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Let Q be the field of rational numbers. As a module over the
ring Z of integers, Q is Z-projective, but QZ is not a projective
module. Contrary to this situation, we show that over a prime
right noetherian right hereditary right V-ring R , a right module
P is projective if and only if P is R-projective. As a consequence
of this we obtain the result stated in the title. Furthermore, we
apply this to affirmatively answer a question that was left open in
a recent work of Holston, López-Permouth and Orhan Ertag (2012)
[9] by showing that over a right noetherian prime right SI-ring,
quasi-projective right modules are projective or semisimple.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

We consider associative rings with identity. All modules are unitary modules. Let M , N be right
R-modules. The module M is called N-projective if for each exact sequence

0 → H → N
g→ K → 0
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in Mod-R , and any homomorphism f : M → K there is a homomorphism f ′ : M → N such that
g f ′ = f .

A right R-module P is defined to be a projective module if P is N-projective for any N ∈ Mod-R .
A ring R is right (left) hereditary if every right (left) ideal of R is projective as a right (left) R-module.
A right and left hereditary (noetherian) ring is simply called a hereditary (noetherian) ring.

For basic properties of (quasi-)projective modules as well as concepts of modules and rings not
defined here we refer to [1,7,11,12,14].

Unlike the injectivity of modules, an R-projective module may not be projective, in general. As
an example for that, we consider the ring Q of rational numbers as a module over the ring Z of
integers (cf. [1, 10(1), p. 190]). Then, since every nonzero homomorphic image of QZ is infinite (and
injective), there is no nonzero homomorphism from QZ to Z/A for any ideal A ⊂ Z. Hence QZ is
Z-projective. But, obviously, QZ is not projective. Note that Z is a noetherian hereditary domain, it is
even a commutative PID.

Motivated by this we ask a question:

For which noetherian hereditary domains D, D-projectivity implies projectivity?

In this note we answer this question affirmatively for prime right noetherian right hereditary right
V-rings (Corollary 4). Using this we show that the class (iii) of [9, Theorem 3.11] is not empty. This is
what the authors of [9] wanted to see.

Note that a ring R is called a right V-ring (after Villamyor) if every simple right R-module is
injective. For basic properties of V-rings we refer to [13].

2. Results

A submodule E of a module M is called an essential submodule if for any nonzero submodule
A ⊆ M , E ∩ A 	= 0. A nonzero submodule U ⊆ M is called uniform if every nonzero submodule of U is
essential in U .

A right R-module N is called nonsingular if for any nonzero element x ∈ N the annihilator annR(x)
of x in R is not an essential right ideal of R . A right R-module S is called a singular module if the
annihilator in R of each nonzero element of S is an essential right ideal of R . Every R-module M
has a maximal singular submodule Z(M) which contains all singular submodules of M . This is a fully
invariant submodule of M and it is called the singular submodule of M . Clearly, M is nonsingular
if and only if Z(M) = 0. For a ring R , if Z(R R) = 0 (resp., Z(R R) = 0) then R is called right (left)
nonsingular. (See, e.g., [8, p. 5].) To indicate that M is a right (left) module over R we write MR
(resp., R M).

Lemma 1. Let R be a right nonsingular right V-ring. Any nonzero R-projective right R-module M is nonsingu-
lar.

Proof. Assume on the contrary that M contains a nonzero singular submodule T . As R is a right
V-ring, T contains a maximal submodule V for which we have M/V = (T /V ) ⊕ (L/V ) for some
submodule L of M with V ⊂ L. On the other hand, there exists a maximal right ideal B ⊂ R such that
R/B ∼= T /V as right R-modules. This means there is a homomorphism f : M → R/B with Ker( f ) = L.
By the definition of the R-projectivity, there exists a homomorphism f ′ : M → R R such that g f ′ = f
where g is the canonical homomorphism R → R/B . However, this is impossible, because as R is right
nonsingular, the kernel of f ′ must contain the singular submodule T which implies Ker(g f ′) 	= Ker( f ).
Thus M does not contain a nonzero singular submodule, proving that M is nonsingular. �

We would like to remark that Lemma 1 does not hold if the ring R is not a right V-ring. