebra, lazy cocycles are much

closer to the cocommutative case than general left cocycles. Hence, a sort of general principle
is suggested: results that hold for an arbitrary 2-cocycle on a cocommutative Hopf algebra are
likely to hold also for a lazy 2-cocycle on an arbitrary Hopf algebra. A good example of this
principle is the extension of Schur–Yamazaki formula in [2] that allows to describe the second
lazy cohomology group of a tensor product of Hopf algebras. Throughout this paper we will
verify this principle several times.

This paper is a contribution to the study of lazy cocycles and lazy cohomology, in three differ-
ent directions: the problem of extending (lazy) 2-cocycles to a Drinfeld double and to a Radford
biproduct; Yetter–Drinfeld data obtained from lazy 2-cocycles; lifting of projective representa-
tions afforded by lazy 2-cocycles. As we will see below, each of these directions has its own
(natural) motivations and possible applications.

We describe now in some detail the contents of the paper. After presenting in Section 1 some
preliminaries, in Section 2 we provide some new properties of lazy 2-cocycles that are needed in
the next sections, but which could also be of independent interest. Among these properties is the
following formula:

σ
(
h1, S(h2)

) = σ
(
S(h1), h2

)
, ∀h ∈ H,

for a lazy 2-cocycle σ on a Hopf algebra H ; this formula is important and well known for group
algebras, and we show that in general it is false if σ is not lazy.

In Section 3 we prove that any lazy 2-cocycle σ on a finite dimensional Hopf algebra H can
be extended to a lazy 2-cocycle σ̄ on the Drinfeld double D(H) (this property can be obtained
also from results in [2], where moreover a complete description of H 2

L(D(H)) is given). We
point out that this extension is canonical in a certain sense (expressed in terms of the so-called
diagonal crossed product, a construction introduced in [14]; actually, the relation between lazy
2-cocycles and the diagonal crossed product was our starting point for this article). Section 4 is
devoted to the extension of cocycles on a Radford biproduct. We consider a Radford biproduct
B × H , with H a Hopf algebra and B a Hopf algebra in the Yetter–Drinfeld category H

HYD.
Cocycles and the second lazy cohomology group H 2

L(B) may be defined in the category H
HYD.

We prove that, if σ is a left 2-cocycle on B in H
HYD, it can be extended canonically to a left

2-cocycle σ̄ on B × H , σ lazy in H
HYD implies σ̄ lazy and the map σ �→ σ̄ induces a group

morphism H 2
L(B) → H 2

L(B × H).
In Section 5 we study Yetter–Drinfeld data obtained from lazy 2-cocycles. Namely, if σ :H ⊗

H → k is a normalized and convolution invertible lazy 2-cocycle, we have the H -bicomodule
algebra H(σ) = σ H = Hσ , hence the Yetter–Drinfeld category H(σ)YD(H)H . We prove that,
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if M is a finite dimensional object in this category, then End(M) and End(M)op are algebras
in HYDH . More can be said if H is finite dimensional (for this we use again the diagonal crossed
product and results from Section 3).

In Section 6 we prove that any Hopf algebra H admits a central extension B with the property
that any projective representation of H afforded by a lazy 2-cocycle can be lifted to an ordinary
representation of B . The case when H is cocommutative was done by I. Boca (generalizing in
turn the classical case of groups, due to Schur); our proof follows closely the one of Boca. This
section could be regarded as a good illustration of the general principle we mentioned before
(replacement of cocommutativity by laziness).

Finally, in Section 7 we verify once more this principle, by generalizing a certain result
from [5] concerning H(σ)-central elements; our proof uses several results obtained in this paper,
and it is much easier than the one in [5] (which moreover works only in the cocommutative case).

1. Preliminaries

In this section we recall some definitions and results and we fix some notation that will be
used throughout the paper. For unexplained terminology we refer to [15,16,18,23].

We will work over a ground field k. All algebras, linear spaces, etc., will be over k; unadorned
⊗ means

⊗
k . For a Hopf algebra H with comultiplication Δ we use the version of Sweedler’s

sigma notation: Δ(h) = h1 ⊗ h2. Unless otherwise stated, H will denote a Hopf algebra with
bijective antipode S. For a linear map σ :H ⊗ H → k we will use either the notation σ(h,h′) or
σ(h ⊗ h′).

A linear map σ :H ⊗ H → k is called a left 2-cocycle if it satisfies the condition

σ(a1, b1)σ (a2b2, c) = σ(b1, c1)σ (a, b2c2),

for all a, b, c ∈ H , and it is called a right 2-cocycle if it satisfies the condition

σ(a1b1, c)σ (a2, b2) = σ(a, b1c1)σ (b2, c2).

Given a linear map σ :H ⊗ H → k, define a product ·σ on H by

h ·σ h′ = σ
(
h1, h

′
1

)
h2h

′
2, ∀h,h′ ∈ H.

Then ·σ is associative if and only if σ is a left 2-cocycle. If we define ·σ by

h ·σ h′ = h1h
′
1σ

(
h2, h

′
2

)
, ∀h,h′ ∈ H,

then ·σ is associative if and only if σ is a right 2-cocycle. In any of the two cases, σ is normalized
(i.e. σ(1, h) = σ(h,1) = ε(h) for all h ∈ H ) if and only if 1H is the unit for ·σ . If σ is a normal-
ized left (respectively right) 2-cocycle, we denote the algebra (H, ·σ ) by σ H (respectively Hσ ).
It is well known that σ H (respectively Hσ ) is a right (respectively left) H -comodule algebra via
the comultiplication Δ of H . If σ :H ⊗ H → k is normalized and convolution invertible, then σ

is a left 2-cocycle if and only if σ−1 is a right 2-cocycle.
If γ :H → k is linear, normalized (i.e. γ (1) = 1) and convolution invertible, define

D1(γ ) :H ⊗ H → k by



698 J. Cuadra, F. Panaite / Journal of Algebra 313 (2007) 695–723
D1(γ )(h,h′) = γ (h1)γ
(
h′

1

)
γ −1(h2h

′
2

)
, ∀h,h′ ∈ H.

Then D1(γ ) is a normalized and convolution invertible left 2-cocycle. If σ,σ ′ :H ⊗ H → k

are normalized and convolution invertible left 2-cocycles, they are called cohomologous if there
exists γ :H → k normalized and convolution invertible such that

σ ′(h,h′) = γ (h1)γ
(
h′

1

)
σ
(
h2, h

′
2

)
γ −1(h3h

′
3

)
, ∀h,h′ ∈ H.

We recall now from [2] some facts about lazy cocycles and lazy cohomology. The set
Reg1(H) (respectively Reg2(H)) consisting of normalized and convolution invertible linear maps
γ :H → k (respectively σ :H ⊗ H → k), is a group under the convolution product. An element
γ ∈ Reg1(H) is called lazy if

γ (h1)h2 = h1γ (h2), ∀h ∈ H.

The set of lazy elements of Reg1(H), denoted by Reg1
L(H), is a central subgroup of Reg1(H).

An element σ ∈ Reg2(H) is called lazy if

σ
(
h1, h

′
1

)
h2h

′
2 = h1h

′
1σ

(
h2, h

′
2

)
, ∀h,h′ ∈ H.

The set of lazy elements of Reg2(H), denoted by Reg2
L(H), is a subgroup of Reg2(H). We denote

by Z2(H) the set of left 2-cocycles on H and by Z2
L(H) the set Z2(H)∩Reg2

L(H) of normalized
and convolution invertible lazy 2-cocycles. If σ ∈ Z2

L(H), then the algebras σ H and Hσ coincide
and will be denoted by H(σ); moreover, H(σ) is an H -bicomodule algebra via Δ.

It is well known that in general the set Z2(H) of left 2-cocycles is not closed under convo-
lution. One of the main features of lazy 2-cocycles is that the set Z2

L(H) is closed under convo-
lution, and that the convolution inverse of an element σ ∈ Z2

L(H) is again a lazy 2-cocycle, so
Z2

L(H) is a group under convolution. In particular, a lazy 2-cocycle is also a right 2-cocycle. Con-
sider now the map D1 : Reg1(H) → Reg2(H), D1(γ )(h,h′) = γ (h1)γ (h′

1)γ
−1(h2h

′
2), for all

h,h′ ∈ H . Then, by [2], the map D1 induces a group morphism Reg1
L(H) → Z2

L(H), whose im-
age is contained in the center of Z2

L(H); denote by B2
L(H) this central subgroup D1(Reg1

L(H))

of Z2
L(H) (its elements are called lazy 2-coboundaries). Finally, define the second lazy coho-

mology group H 2
L(H) = Z2

L(H)/B2
L(H) (most likely nonabelian in general). Lazy 2-cocycles

belonging to the same class in H 2
L(H) (we call them lazy cohomologous) are in particular coho-

mologous in the sense recalled before.

2. Some properties of lazy 2-cocycles

The aim of this section is to give some general properties of lazy 2-cocycles needed in the
next sections although they could also be of independent interest.

Let σ :H ⊗H → k be a normalized and convolution invertible left 2-cocycle. It is well known
(see [18], [8]) that the following formulae hold:

σ
(
h1, S(h2)

)
σ−1(S(h3), h4

) = ε(h), (2.1)

σ
(
S−1(h2), h1

)
σ−1(h4, S

−1(h3)
) = ε(h), (2.2)
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for all h ∈ H , but in general we see no reason to have formulae of the type

σ
(
h1, S(h2)

) = σ
(
S(h1), h2

)
, (2.3)

σ
(
S−1(h2), h1

) = σ
(
h2, S

−1(h1)
)
, (2.4)

even if for group algebras these formulae are true and well known. We have searched through
the literature to find an explicit counterexample, but we could not find any, so we are going to
provide here one. The Hopf algebra will be the Taft Hopf algebra H9 of dimension 9.

Recall that H9 = k〈X,Y | X3 = 1, Y 3 = 0, YX = qXY 〉, where q is a primitive 3rd root
of unity, Δ(X) = X ⊗ X, Δ(Y) = 1 ⊗ Y + Y ⊗ X, S(X) = X2, S(Y ) = −q2X2Y . The cleft
extensions for any Hn2 have been classified in [12,17]; we use here the form in [12]. We will
construct a certain H9-cleft datum over k (in the terminology of [12]). Namely, in the notation of
[12, Theorem 3.5], we choose F = idk , D = 0 and α, β , γ ∈ k with α,γ �= 0. Then, also in the
notation of [12], one computes easily that:

γ2 = (1 + q)γ,

γ3 = (
1 + q + q2)γ = 0,

θ2 = (1 + q)γ 2,

θ3 = D(θ2) + θ2γ3 = 0,

D3 = 0.

Using these formulae, one can see that the conditions (1)–(9) in [12, Theorem 3.5], are satisfied,
so indeed (id,0, α,β, γ ) is an H9-cleft datum. The table for the left 2-cocycle corresponding to
any H9-cleft datum is given in [12, Example 3.6]. For our datum, we get from the table:

σ(Y,XY) = 0, σ
(
Y 2,X

) = θ2α = γ 2(1 + q)α,

σ
(
X2Y,XY

) = 0, σ
(
XY 2,X2) = FD(γ2α) = 0.

From the equalities

Δ
(
Y 2) = 1 ⊗ Y 2 + (1 + q)Y ⊗ XY + Y 2 ⊗ X2,

S
(
Y 2) = XY 2, S(XY) = −qXY, S

(
X2) = X,

we compute σ(h1, S(h2)) and σ(S(h1), h2) for the element h := Y 2 and we obtain:

σ
(
h1, S(h2)

) = (1 + q)σ (Y,−qXY) + σ
(
Y 2,X

) = γ 2(1 + q)α �= 0,

σ
(
S(h1), h2

) = (1 + q)σ
(−q2X2Y,XY

) + σ
(
XY 2,X2) = 0,

so the two terms cannot be equal.
However, we have the following very useful result.

Lemma 2.1. If σ is lazy, then formulae (2.3) and (2.4) hold.
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Proof. Since σ is lazy, the left cocycle condition can be written as

σ(a1, b1)σ (a2b2, c) = σ(a, b1c1)σ (b2, c2).

By taking a = h1, b = S(h2), c = h3 in this formula, we obtain (2.3). Since σ is lazy, it is also a
right 2-cocycle, and the right cocycle condition can be written, using the laziness of σ , as

σ(a1b1, c)σ (a2, b2) = σ(b1, c1)σ (a, b2c2).

By taking in this formula a = h3, b = S−1(h2), c = h1, we obtain (2.4). �
There exist certain relations (suggested by the referee) between (2.1) and (2.2) or between

(2.3) and (2.4). Namely, for a linear map σ :H ⊗ H → k, define t σ :H ⊗ H → k by t σ (h,h′) =
σ(h′, h). It is easy to see that if σ is a left 2-cocycle for H then t σ is a left 2-cocycle for the
opposite Hopf algebra H op and if σ is lazy then t σ is also lazy. Then one can see that (2.2) is
obtained from (2.1) applied to t σ and (2.4) is obtained from (2.3) applied to t σ .

We give now some more useful formulae.

Lemma 2.2. Let σ :H ⊗H → k be a normalized and convolution invertible lazy 2-cocycle. Then
we have:

σ−1(h3, S
−1(h2)

)
h4S

−1(h1) = σ−1(h2, S
−1(h1)

)
1, (2.5)

σ−1(S−1(h3), h2
)
S−1(h4)h1 = σ−1(S−1(h2), h1

)
1, (2.6)

σ−1(S(h2), h3
)
S(h1)h4 = σ−1(S(h1), h2

)
1, (2.7)

σ−1(S(h2), h3
)
S(h1) = σ−1(S(h1), h2

)
S(h3), (2.8)

σ−1(h2, S(h3)
)
h1S(h4) = σ−1(h1, S(h2)

)
1, (2.9)

σ−1(S(h2), h3
)
h4S

−1(h1) = σ−1(S(h1), h2
)
1. (2.10)

Proof. For (2.5), apply the lazy condition for σ−1 to the elements h2 and S−1(h1); for (2.6),
apply the lazy condition for σ−1 to the elements S−1(h2) and h1; for (2.7), apply the lazy condi-
tion for σ−1 to the elements S(h1) and h2; (2.8) is obtained from (2.7) by making convolution to
the right with S; for (2.9), apply the lazy condition for σ−1 to the elements h1 and S(h2); finally,
(2.10) is obtained from (2.9) by using (2.3) and then applying S−1. �

Let σ :H ⊗ H → k be a normalized and convolution invertible left 2-cocycle. Let us recall
from [2] that the linear map φσ : σ H → Hσ−1 defined by

φσ (h) = σ
(
h1, S(h2)

)
S(h3) (2.11)

is an algebra antimorphism, and moreover it satisfies, for all h ∈ H :

φσ (h1) ·σ−1 h2 = ε(h)1 = h1 ·σ−1 φσ (h2).

Also, let us recall from [8] the maps S1, S2 :H → H given for all h ∈ H by
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S1(h) = σ−1(S(h2), h3
)
S(h1), (2.12)

S2(h) = σ−1(h3, S
−1(h2)

)
S−1(h1). (2.13)

From (2.3) and (2.8) it follows immediately that:

Proposition 2.3. If σ is lazy, then S1 = φσ−1 .

There exists also a relation between S2 and φσ , which holds in general.

Proposition 2.4. If σ is a normalized and convolution invertible left 2-cocycle on H , then S2 is
the composition inverse of φσ . In particular, it follows that φσ is bijective.

Proof. That S2 ◦ φσ = id and φσ ◦ S2 = id reduce respectively to formulae (2.1) and (2.2). �
If σ is lazy, since S1 = φσ−1 and S2 is the composition inverse of φσ , from the properties of

φσ we obtain:

Proposition 2.5. If σ is lazy, then S1, S2 :H(σ−1) → H(σ) are algebra antiisomorphisms, and
we have, for all h ∈ H :

S1(h1) ·σ h2 = ε(h)1 = h1 ·σ S1(h2), (2.14)

S2(h2) ·σ h1 = ε(h)1 = h2 ·σ S2(h1). (2.15)

Let us note that (2.14) and (2.15) appear also in [8], in a slightly different form, and they
actually hold for any left 2-cocycle, not necessarily lazy.

Proposition 2.6. Let σ be a normalized and convolution invertible left 2-cocycle on H . Then we
have, for all h ∈ H :

Δ
(
S1(h)

) = S1(h2) ⊗ S(h1), (2.16)

Δ
(
S2(h)

) = S2(h2) ⊗ S−1(h1). (2.17)

Proof. An easy computation. �
3. Extending lazy 2-cocycles to a Drinfeld double

Throughout this section, H will be a finite dimensional Hopf algebra and we will denote the
Drinfeld double of H by D(H). A complete description of H 2

L(D(H)) in terms of H 2
L(H) and

H 2
L(H ∗) was given in [2]. In particular, it follows from [2] that if σ is a normalized and convo-

lution invertible lazy 2-cocycle on H , then it can be extended to a normalized and convolution
invertible lazy 2-cocycle σ̄ on D(H). In this section we provide an alternative approach to the
problem of extending a lazy 2-cocycle from H to D(H), based on the so-called diagonal crossed
product construction. The results in this section will be also used in Section 5.
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Recall that the Drinfeld double of H is a quasitriangular Hopf algebra realized on the k-linear
space H ∗ ⊗ H ; its coalgebra structure is H ∗ cop ⊗ H and the algebra structure is given by

(p ⊗ h)(q ⊗ l) = p
(
h1 ⇀ q ↼ S−1(h3)

) ⊗ h2l,

for all p,q ∈ H ∗ and h, l ∈ H , where ⇀ and ↼ are the left and right regular actions of H on
H ∗ given by (h ⇀ p)(l) = p(lh) and (p ↼ h)(l) = p(hl) for all h, l ∈ H and p ∈ H ∗. Let now
A be an H -bicomodule algebra, with comodule structures A → A ⊗ H , a �→ a〈0〉 ⊗ a〈1〉 and
A → H ⊗ A, a �→ a[−1] ⊗ a[0], and denote, for a ∈ A,

a{−1} ⊗ a{0} ⊗ a{1} = a〈0〉[−1] ⊗ a〈0〉[0] ⊗ a〈1〉 = a[−1] ⊗ a[0]〈0〉 ⊗ a[0]〈1〉 ,

as an element in H ⊗ A ⊗ H . Recall from [14] that the (left) diagonal crossed product H ∗ �� A

is equal to H ∗ ⊗ A as a k-space, but with multiplication given by

(p �� a)(q �� b) = p
(
a{−1} ⇀ q ↼ S−1(a{1})

) �� a{0}b,

for all a, b ∈ A and p,q ∈ H ∗, and with unit εH �� 1A. The space H ∗ �� A becomes a D(H)-
bicomodule algebra, with structures

H ∗ �� A → (H ∗ �� A) ⊗ D(H), p �� a �→ (p2 �� a〈0〉) ⊗ (p1 ⊗ a〈1〉),

H ∗ �� A → D(H) ⊗ (H ∗ �� A), p �� a �→ (p2 ⊗ a[−1]) ⊗ (p1 �� a[0]),

for all p ∈ H ∗, a ∈ A. If A = H then H ∗ �� A is just D(H), with bicomodule algebra structure
over itself given by its comultiplication. It is well known (see [13]) that the Drinfeld double can
be expressed as a twisting of H ∗ cop ⊗ H . Similarly, using the framework and notation of [21],
one can prove that

H ∗ �� A = H ∗ cop τ

#
τ
A,

where τ :H ⊗ H ∗ cop → k is the skew-pairing given by τ(h,p) = p(h).
Let σ :H ⊗ H → k be a normalized and invertible lazy 2-cocyle. Either as a consequence of

the proof in [2], or by direct means, one can see that the extended cocycle σ̄ :D(H)⊗D(H) → k

and its convolution inverse are given by the formulae

σ̄ (p ⊗ h,q ⊗ l) = p(1)q
(
S−1(h3)h1

)
σ(h2, l), (3.1)

σ̄ −1(p ⊗ h,q ⊗ l) = p(1)q
(
S−1(h3)h1

)
σ−1(h2, l), (3.2)

for all p,q ∈ H ∗ and h, l ∈ H .
In view of the above description of the diagonal crossed product as a twisting and of the nature

of the proof for the description of H 2
L(D(H)) in [2], it is likely that the following result can be

proved using the approach in [2]. But we prefer to give a direct proof, because this is how we
discovered it (actually, how we got the formula (3.1) for σ̄ ).
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Proposition 3.1. Let σ :H ⊗ H → k be a normalized and convolution invertible lazy 2-
cocycle. Consider the H -bicomodule algebra H(σ). Then H ∗ �� H(σ) = D(H)(σ̄ ), as D(H)-
bicomodule algebras. Moreover, σ̄ is unique with this property.

Proof. We compute the multiplications in the two algebras and show that they coincide.

(p �� h)(q �� l) = p
(
h1 ⇀ q ↼ S−1(h3)

) �� h2 ·σ l

= σ(h2, l1)p
(
h1 ⇀ q ↼ S−1(h4)

) �� h3l2

= p
(
h4S

−1(h3)h1 ⇀ q ↼ S−1(h6)
)
σ(h2, l1) ⊗ h5l2

= p
(
h4 ⇀ q1 ↼ S−1(h6)

)
q2

(
S−1(h3)h1

)
σ(h2, l1) ⊗ h5l2

= p2(1)q2
(
S−1(h(1,3))h(1,1)

)
σ(h(1,2), l1)

× p1
(
h(2,1) ⇀ q1 ↼ S−1(h(2,3))

) ⊗ h(2,2)l2

= σ̄ (p2 ⊗ h1, q2 ⊗ l1)(p1 ⊗ h2)(q1 ⊗ l2)

= (p ⊗ h) ·σ̄ (q ⊗ l).

Clearly H ∗ �� H(σ) and D(H)(σ̄ ) have the same D(H)-bicomodule structure. For the unique-
ness of σ̄ , we write down the fact that the multiplications in H ∗ �� H(σ) and D(H)(σ̄ ) coincide,
then we evaluate this equality on 1 ⊗ ε and we obtain that σ̄ has to be given by (3.1). �

It was proved in [2] that H 2
L(H) can be embedded as a subgroup in Bigal(H), the group of

Bigalois objects of H introduced in [22,25].

Proposition 3.2. The map A �→ H ∗ �� A gives an embedding of Bigal(H) into Bigal(D(H)),
whose restriction to H 2

L(H) is the embedding of H 2
L(H) into H 2

L(D(H)) from [2].

Proof. The fact that the map A �→ H ∗ �� A gives the desired embedding between Bigalois
groups is contained, even if not explicitly stated, in Schauenburg’s paper [21], and the com-
patibility between the two embeddings, at the levels of Bigalois groups and lazy cohomologies,
follows from the compatibility between the proof in [21] and the one in [2]. �

The antipode of D(H) is given by the formula

SD(H)(p ⊗ h) = (
ε ⊗ S(h)

)(
S∗−1(p) ⊗ 1

)
,

for all h ∈ H , p ∈ H ∗. Denote SD(H) by S. One can easily check that its inverse is given by

S−1
D(H)

(p ⊗ h) = (
ε ⊗ S−1(h)

)(
S∗(p) ⊗ 1

)
.

Let now σ :H ⊗ H → k be a normalized and convolution invertible lazy 2-cocycle, and σ̄

its extension to D(H), given by the formula (3.1). Denote by S1, S2 :H → H the maps given
by the formulae (2.12), (2.13), and by S1, S2 :D(H) → D(H) the analogous maps for D(H)

corresponding to σ̄ , that is:
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S1(p ⊗ h) = σ̄ −1(S(
(p ⊗ h)2

)
, (p ⊗ h)3

)
S
(
(p ⊗ h)1

)
, (3.3)

S2(p ⊗ h) = σ̄ −1((p ⊗ h)3, S
−1((p ⊗ h)2

))
S−1((p ⊗ h)1

)
. (3.4)

The following result will be needed in a subsequent section.

Proposition 3.3. S1 and S2 can be computed as:

S1(p ⊗ h) = (
ε ⊗ S1(h)

)(
S∗−1(p) ⊗ 1

)
, (3.5)

S2(p ⊗ h) = (
ε ⊗ S2(h)

)(
S∗(p) ⊗ 1

)
, (3.6)

for all h ∈ H , p ∈ H ∗.

Proof. We give the proof for S1, the one for S2 is similar (but for S2 one has to use the formula
(2.5)). We compute:

S1(p ⊗ h) = σ̄ −1(S(p2 ⊗ h2),p1 ⊗ h3
)
S(p3 ⊗ h1)

= σ̄ −1((ε ⊗ S(h2)
)(

S∗−1(p2) ⊗ 1
)
,p1 ⊗ h3

)
S(p3 ⊗ h1)

= σ̄−1(S(h2)1 ⇀ S∗−1(p2) ↼ S−1(S(h2)3
) ⊗ S(h2)2,p1 ⊗ h3

)
S(p3 ⊗ h1)

= σ̄ −1(S(h4) ⇀ S∗−1(p2) ↼ h2 ⊗ S(h3),p1 ⊗ h5
)
S(p3 ⊗ h1)

= (
S(h4) ⇀ S∗−1(p2) ↼ h2

)
(1)p1

(
S−1(S(h3)3

)
S(h3)1

)

× σ−1(S(h3)2, h5
)
S(p3 ⊗ h1)

= S∗−1(p2)
(
h2S(h6)

)
p1

(
h3S(h5)

)
σ−1(S(h4), h7

)
S(p3 ⊗ h1)

= p1
(
h3S(h5)h6S

−1(h2)
)
σ−1(S(h4), h7

)
S(p2 ⊗ h1)

= σ−1(S(h2), h3
)(

ε ⊗ S(h1)
)(

S∗−1(p) ⊗ 1
)

= (
ε ⊗ S1(h)

)(
S∗−1(p) ⊗ 1

)
,

which was what we had to prove. �
Remark 3.4. Using either the formula for σ̄ or the identification H ∗ �� H(σ) = D(H)(σ̄ ), one
can easily check that

(ε ⊗ h) ·σ̄ (p ⊗ 1) = (ε ⊗ h)(p ⊗ 1), (3.7)

for all h ∈ H and p ∈ H ∗ (we will use this later).
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4. Extending (lazy) 2-cocycles to a Radford biproduct

For a Hopf algebra H and a Hopf algebra B in the category of left Yetter–Drinfeld modules
H
HYD it is possible to construct the Radford biproduct Hopf algebra B × H . A second lazy
cohomology group H 2

L(B) can be defined for B inside the category H
HYD. In this section we find

out a relation between H 2
L(B) and H 2

L(B × H).
We start by recalling from [19] the construction of a Radford biproduct. Let H be a bialgebra

and B a vector space such that (B,1B) is an algebra (with multiplication denoted by b ⊗ c �→ bc

for all b, c ∈ B) and (B,ΔB, εB) is a coalgebra. The pair (H,B) is called admissible if B is
endowed with a left H -module structure (denoted by h⊗ b �→ h · b) and with a left H -comodule
structure (denoted by b �→ b(−1) ⊗ b(0) ∈ H ⊗ B) such that:

(1) B is a left H -module algebra;
(2) B is a left H -comodule algebra;
(3) B is a left H -comodule coalgebra, that is, for all b ∈ B:

b
(−1)
1 b

(−1)
2 ⊗ b

(0)
1 ⊗ b

(0)
2 = b(−1) ⊗ (

b(0)
)

1 ⊗ (
b(0)

)
2, (4.1)

b(−1)εB

(
b(0)

) = εB(b)1H ; (4.2)

(4) B is a left H -module coalgebra, that is, for all h ∈ H and b ∈ B:

ΔB(h · b) = h1 · b1 ⊗ h2 · b2, (4.3)

εB(h · b) = εH (h)εB(b); (4.4)

(5) εB is an algebra map and ΔB(1B) = 1B ⊗ 1B ;
(6) the following relations hold for all h ∈ H and b, c ∈ B:

ΔB(bc) = b1
(
b

(−1)
2 · c1

) ⊗ b
(0)
2 c2, (4.5)

(h1 · b)(−1)h2 ⊗ (h1 · b)(0) = h1b
(−1) ⊗ h2 · b(0). (4.6)

If (H,B) is an admissible pair, then we know from [19] that the smash product algebra struc-
ture and smash coproduct coalgebra structure on B ⊗ H afford B ⊗ H a bialgebra structure,
denoted by B × H and called the smash biproduct or Radford biproduct. Its comultiplication is
given by

Δ(b × h) = (
b1 × b

(−1)
2 h1

) ⊗ (
b

(0)
2 × h2

)
, (4.7)

for all b ∈ B , h ∈ H , and its counit is εB ⊗ εH . Let us record the following formula:

ΔB

(
b(h · c)) = b1

(
b

(−1)
2 h1 · c1

) ⊗ b
(0)
2 (h2 · c2), (4.8)

for all h ∈ H and b, c ∈ B , which follows immediately from (4.5) and (4.3). If H is a Hopf
algebra with antipode SH and (H,B) is an admissible pair such that there exists SB ∈ Hom(B,B)

a convolution inverse for idB , then B × H is a Hopf algebra with antipode
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S(b × h) = (
1 × SH

(
b(−1)h

))(
SB

(
b(0)

) × 1
)
, (4.9)

for all h ∈ H , b ∈ B . In this case, we will say that (H,B) is a Hopf admissible pair. For a
Hopf algebra H , it is well known (see for instance [18], [16]) that (H,B) being an admissible
pair (respectively Hopf admissible pair) is equivalent to B being a bialgebra (respectively Hopf
algebra) in the Yetter–Drinfeld category H

HYD.
Recall now from [24] the so-called generalized smash product. If H is a bialgebra, B a left

H -module algebra (with action h ⊗ b �→ h · b) and A a left H -comodule algebra (with coaction
a �→ a(−1) ⊗ a(0) ∈ H ⊗ A), then on B ⊗ A we have an associative algebra structure, denoted by
B �< A, with unit 1B �< 1A and multiplication

(b �< a)(b′ �< a′) = b(a(−1) · b′) �< a(0)a
′, (4.10)

for all b, b′ ∈ B and a, a′ ∈ A.
As we have seen before, the relation between a Drinfeld double and a diagonal crossed product

is that the diagonal crossed product becomes a bicomodule algebra over the Drinfeld double. The
next result shows that a similar relation exists between a Radford biproduct and a generalized
smash product.

Proposition 4.1. If (H,B) is an admissible pair and A is a left H -comodule algebra, then
B �< A becomes a left B × H -comodule algebra, with coaction

λ :B �< A → (B × H) ⊗ (B �< A), λ(b �< a) = (
b1 × b

(−1)
2 a(−1)

) ⊗ (
b

(0)
2 �< a(0)

)
,

for all b ∈ B and a ∈ A.

Proof. We prove first that (B �< A,λ) is a left B × H -comodule (for this part we only need A

to be a left H -comodule). We compute:

(id ⊗ λ)
(
λ(b �< a)

)

= (
b1 × b

(−1)
2 a(−1)

) ⊗ ((
b

(0)
2

)
1 × (

b
(0)
2

)(−1)

2 a(0)(−1)

) ⊗ ((
b

(0)
2

)(0)

2 �< a(0)(0)

)

= (
b1 × b

(−1)
2 a(−1)1

) ⊗ ((
b

(0)
2

)
1 × (

b
(0)
2

)(−1)

2 a(−1)2

) ⊗ ((
b

(0)
2

)(0)

2 �< a(0)

)

= (
b1 × b

(−1)
2 b

(−1)
3 a(−1)1

) ⊗ (
b

(0)
2 × b

(0)(−1)

3 a(−1)2

) ⊗ (
b

(0)(0)

3 �< a(0)

) (
by (4.1)

)

= (
b1 × b

(−1)
2

(
b

(−1)
3

)
1a(−1)1

) ⊗ (
b

(0)
2 × (

b
(−1)
3

)
2a(−1)2

) ⊗ (
b

(0)
3 �< a(0)

)

= (
b(1,1) × b

(−1)
(1,2)

(
b

(−1)
2

)
1a(−1)1

) ⊗ (
b

(0)
(1,2) × (

b
(−1)
2

)
2a(−1)2

) ⊗ (
b

(0)
2 �< a(0)

)

= Δ
(
b1 × b

(−1)
2 a(−1)

) ⊗ (
b

(0)
2 �< a(0)

)

= (Δ ⊗ id)
(
λ(b �< a)

)
.

Then obviously we have that (ε ⊗ id)λ = id, so B �< A is indeed a left B × H -comodule. We
proceed to show that λ is an algebra map. First, by (5), we have λ(1 �< 1) = (1 × 1) ⊗ (1 �< 1).
For b, b′ ∈ B and a, a′ ∈ A we have:
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λ
(
(b �< a)(b′ �< a′)

)

= λ
(
b(a(−1) · b′) �< a(0)a

′)

= ((
b(a(−1) · b′)

)
1 × (

b(a(−1) · b′)
)(−1)

2 (a(0)a
′)(−1)

) ⊗ ((
b(a(−1) · b′)

)(0)

2 �< (a(0)a
′)(0)

)

= (
b1

(
b

(−1)
2 a(−1)1 · b′

1

) × b
(0)(−1)

2 (a(−1)2 · b′
2)

(−1)a(0)(−1)
a′
(−1)

)

⊗ (
b

(0)(0)

2

(
a(−1)2 · b′

2

)(0) �< a(0)(0)
a′
(0)

) (
by (4.8)

)

= (
b1

(
b

(−1)
2 a(−1)1 · b′

1

) × b
(0)(−1)

2

(
a(−1)2 · b′

2

)(−1)
a(−1)3a

′
(−1)

)

⊗ (
b

(0)(0)

2

(
a(−1)2 · b′

2

)(0) �< a(0)a
′
(0)

)

= (
b1

(
b

(−1)
2 a(−1)1 · b′

1

) × b
(0)(−1)

2 a(−1)2b
′ (−1)
2 a′

(−1)

)

⊗ (
b

(0)(0)

2

(
a(−1)3 · b′ (0)

2

)
�< a(0)a

′
(0)

) (
by (4.6)

)

= (
b1

(
b

(−1)
2 a(−1)1 · b′

1

) × b
(0)(−1)

2 a(−1)2b
′ (−1)
2 a′

(−1)

) ⊗ (
b

(0)(0)

2

(
a(0)(−1)

· b′ (0)
2

)
�< a(0)(0)

a′
(0)

)

= (
b1

((
b

(−1)
2

)
1a(−1)1 · b′

1

) × (
b

(−1)
2

)
2a(−1)2b

′ (−1)
2 a′

(−1)

)

⊗ (
b

(0)
2

(
a(0)(−1)

· b′ (0)
2

)
�< a(0)(0)

a′
(0)

)

= λ(b �< a)λ(b′ �< a′),

and the proof is finished. �
Now, let (H,B) be an admissible pair and σ :H ⊗ H → k a normalized and convolution

invertible right 2-cocycle, so that we can consider Hσ , which is a left H -comodule algebra,
and we can make B �< Hσ , which, by the above proposition, becomes a left B × H -comodule
algebra.

Proposition 4.2. With notation as above, the map σ̃ : (B × H) ⊗ (B × H) → k defined by

σ̃ (b × h,b′ × h′) = εB(b)εB(b′)σ (h,h′), ∀b, b′ ∈ B and h,h′ ∈ H,

is a normalized and convolution invertible right 2-cocycle on B × H , and we have (B × H)σ̃ =
B �< Hσ as left B × H -comodule algebras. Moreover, σ̃ is unique with this property.

Proof. We have:

(b �< h)(b′ �< h′) = b(h1 · b′) �< h2 ·σ h′

= b(h1 · b′) �< h2h
′
1σ

(
h3, h

′
2

)

= (b × h1)
(
b′ × h′

1

)
σ
(
h2, h

′
2

)

= (
b1 × b

(−1)
2 h1

)(
b′

1 × b
′ (−1)
2 h′

1

)
εB

(
b

(0)
2

)
εB

(
b

′ (0)
2

)
σ
(
h2, h

′
2

) (
by (4.2)

)

= (
b1 × b

(−1)
h1

)(
b′

1 × b
′ (−1)

h′
1

)
σ̃
(
b

(0) × h2, b
′ (0) × h′

2

)
.
2 2 2 2
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= (b × h)1(b
′ × h′)1σ̃

(
(b × h)2, (b

′ × h′)2
)

= (b × h) ·σ̃ (b′ × h′).

So, the multiplication in (B ×H)σ̃ coincides with the one in B �<Hσ , which is associative, so σ̃

is automatically a right 2-cocycle, and we have (B × H)σ̃ = B �< Hσ as algebras; it is obvious
that they coincide also as left B × H -comodules, and is easy to prove that σ̃ is normalized and
convolution invertible. To prove the uniqueness of σ̃ , write that the multiplications in B �< Hσ

and (B × H)σ̃ coincide, apply εB ⊗ εH and get σ̃ (b × h,b′ × h′) = εB(b)εB(b′)σ (h,h′). �
The map π :B × H → H , b × h �→ ε(b)h is a Hopf algebra map. Observe that σ̃ is just the

cocycle obtained by pulling back through the map π .

Remark 4.3. With notation as above, we have:

(b × h)1(b
′ × h′)1σ̃

(
(b × h)2, (b

′ × h′)2
) = b(h1 · b′) × h2h

′
1σ

(
h3, h

′
2

)
,

(b × h)2(b
′ × h′)2σ̃

(
(b × h)1, (b

′ × h′)1
) = σ

(
b(−1)h1, b

′ (−1)h′
1

)
b(0)

(
h2 · b′ (0)

) × h3h
′
2,

for all b, b′ ∈ B and h,h′ ∈ H . Assume that σ̃ is lazy; then, by taking b = b′ = 1 above, we
obtain that σ is lazy. Conversely, if σ is lazy, then σ̃ is lazy if and only if

σ(h2, h
′)b(h1 · b′) = σ

(
b(−1)h1, b

′ (−1)h′)b(0)
(
h2 · b′ (0)

)
,

for all b, b′ ∈ B and h,h′ ∈ H , from which follow some necessary conditions for the laziness
of σ̃ , such as

h · b = σ
(
h1, b

(−1)
)(

h2 · b(0)
)
,

bb′ = σ
(
b(−1), b′ (−1)

)
b(0)b′ (0),

for all b, b′ ∈ B and h ∈ H , which have no reason to hold in general.

We study now the problem of extending (lazy) 2-cocycles from B to B × H .
Let C be a braided monoidal category and B a Hopf algebra in C. Then, just as if B would

be a usual Hopf algebra, one can define 2-cocycles, crossed products, Galois extensions, etc., for
B in C, see for instance [26], [1]. Also, one can define lazy 2-cocycles, lazy 2-coboundaries and
the second lazy cohomology group H 2

L(B) = Z2
L(B)/B2

L(B). Here, we will only be interested in
the case when C = H

HYD, the category of left Yetter–Drinfeld modules over a Hopf algebra H ,
and B a Hopf algebra in H

HYD (that is, (H,B) is a Hopf admissible pair, so B × H is a Hopf
algebra). For this category, one can prove by hand all the properties of lazy 2-cocycles that allow
to define H 2

L(B) (the most difficult is to prove that the product of two lazy 2-cocycles is a left
2-cocycle—we will give an easy alternative proof of this fact at the end of the section).

If M,N ∈ H
HYD, then M ⊗ N ∈ H

HYD with module structure h · (m ⊗ n) = h1 · m ⊗ h2 · n

and comodule structure m ⊗ n �→ m〈−1〉n〈−1〉 ⊗ (m〈0〉 ⊗ n〈0〉), where m �→ m〈−1〉 ⊗ m〈0〉 and
n �→ n〈−1〉 ⊗ n〈0〉 are the comodule structures of M and N , and the braiding is given by

cM,N :M ⊗ N → N ⊗ M, cM,N(m ⊗ n) = m〈−1〉 · n ⊗ m〈0〉. (4.11)
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Hence, the coalgebra structure of B ⊗ B in H
HYD is given by

ΔB⊗B(b ⊗ b′) = (id ⊗ cB,B ⊗ id) ◦ (ΔB ⊗ ΔB)(b ⊗ b′)

= (
b1 ⊗ b

(−1)
2 · b′

1

) ⊗ (
b

(0)
2 ⊗ b′

2

)
.

So, if σ, τ :B ⊗ B → k are morphisms in H
HYD, their convolution in H

HYD is given by

(σ ∗ τ)(b ⊗ b′) = σ
(
b1 ⊗ b

(−1)
2 · b′

1

)
τ
(
b

(0)
2 ⊗ b′

2

)
. (4.12)

Let σ :B ⊗ B → k be a morphism in H
HYD, that is, it satisfies the conditions:

σ(h1 · b ⊗ h2 · b′) = ε(h)σ (b ⊗ b′), (4.13)

σ
(
b(0) ⊗ b′ (0)

)
b(−1)b′ (−1) = σ(b ⊗ b′)1H , (4.14)

for all h ∈ H and b, b′ ∈ B . Then σ is a lazy element if it satisfies the categorical laziness
condition:

σ
(
b1 ⊗ b

(−1)
2 · b′

1

)
b

(0)
2 b′

2 = σ
(
b

(0)
2 ⊗ b′

2

)
b1

(
b

(−1)
2 · b′

1

)
, (4.15)

for all b, b′ ∈ B .
Let σ :B ⊗B → k be a normalized left 2-cocycle in H

HYD, that is σ is a normalized morphism
in H

HYD satisfying the categorical left 2-cocycle condition

σ
(
a1 ⊗ a

(−1)
2 · b1

)
σ
(
a

(0)
2 b2 ⊗ c

) = σ
(
b1 ⊗ b

(−1)
2 · c1

)
σ
(
a ⊗ b

(0)
2 c2

)
, (4.16)

for all a, b, c ∈ B . Then we can consider the crossed product σ B = k #σ B as in [26], which is an
algebra in H

HYD, and whose multiplication is:

b · b′ = σ
(
b1 ⊗ b

(−1)
2 · b′

1

)
b

(0)
2 b′

2. (4.17)

Since σ B is an algebra in H
HYD, it is in particular a left H -module algebra, so we can consider

the smash product σ B # H .
Let now γ :B → k be a morphism in H

HYD, that is

γ (h · b) = ε(h)γ (b), (4.18)

γ
(
b(0)

)
b(−1) = γ (b)1H , (4.19)

for all h ∈ H and b ∈ B . If γ is normalized and convolution invertible in H
HYD, with convolution

inverse γ −1 in H
HYD, the analogue of the operator D1 is given in H

HYD by

D1(γ )(b ⊗ b′) = γ (b1)γ
(
b

(−1)
2 · b′

1

)
γ −1(b(0)

2 b′
2

)

= γ (b1)γ
(
b′

1

)
γ −1(b2b

′
2

) (
by (4.18)

)

that is, D1 is given by the same formula as for ordinary Hopf algebras. For a morphism γ :B → k

in HYD, the laziness condition is identical to the usual one: γ (b1)b2 = b1γ (b2) for all b ∈ B .
H
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Theorem 4.4. Let (H,B) be a Hopf admissible pair.

(i) For a normalized left 2-cocycle σ :B ⊗B → k in H
HYD define σ̄ : (B ×H)⊗ (B ×H) → k,

σ̄ (b × h,b′ × h′) = σ(b ⊗ h · b′)ε(h′). (4.20)

Then σ̄ is a normalized left 2-cocycle on B × H and we have σ B # H = σ̄ (B × H) as
algebras. Moreover, σ̄ is unique with this property.

(ii) If σ is convolution invertible in H
HYD, then σ̄ is convolution invertible, with inverse

σ̄ −1(b × h,b′ × h′) = σ−1(b ⊗ h · b′)ε(h′), (4.21)

where σ−1 is the convolution inverse of σ in H
HYD.

(iii) If σ is lazy in H
HYD, then σ̄ is lazy.

(iv) If σ, τ :B ⊗ B → k are lazy 2-cocycles in H
HYD, then σ ∗ τ = σ̄ ∗ τ , hence the map σ �→ σ̄

is a group homomorphism from Z2
L(B) to Z2

L(B × H).
(v) If γ :B → k is a normalized and convolution invertible morphism in H

HYD, define γ̄ :B ×
H → k by

γ̄ (b × h) = γ (b)ε(h). (4.22)

Then γ̄ is normalized and convolution invertible and D1(γ ) = D1(γ̄ ). If γ is lazy in H
HYD,

then γ̄ is also lazy.
(vi) If σ is a lazy 2-coboundary for B in H

HYD, then σ̄ is a lazy 2-coboundary for B ×H , so the
group homomorphism Z2

L(B) → Z2
L(B ×H), σ �→ σ̄ , factorizes to a group homomorphism

H 2
L(B) → H 2

L(B × H).

Proof. (i) It is easy to see that σ̄ is normalized. We will prove that the multiplications in σ B # H

and σ̄ (B × H) coincide, and from the associativity of σ B # H will follow automatically that σ̄ is
a left 2-cocycle on B × H . We compute:

(b # h)(b′ # h′) = b · (h1 · b′) # h2h
′

= σ
(
b1 ⊗ b

(−1)
2 · (h1 · b′)1

)
b

(0)
2 (h1 · b′)2 # h2h

′

= σ
(
b1 ⊗ b

(−1)
2 h1 · b′

1

)
b

(0)
2

(
h2 · b′

2

)
# h3h

′ (
by (4.3)

)

= σ
(
b1 ⊗ b

(−1)
2 h1 · b′

1

)(
b

(0)
2 × h2

)(
b′

2 × h′)

= σ
(
b1 ⊗ b

(−1)
2 h1 · b′

1

)
ε
(
b

′ (−1)
2

)
ε
(
h′

1

)(
b

(0)
2 × h2

)(
b

′ (0)
2 × h′

2

)

= σ̄
(
b1 × b

(−1)
2 h1, b

′
1 × b

′ (−1)
2 h′

1

)(
b

(0)
2 × h2

)(
b

′ (0)
2 × h′

2

)

= σ̄
(
(b × h)1, (b

′ × h′)1
)
(b × h)2(b

′ × h′)2

= (b × h) ·σ̄ (b′ × h′).

The uniqueness of σ̄ follows easily by applying εB ⊗ εH to the multiplications in σ B # H and
σ̄ (B × H).

(ii) Follows by a direct computation, using the formula (4.12) for the convolution in HYD.
H
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(iii) We have already seen that

σ̄
(
(b × h)1, (b

′ × h′)1
)
(b × h)2(b

′ × h′)2 = σ
(
b1 ⊗ b

(−1)
2 h1 · b′

1

)
b

(0)
2

(
h2 · b′

2

) × h3h
′.

Now we compute:

σ̄
(
(b × h)2, (b

′ × h′)2
)
(b × h)1(b

′ × h′)1

= σ̄
(
b

(0)
2 × h2, b

′ (0)
2 × h′

2

)(
b1 × b

(−1)
2 h1

)(
b′

1 × b
′ (−1)
2 h′

1

)

= σ
(
b

(0)
2 ⊗ h2 · b′ (0)

2

)(
b1 × b

(−1)
2 h1

)(
b′

1 × b
′ (−1)
2 h′)

= σ
(
b

(0)
2 ⊗ h3 · b′ (0)

2

)
b1

((
b

(−1)
2

)
1h1 · b′

1

) × (
b

(−1)
2

)
2h2b

′ (−1)
2 h′

= σ
(
b

(0)(0)

2 ⊗ h3 · b′ (0)
2

)
b1

(
b

(−1)
2 h1 · b′

1

) × b
(0)(−1)

2 h2b
′ (−1)
2 h′

= σ
(
b

(0)(0)

2 ⊗ (
h2 · b′

2

)(0))
b1

(
b

(−1)
2 h1 · b′

1

) × b
(0)(−1)

2

(
h2 · b′

2

)(−1)
h3h

′ (
by (4.6)

)

= σ
(
b

(0)
2 ⊗ h2 · b′

2

)
b1

(
b

(−1)
2 h1 · b′

1

) × h3h
′ (

by (4.14)
)

= σ
(
b

(0)
2 ⊗ (h1 · b′)2

)
b1

(
b

(−1)
2 · (h1 · b′)1

) × h2h
′ (

by (4.3)
)

= σ
(
b1 ⊗ b

(−1)
2 · (h1 · b′)1

)
b

(0)
2 (h1 · b′)2 × h2h

′ (
by (4.15)

)

= σ
(
b1 ⊗ b

(−1)
2 h1 · b′

1

)
b

(0)
2

(
h2 · b′

2

) × h3h
′ (

by (4.3)
)

which proves that σ̄ is indeed lazy.
(iv) Using the formula (4.12) for the convolution in H

HYD, we compute:

(σ ∗ τ)(b × h,b′ × h′) = (σ ∗ τ)(b ⊗ h · b′)ε(h′)

= σ
(
b1 ⊗ b

(−1)
2 · (h · b′)1

)
τ
(
b

(0)
2 ⊗ (h · b′)2

)
ε(h′)

= σ
(
b1 ⊗ b

(−1)
2 h1 · b′

1

)
τ
(
b

(0)
2 ⊗ h2 · b′

2

)
ε(h′)

(
by (4.3)

)

= σ
(
b1 ⊗ b

(−1)
2 h1 · b′

1

)
ε
(
b

′ (−1)
2

)
ε
(
h′

1

)
τ
(
b

(0)
2 ⊗ h2 · b′ (0)

2

)
ε
(
h′

2

)

= σ̄
(
b1 × b

(−1)
2 h1, b

′
1 × b

′ (−1)
2 h′

1

)
τ
(
b

(0)
2 × h2, b

′ (0)
2 × h′

2

)

= (σ̄ ∗ τ)(b × h,b′ × h′).

(v) Obviously γ̄ is normalized, and it is easy to see that its convolution inverse is given by
γ̄ −1(b×h) = γ −1(b)ε(h), where γ −1 is the convolution inverse of γ in H

HYD. Now we compute:

D1(γ )(b × h,b′ × h′) = D1(γ )(b ⊗ h · b′)ε(h′)

= γ (b1)γ
(
(h · b′)1

)
γ −1(b2(h · b′)2

)
ε(h′)

= γ (b1)γ
(
h1 · b′

1

)
γ −1(b2

(
h2 · b′

2

))
ε(h′)

(
by (4.3)

)

= γ (b1)γ
(
b′

1

)
γ −1(b2

(
h · b′

2

))
ε(h′)

(
by (4.18)

)

= γ (b1)γ
(
b′

1

)
γ̄ −1(b2

(
h1 · b′

2

) × h2h
′)
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= γ (b1)γ
(
b′

1

)
γ̄ −1((b2 × h)

(
b′

2 × h′))

= γ̄
(
b1 × b

(−1)
2 h1

)
γ̄
(
b′

1 × b
′ (−1)
2 h′

1

)
γ̄ −1((b(0)

2 × h2
)(

b
′ (0)
2 × h′

2

))

= D1(γ̄ )(b × h,b′ × h′).

Hence we have indeed D1(γ ) = D1(γ̄ ). Finally, if γ is lazy in H
HYD, then we have:

γ̄
(
(b × h)1

)
(b × h)2 = γ (b1)(b2 × h)

= γ (b2)(b1 × h)

= γ
(
b

(0)
2

)(
b1 × b

(−1)
2 h

) (
by (4.19)

)

= γ̄
(
(b × h)2

)
(b × h)1,

where the second equality holds because γ is lazy, so γ̄ is indeed lazy.
(vi) Follows immediately from (v). �

Remark 4.5. Let σ :B ⊗ B → k be a normalized morphism in H
HYD, and define σ̄ : (B × H) ⊗

(B × H) → k by the formula (4.20). Then one can easily prove that, conversely, if σ̄ is a left
2-cocycle on B × H , then σ is a left 2-cocycle on B in H

HYD. Together with (iii) and (iv) of
Theorem 4.4, this proves easily that, if σ and τ are lazy 2-cocycles on B in H

HYD, then σ ∗ τ is
a left 2-cocycle on B in H

HYD (as we mentioned before, this is quite difficult to prove by hand).

Example 4.6. Let H4 be Sweedler’s Hopf algebra. As an algebra, H4 = k〈G,X | G2 = 1,

X2 = 0,GX = −XG〉. The comultiplication is given by Δ(G) = G ⊗ G, Δ(X) = 1 ⊗ X +
X ⊗ G, and the antipode is S(G) = G and S(X) = GX. This Hopf algebra is a Radford biprod-
uct of the Hopf algebra H = kZ2 and the Hopf algebra B = k〈x | x2 = 0〉 in H

HYD. Let g be the
generator of the cyclic group of order two Z2. Then B is a left H -module algebra with the action
g · x = −x and a left H -comodule (co)algebra with the coaction ρ(x) = g ⊗ x. The comultipli-
cation and counit of B are given by Δ(x) = 1 ⊗ x + x ⊗ 1 and ε(x) = 0. The Radford biproduct
B × H is isomorphic to H4 via 1 × g �→ G, x × g �→ X.

The group of lazy cocycles of H4 is isomorphic to k. Any lazy cocycle σ of H4 is of the form

σ 1 G X GX

1 1 1 0 0
G 1 1 0 0
X 0 0 t

2 − t
2

GX 0 0 t
2 − t

2

for some t ∈ k, see [2, Example 2.1]. The group BL(H4) is trivial, so H 2
L(H4) = Z2

L(H4) ∼= k.
One may check that any cocycle θ in B is of the form θ(1,1) = 1, θ(1, x) = θ(x,1) = 0 and
θ(x, x) = s for some s ∈ k. Denote this cocycle by θs . It is not difficult to verify that the map
H 2

L(B) → H 2
L(H4), θ−s/2 �→ θ−s/2 is a group isomorphism. Indeed this isomorphism holds more

generally for Taft’s Hopf algebras Hn2 and for the Hopf algebras E(n). It would be interesting to
find some sufficient conditions in a Radford biproduct B ×H for the map H 2

L(B) → H 2
L(B ×H )

to be an isomorphism.
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5. Yetter–Drinfeld data obtained from lazy 2-cocycles

Let A be an H -bicomodule algebra, with comodule structures A → A ⊗ H , a �→ a〈0〉 ⊗ a〈1〉
and A → H ⊗ A, a �→ a[−1] ⊗ a[0]. We can consider the Yetter–Drinfeld datum (H,A,H) as
in [5] (the second H is regarded as an H -bimodule coalgebra), and the Yetter–Drinfeld cate-
gory AYD(H)H , whose objects are k-modules M endowed with a left A-action (denoted by
a ⊗ m �→ a · m) and a right H -coaction (denoted by m �→ m(0) ⊗ m(1)) satisfying the compati-
bility condition

a〈0〉 · m(0) ⊗ a〈1〉m(1) = (a[0] · m)(0) ⊗ (a[0] · m)(1)a[−1], (5.1)

for all a ∈ A and m ∈ M .
Let now σ be a normalized and convolution invertible lazy 2-cocycle on H , and consider the

H -bicomodule algebra H(σ) and the associated category H(σ)YD(H)H ; for an object M of this
category, the compatibility (5.1) becomes

h1 · m(0) ⊗ h2m(1) = (h2 · m)(0) ⊗ (h2 · m)(1)h1, (5.2)

for all h ∈ H(σ) and m ∈ M , which is identical to the compatibility in the usual Yetter–Drinfeld
category HYDH . Just as for HYDH , it is easy to see that (5.2) is equivalent to

(h · m)(0) ⊗ (h · m)(1) = h2 · m(0) ⊗ h3m(1)S
−1(h1). (5.3)

Our aim will be to prove that, if M is a finite dimensional object in H(σ)YD(H)H , then End(M)

and End(M)op are algebras in HYDH .

Lemma 5.1.

(i) The map Δ, regarded as a map Δ :H → H(σ)⊗H(σ−1), is an algebra map. Consequently,
if M ∈ H(σ)M and N ∈ H(σ−1)M then M ⊗ N ∈ HM with action h · (m ⊗ n) = h1 · m ⊗
h2 · n.

(ii) If moreover M ∈ H(σ)YD(H)H and N ∈ H(σ−1)YD(H)H , then M ⊗ N ∈ HYDH , with
comodule structure m ⊗ n �→ (m(0) ⊗ n(0)) ⊗ n(1)m(1).

Proof. A straightforward computation; note that (i) appears also in [2]. �
Proposition 5.2. Let σ be a normalized and convolution invertible lazy 2-cocycle on H . Let
M ∈ H(σ)YD(H)H finite dimensional. Then:

(i) M∗ becomes an object in H(σ−1)YD(H)H , with the following structures (called “of type 1”):

(h · m∗)(m) = m∗(S1(h) · m)
, (5.4)

m∗
(0)(m)m∗

(1) = m∗(m(0))S
−1(m(1)), (5.5)

for all h ∈ H , m ∈ M , m∗ ∈ M∗, where S1 :H → H is the map given by (2.12);
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(ii) M∗ becomes an object in H(σ−1)YD(H)H , with the following structures (called “of type 2”):

(h · m∗)(m) = m∗(S2(h) · m)
, (5.6)

m∗
(0)(m)m∗

(1) = m∗(m(0))S(m(1)), (5.7)

for all h ∈ H , m ∈ M , m∗ ∈ M∗, where S2 :H → H is the map given by (2.13).

If σ is trivial, i.e. M ∈ HYDH , these are the usual left and right duals of M in HYDH , see [6].

Proof. We prove only (i), while (ii) is similar and left to the reader (for (i) we will use (2.10),
for (ii) one has to use (2.5)). First, it is known that M∗ is a right H -comodule with structure
(5.5), and it is a left H(σ−1)-module with structure (5.4) because S1 :H(σ−1) → H(σ) is an
algebra antihomomorphism. Hence, we only have to prove the Yetter–Drinfeld compatibility
condition (5.2) for M∗. We compute, for all h ∈ H , m ∈ M , m∗ ∈ M∗:

(
h1 · m∗

(0)

)
(m)h2m

∗
(1) = m∗

(0)

(
S1(h1) · m)

h2m
∗
(1)

(
by (5.4)

)

= m∗((S1(h1) · m)
(0)

)
h2S

−1
((

S1(h1) · m)
(1)

) (
by (5.5)

)

= m∗(S1(h1)2 · m(0)

)
h2S

−1
(
S1(h1)3m(1)S

−1
(
S1(h1)1

)) (
by (5.3)

)

= m∗(S(h2) · m(0)

)
h4S

−1
(
S(h1)m(1)S

−1
(
S1(h3)

)) (
by (2.16)

)

= m∗(S(h2) · m(0)

)
σ−1

(
S(h4), h5

)
h6S

−1(h3)S
−1(m(1))h1

(
by (2.12)

)

= m∗(S(h2) · m(0)

)
σ−1

(
S(h3), h4

)
S−1(m(1))h1

(
by (2.10)

)

= m∗(S1(h2) · m(0)

)
S−1(m(1))h1

(
by (2.12)

)

= (h2 · m∗)(m(0))S
−1(m(1))h1

(
by (5.4)

)

= (h2 · m∗)(0)(m)(h2 · m∗)(1)h1
(
by (5.5)

)

so (5.2) holds. �
Remark 5.3. It was proved in [2] that, if M ∈ H(σ)M, then M∗ ∈ H(σ−1)M with action given by
(h · m∗)(m) = m∗(φσ−1(h) · m). Since we have proved that φσ−1 = S1, it follows that this action
coincides with (5.4). Also, it should be clear that under our hypothesis that H has bijective
antipode, the monoidal H 2

L(H)-category constructed in [2] has not only left duality, but also
right duality, the right dual of an object M having the H -action given by (5.6).

We can prove now the following result, generalizing the well-known fact (see [6, Proposi-
tion 4.1]) that if M is a finite dimensional Yetter–Drinfeld module then End(M) and End(M)op

are Yetter–Drinfeld module algebras.

Proposition 5.4. Let σ be a normalized and convolution invertible lazy 2-cocycle on H , and
M ∈ H(σ)YD(H)H finite dimensional. Then:

(i) End(M) becomes an algebra in HYDH , with H -structures:

(h · f )(m) = h1 · f (
S1(h2) · m)

, (5.8)



J. Cuadra, F. Panaite / Journal of Algebra 313 (2007) 695–723 715
f(0)(m) ⊗ f(1) = f (m(0))(0) ⊗ S−1(m(1))f (m(0))(1), (5.9)

for all h ∈ H , m ∈ M and f ∈ End(M);
(ii) End(M)op becomes an algebra in HYDH , with H -structures:

(h · f )(m) = h2 · f (
S2(h1) · m)

, (5.10)

f(0)(m) ⊗ f(1) = f (m(0))(0) ⊗ f (m(0))(1)S(m(1)). (5.11)

Proof. (i) Since M ∈ H(σ)YD(H)H and M∗ ∈ H(σ−1)YD(H)H with structures of type 1,
M ⊗ M∗ becomes an object in HYDH , and by transferring its structure to End(M) via the canon-
ical isomorphism we get exactly (5.8) and (5.9), so End(M) ∈ HYDH . It is clear that End(M)

is a right H op-comodule algebra (its comodule and algebra structures do not depend on σ ), so
we only have to prove that End(M) is a left H -module algebra. For h ∈ H , f,f ′ ∈ End(M) and
m ∈ M , we have:

(
(h1 · f )(h2 · f ′)

)
(m) = (h1 · f )

(
h2 · f ′(S1(h3) · m))

= h1 · f (
S1(h2) · (h3 · f ′(S1(h4) · m)))

= h1 · f ((
S1(h2) ·σ h3

) · f ′(S1(h4) · m))

= h1 · f (
f ′(S1(h2) · m)) (

by (2.14)
)

= (
h · (ff ′)

)
(m).

The relation h · idM = ε(h) idM follows immediately from (2.14).
(ii) The H -structures (5.10) and (5.11) come from the ones of M∗ ⊗ M via the identification

End(M) = M∗ ⊗ M , where M∗ is regarded now as an object in H(σ−1)YD(H)H with structures
of type 2. One can prove that End(M)op is an algebra in HYDH by a computation similar to the
one in (i), using this time the relation (2.15). �

Let σ be as above and M ∈ H(σ)M, not necessarily finite dimensional. Define two actions
of H on End(M) by the formulae (5.8) and (5.10). Then one can check by direct computations
that these actions give left H -module structures on End(M), and the computations in the proof
of the previous proposition show that actually End(M) is a left H -module algebra with (5.8)
and End(M)op is a left H -module algebra with (5.10). In particular, take M = H(σ) and denote
End(H(σ)) by Aσ . Then we recover the result in [10] that Aσ is a left H -module algebra, with
action (h · f )(h′) = h1 ·σ f (S1(h2) ·σ h′), for all h,h′ ∈ H and f ∈ Aσ . We will see below that
if H is moreover finite dimensional then Aσ becomes an algebra in HYDH .

Assume now that H is finite dimensional and A is an H -bicomodule algebra with notation
as before. Then, by results in [5] or [4], the category AYD(H)H is isomorphic to the category
H ∗��AM of left modules over the diagonal crossed product algebra H ∗ �� A. If M ∈ AYD(H)H ,
then M becomes a left H ∗ �� A-module with structure

(p �� a) · m = p
(
(a · m)(1)

)
(a · m)(0),
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for all p ∈ H ∗, a ∈ A and m ∈ M . By taking A = H(σ), where σ is a normalized and convolution
invertible lazy 2-cocycle on H , we obtain that if M ∈ H(σ)YD(H)H then M ∈ H ∗��H(σ)M, with
(p �� h) · m = p((h · m)(1))(h · m)(0).

On the other hand, we have seen in Proposition 3.1 that we have H ∗ �� H(σ) = D(H)(σ̄ )

as D(H)-bicomodule algebras, where σ̄ is the extension of σ to D(H) given by the formula
(3.1). Hence, we get that M ∈ D(H)(σ̄ )M. By the previous discussion, we obtain that End(M)

and End(M)op are left D(H)-module algebras, with D(H)-actions given respectively by

(
(p ⊗ h) · f )

(m) = (p ⊗ h)1 · f (
S1

(
(p ⊗ h)2

) · m)
, (5.12)

(
(p ⊗ h) · f )

(m) = (p ⊗ h)2 · f (
S2

(
(p ⊗ h)1

) · m)
, (5.13)

for all p ∈ H ∗, h ∈ H , f ∈ End(M), m ∈ M , where S1, S2 :D(H) → D(H) are the maps given
by the formulae (3.3), (3.4).

If M is moreover assumed to be finite dimensional, then by Proposition 5.4, End(M) and
End(M)op are algebras in HYDH . Hence they become left D(H)-module algebras, with D(H)-
actions on End(M) and End(M)op given by

(p ⊗ h) · f = p
(
(h · f )(1)

)
(h · f )(0), (5.14)

where h · f is the action (5.8), respectively (5.10). So in this case we have two D(H)-module
algebra structures on End(M) and two on End(M)op.

Proposition 5.5. The two D(H)-module algebra structures as above on End(M) (respectively
on End(M)op) coincide, and are given respectively by

(
(p ⊗ h) · f )

(m) = p
(
S−1(m(1))h3f

(
S1(h4) · m(0)

)
(1)

S−1(h1)
)
h2 · f (

S1(h4) · m(0)

)
(0)

,

(
(p ⊗ h) · f )

(m) = p
(
h4f

(
S2(h1) · m(0)

)
(1)

S−1(h2)S(m(1))
)
h3 · f (

S2(h1) · m(0)

)
(0)

,

for all p ∈ H ∗, h ∈ H , f ∈ End(M) and m ∈ M .

Proof. We give the proof only for End(M), the one for End(M)op is similar. We compute first
the D(H)-module structure of End(M) obtained using σ̄ . We have:

(
(p ⊗ h) · f )

(m)

= (p2 ⊗ h1) · f (
S1(p1 ⊗ h2) · m)

= (p2 ⊗ h1) · f ((
ε ⊗ S1(h2)

)(
S∗−1(p1) ⊗ 1

) · m) (
by (3.5)

)

= (p2 ⊗ h1) · f ((
ε ⊗ S1(h2)

) · ((S∗−1(p1) ⊗ 1
) · m)) (

by (3.7)
)

= (p2 ⊗ h1) · f ((
ε ⊗ S1(h2)

) · S∗−1(p1)(m(1))m(0)

)

= (p2 ⊗ h1) · f (
p1

(
S−1(m(1))

)
S1(h2) · m(0)

)

= (
p ↼ S−1(m(1)) ⊗ h1

) · f (
S1(h2) · m(0)

)
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= p ↼ S−1(m(1))
((

h1 · f (
S1(h2) · m(0)

))
(1)

)(
h1 · f (

S1(h2) · m(0)

))
(0)

= p
(
S−1(m(1))h3f

(
S1(h4) · m(0)

)
(1)

S−1(h1)
)
h2 · f (

S1(h4) · m(0)

)
(0)

(
by (5.3)

)
.

We compute now the D(H)-module structure of End(M) coming from HYDH . We have:

(
(p ⊗ h) · f )

(m) = (
p
(
(h · f )(1)

)
(h · f )(0)

)
(m)

= p
(
(h · f )(1)

)
(h · f )(0)(m)

= p
(
S−1(m(1))(h · f )(m(0))(1)

)
(h · f )(m(0))(0)

(
by (5.9)

)

= p
(
S−1(m(1))

(
h1 · f (

S1(h2) · m(0)

))
(1)

)(
h1 · f (

S1(h2) · m(0)

))
(0)

= p
(
S−1(m(1))h3f

(
S1(h4) · m(0)

)
(1)

S−1(h1)
)
h2 · f (

S1(h4) · m(0)

)
(0)

,

so the two structures coincide. �
Let H be of finite dimension and A an H -bicomodule algebra with notation as before. Then

one can check, by direct computation, that A ∈ AYD(H)H , where A is a left A-module by the
left regular action a · b = ab for all a, b ∈ A, and A is a right H -comodule with coaction A →
A ⊗ H , a �→ a{0} ⊗ a{1}S−1(a{−1}) for all a ∈ A. Hence, if σ is a normalized and convolution
invertible lazy 2-cocycle on H , by taking A = H(σ) we obtain that H(σ) ∈ H(σ)YD(H)H , with
H(σ)-action h · l = h ·σ l for all h, l ∈ H , and right H -comodule structure H(σ) → H(σ) ⊗ H ,
h �→ h2 ⊗ h3S

−1(h1) for all h ∈ H(σ). By applying all the above to H(σ) ∈ H(σ)YD(H)H , we
obtain that Aσ = End(H(σ)) and End(H(σ))op are algebras in HYDH .

Proposition 5.6. Let σ be a normalized and convolution invertible lazy 2-cocycle on H and
M ∈ H(σ)M. If σ is a lazy 2-coboundary, then the H -module algebra structure of End(M)

given by (5.8) is strongly inner (afforded by some algebra map G :H → End(M)). If moreover
H is finite dimensional and M ∈ H(σ)YD(H)H , then the D(H)-module structure of End(M)

given by (5.12) is also strongly inner.

Proof. Since σ is a lazy 2-coboundary, there exists γ :H → k lazy, normalized and convolution
invertible such that σ = D1(γ ). Then, by [2], the map ϕ :H(σ) → H , ϕ(h) = γ (h1)h2, is an
isomorphism of H -bicomodule algebras. Define F :H(σ) → End(M), F(h)(m) = h · m, which
is obviously an algebra map. Hence, the map G :H → End(M), G = F ◦ ϕ−1, is also an al-
gebra map. Using the laziness of γ , we can express F as F(h) = G(ϕ(h)) = γ (h1)G(h2) =
γ (h2)G(h1). Using (2.14), it is easy to see that F is convolution invertible with inverse
F−1 = F ◦ S1, so the action (5.8) is just the inner action afforded by F . Hence, we can write
(5.8) as follows:

h · f = F(h1) ◦ f ◦ F−1(h2)

= G(h1)γ (h2) ◦ f ◦ γ −1(h3)G
−1(h4)

= G(h1) ◦ f ◦ G−1(h2),

thus (5.8) is strongly inner, afforded by G.
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Assume now that H is finite dimensional and M ∈ H(σ)YD(H)H . Then we know that M

becomes a left D(H)(σ̄ )-module, and, due to the embedding H 2
L(H) → H 2

L(D(H)), σ �→ σ̄ ,
since σ is a lazy 2-coboundary for H then σ̄ is a lazy 2-coboundary for D(H) (namely, σ̄ =
D1(γ̄ ), where γ̄ :D(H) → k, γ̄ (p ⊗ h) = p(1)γ (h)). Hence, we can repeat the above proof
for σ̄ instead of σ and D(H) instead of H , and we obtain that the D(H)-module structure on
End(M) given by (5.12) is also strongly inner. �

We can prove also a partial converse of this result. Recall from [2] the normal subgroups
CoInt(H) and CoInn(H) of AutHopf (H). If γ ∈ Reg1(H), define ad(γ ) :H → H by ad(γ ) =
γ −1 ∗ idH ∗ γ ; then ad(γ ) ∈ AutHopf (H) if and only if D1(γ ) is lazy. CoInt(H) is defined as the
set of Hopf algebra automorphisms of H of the type ad(γ ). It contains the subgroup

CoInn(H) = {
f ∈ AutHopf (H)

∣∣ ∃φ ∈ Alg(H, k) with f = (φ ◦ S) ∗ idH ∗ φ
}
.

Suppose that, for a given Hopf algebra H , we have CoInt(H) = CoInn(H), and we have σ ∈
Z2

L(H) of the form σ = D1(γ ), with γ ∈ Reg1(H). Then, by [2, Lemma 1.12], it follows that
σ ∈ B2

L(H), that is there exists χ ∈ Reg1
L(H) such that σ = D1(χ).

Proposition 5.7. Let σ be as above and M ∈ H(σ)M finite dimensional. If the action (5.8) of
H on End(M) is strongly inner (afforded by some algebra map G :H → End(M)), then there
exists γ :H → k normalized and convolution invertible such that σ = D1(γ ). If moreover we
have CoInn(H) = CoInt(H), then σ is a lazy 2-coboundary.

Proof. Denote as before F :H(σ) → End(M), F(h)(m) = h · m, which is an algebra map. We
have, for all h ∈ H and f ∈ End(M):

h · f = F(h1) ◦ f ◦ F−1(h2) = G(h1) ◦ f ◦ G−1(h2).

Hence, if we define γ :H → End(M) by γ (h) = G−1(h1) ◦ F(h2), we obtain that γ (h) ◦ f =
f ◦ γ (h), and since End(M) is a central algebra and this relation holds for all f ∈ End(M),
it follows that actually γ is a map from H to k. Obviously γ is normalized and convolution
invertible, so we only have to prove that σ = D1(γ ).

First note that, since G is an algebra map, we have G−1 = G◦S, so G−1 is an antialgebra map.
Also, since F :H(σ) → End(M) is an algebra map, we have F(hl) = σ−1(h1, l1)F (h2)F (l2) for
all h, l ∈ H . Now we compute:

γ (hl) = G−1(h1l1)F (h2l2)

= G−1(h1l1)σ
−1(h2, l2)F (h3)F (l3)

= σ−1(h1, l1)G
−1(h2l2)F (h3)F (l3)

because σ−1 is lazy. Hence, we have:

σ(h1, l1)γ (h2l2) = σ(h1, l1)σ
−1(h2, l2)G

−1(l3)G
−1(h3)F (h4)F (l4)

= G−1(l1)G
−1(h1)F (h2)F (l2)

= G−1(l1)γ (h)F (l2)
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= γ (h)G−1(l1)F (l2)

= γ (h)γ (l),

so we obtain σ(h, l) = γ (h1)γ (l1)γ
−1(h2l2) = D1(γ )(h, l). In general, we do not know whether

γ is lazy or whether there exists another χ :H → k lazy such that σ = D1(χ). However, if
CoInn(H) = CoInt(H), then by [2] such a χ exists, so σ is a lazy 2-coboundary in this case. �
6. Lifting projective representations afforded by lazy 2-cocycles

A theorem of Schur asserts that for any finite group G there exists a finite central extension C

such that any projective representation of G can be lifted to an ordinary representation of C. This
theorem has been generalized by Ioana Boca in [3], who proved that any cocommutative Hopf
algebra H admits a (cocommutative) central extension B such that any projective representation
of H can be lifted to an ordinary representation of B . The aim of this section is to further gener-
alize her result, by proving that any Hopf algebra H admits a central extension B such that any
projective representation of H afforded by a lazy 2-cocycle can be lifted to an ordinary repre-
sentation of B . Our proof follows closely the one of Boca, so many details will be skipped. The
proof will reveal again how important is the fact that lazy 2-cocycles form a group.

If H is a Hopf algebra and K is a Hopf subalgebra of H , then K+ is defined by K+ =
K ∩ Ker(ε). If K is a central Hopf subalgebra of H , then HK+ = K+H and HK+ is a Hopf
ideal of H , so H = H/HK+ is a Hopf algebra. A central extension of H is a Hopf algebra
B together with a central Hopf subalgebra A such that the Hopf algebra quotient B/BA+ is
isomorphic to H (we denote by π the surjection B → H with kernel BA+). Recall now from
[3, Definition 2.2] the concept of a projective representation for a Hopf algebra H .

Definition 6.1. If V is a vector space, a linear map T :H → End(V ) is called a projective repre-
sentation of H if:

(i) T is convolution invertible;
(ii) T (1) = idV ;

(iii) T (h)T (l) = α(h1, l1)T (h2l2) for all h, l ∈ H , where α ∈ Hom(H ⊗ H,k) is convolution
invertible.

It was proved in [3] that if T is a projective representation, then α is a normalized (and
convolution invertible) left 2-cocycle and is uniquely determined by T (it will be called the
cocycle of T , or we say that T is afforded by α). Conversely, one can see that, if a map T as
above satisfies (ii) and (iii), where α is a normalized and convolution invertible left 2-cocycle,
then it also satisfies (i), its convolution inverse being T −1(h) = T (S1(h)), where S1 is the map
defined by (2.12). Hence, T is a projective representation if and only if V is a left αH -module.
Recall now from [3, Definition 2.11] the concept of lifting of a projective representation.

Definition 6.2. If (B,A) is a central extension of a Hopf algebra H and T :H → End(V ) is a
projective representation of H , then we say that T can be lifted to B if there exists an ordinary
representation (algebra map) X :B → End(V ) and an element γ ∈ Reg(B, k), with γ (1) = 1,
such that X = γ ∗ (T ◦ π). Such a representation X is called a lift of T .
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Lemma 6.3. Let H and A be Hopf algebras with A commutative. If σ :H ⊗ H → A is a nor-
malized and convolution invertible left 2-cocycle (with respect to the trivial action of H on A)
which is moreover a coalgebra map and is lazy in the sense that

σ(h1, l1) ⊗ h2l2 = σ(h2, l2) ⊗ h1l1

in A ⊗ H , for all h, l ∈ H , then the crossed product B = A #σ H is a Hopf algebra with:

(1) (a # h)(c # l) = acσ(h1, l1) # h2l2, for all a, c ∈ A and h, l ∈ H ;
(2) Δ(a # h) = (a1 # h1) ⊗ (a2 # h2);
(3) ε(a # h) = ε(a)ε(h);
(4) S(a # h) = (σ−1(S(h2), h3) # S(h1))(S(a) # 1);
(5) The map π :B → H , π(a # h) = ε(a)h is a Hopf algebra epimorphism with kernel BA+;
(6) A � A # 1 is a central Hopf subalgebra of B and

A = Bco(H) := {
b ∈ B

∣∣ (id ⊗ π)Δ(b) = b ⊗ 1
}
.

Proof. We only show how to replace the cocommutativity of H in [3, Lemma 2.1], by the lazi-
ness of σ , the rest of the proof is identical to the one in [3]. Namely, one can compute as in [3]
that

Δ
(
(a # h)(c # l)

) = (
a1c1σ(h1, l1) # h3l3

) ⊗ (
a2c2σ(h2, l2) # h4l4

)
,

for all a, c ∈ A and h, l ∈ H , using the fact that σ is a coalgebra map, and

Δ(a # h)Δ(c # l) = (
a1c1σ(h1, l1) # h2l2

) ⊗ (
a2c2σ(h3, l3) # h4l4

)
,

and these are equal because, since σ is lazy, we have σ(h2, l2) ⊗ h3l3 = σ(h3, l3) ⊗ h2l2. �
Denote by G the group Z2

L(H) of normalized and convolution invertible lazy 2-cocycles
on H . Denote by A the finite dual (kG)0 of the group algebra kG, so A is a commutative Hopf
algebra. We can generalize [3, Lemma 3.1] as follows.

Lemma 6.4. Let H , G, A be as above. Define σ :H ⊗ H → (kG)∗ by σ(h, l)(α) = α(h, l), for
all h, l ∈ H and α ∈ G. Then Im(σ ) ⊆ A and the corestriction σ :H ⊗ H → A is a coalgebra
map and a normalized and convolution invertible lazy 2-cocycle.

Proof. We only prove that σ is lazy, the rest of the proof is identical to the one in [3]. Namely,
we have to prove that for all h, l ∈ H we have the equality σ(h1, l1) ⊗ h2l2 = σ(h2, l2) ⊗ h1l1 in
(kG)0 ⊗H . This is equivalent to proving that σ(h1, l1)(α)h2l2 = σ(h2, l2)(α)h1l1 for all α ∈ G,
that is, α(h1, l1)h2l2 = α(h2, l2)h1l1 for all α ∈ G, which is obviously true because G consists
exactly of lazy cocycles. �

The following result generalizes [3, Proposition 2.9].

Lemma 6.5. Let H be a Hopf algebra and T :H → End(V ) a projective representation afforded
by a lazy 2-cocycle α and let u ∈ Reg(H, k) with u(1) = 1. If W := u ∗ T , then W is a projective
representation with cocycle δ(u) ∗ α, where δ(u)(h, l) = u(h1)u(l1)u

−1(h2l2) for all h, l ∈ H .
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Proof. Obviously W(1) = idV ; then one computes immediately that

W(h)W(l) = u(h1)u(l1)T (h2)T (l2)

= u(h1)u(l1)α(h2, l2)T (h3l3)

= u(h1)u(l1)u
−1(h2l2)u(h3l3)α(h4, l4)T (h5l5)

= u(h1)u(l1)u
−1(h2l2)α(h3, l3)u(h4l4)T (h5l5)

= (
δ(u) ∗ α

)
(h1, l1)W(h2l2),

where in the fourth equality we used the fact that α is lazy. �
The next result generalizes [3, Proposition 2.12].

Proposition 6.6. Let H , A, σ , B be as in Lemma 6.3. Then:

(i) If X is an ordinary representation of B such that λ := X/A is a scalar function, then, if we
define T (h) = X(1 #h), T is a projective representation of H afforded by the lazy 2-cocycle
λ ◦ σ and moreover X is a lift of T ;

(ii) If (T ,α) is a projective representation of H afforded by the lazy 2-cocycle α and X is a
lift of T , then λ := X/A is a scalar function. Moreover, the lazy 2-cocycles α and λ ◦ σ are
cohomologous (but not necessarily lazy cohomologous);

(iii) Let (T ,α) be a projective representation of H afforded by the lazy 2-cocycle α. Then T can
be lifted to B if and only if there exists an algebra map λ :A → k such that α is cohomolo-
gous to λ ◦ σ (via a map u ∈ Reg(H, k) with u(1) = 1, but u not necessarily lazy).

Proof. Follows closely the proof in [3]. The laziness of α is used through the fact that
δ(u) ∗ α can be written as (δ(u) ∗ α)(h, l) = u(h1)u(l1)u

−1(h2l2)α(h3, l3) = u(h1)u(l1)α(h2,

l2)u
−1(h3l3), and through the fact that one has to use the previous lemma, where α is supposed

to be lazy. �
We can finally obtain the desired result, generalizing [3, Theorem 3.2].

Theorem 6.7. Let H be a Hopf algebra. Then there exists a central extension B of H such that
any projective representation of H afforded by a lazy 2-cocycle can be lifted to B .

Proof. Take as above G = Z2
L(H), A = (kG)0, σ :H ⊗ H → (kG)0, σ(h, l)(α) = α(h, l) for

all h, l ∈ H and α ∈ G. By Lemma 6.4, the hypotheses of Lemma 6.3 are satisfied, so we can
consider the Hopf algebra B = A #σ H , a central extension of H . We prove that any projective
representation T of H afforded by a lazy 2-cocycle α can be lifted to B . By the previous propo-
sition, it is enough to find an algebra map λ :A → k such that α is cohomologous to λ ◦ σ . As
in [3], define λ :A → k by λ(F ) = F(α), for all F ∈ A = (kG)0. Then we have

(λ ◦ σ)(h, l) = λ
(
σ(h, l)

) = σ(h, l)(α) = α(h, l),

hence α = λ ◦ σ . Then, we have, for F,G ∈ A = (kG)0:
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λ(FG) = (FG)(α) = F(α)G(α) = λ(F )λ(G)

because α is grouplike in kG, and λ(ε) = ε(α) = 1, hence λ is an algebra map. �
7. Lazy cocycles and separable Hopf algebras

Let A be an algebra; we recall that an element e = e1 ⊗ e2 ∈ A ⊗ A is called A-central if
ae1 ⊗ e2 = e1 ⊗ e2a, for all a ∈ A, and A is separable if and only if there exists an A-central
element e1 ⊗ e2 such that e1e2 = 1 (such an element is called a separability idempotent).

It was proved in [5, Proposition 147], that if H is a cocommutative Hopf algebra, σ :H ⊗H →
k is a 2-cocycle and t ∈ H is a right integral, then the element Rσ = σ−1(S(t2) ⊗ t3)S(t1) ⊗ t4 ∈
Hσ ⊗ Hσ is Hσ -central (and H separable implies Hσ separable). We can generalize this result
(by replacing cocommutativity by laziness) as follows:

Proposition 7.1. Let σ :H ⊗ H → k be a normalized and convolution invertible lazy 2-cocycle,
and S1 :H → H the map given by (2.12). Then:

(i) If t ∈ H is a right integral, then the element R(σ) = S1(t1) ⊗ t2 ∈ H(σ) ⊗ H(σ) is H(σ)-
central.

(ii) If t ∈ H is a left integral, then the element R(σ) = t1 ⊗ S1(t2) ∈ H(σ) ⊗ H(σ) is H(σ)-
central.

(iii) Consequently, if H is separable, then H(σ) is also separable.

Proof. We prove (i), while (ii) is similar and left to the reader. We denote as before by ·σ the
multiplication of H(σ) and by ·σ−1 the one of H(σ−1). Since t is a right integral, we have
th = ε(h)t for all h ∈ H , hence we can write h ⊗ t = h1 ⊗ th2. By applying Δ on the second
component and using Lemma 5.1(i), with σ and σ−1 interchanged, we obtain

h ⊗ t1 ⊗ t2 = h1 ⊗ t1 ·σ−1 h2 ⊗ t2 ·σ h3.

By applying S1 on the second component and using Proposition 2.5, we obtain

h ⊗ S1(t1) ⊗ t2 = h1 ⊗ S1(h2) ·σ S1(t1) ⊗ t2 ·σ h3.

By multiplying (in H(σ)) the first two components we obtain

h ·σ S1(t1) ⊗ t2 = h1 ·σ S1(h2) ·σ S1(t1) ⊗ t2 ·σ h3,

and using formula (2.14) this becomes

h ·σ S1(t1) ⊗ t2 = S1(t1) ⊗ t2 ·σ h,

that is R(σ) is H(σ)-central.
(iii) If H is separable, there exists a right integral t ∈ H with ε(t) = 1, and by (i) and using

again (2.14) it follows that R(σ) is a separability idempotent for H(σ). �
It is instructive to compare this very easy and conceptual proof with the one in [5], which is

more involved though it works only in the cocommutative case.
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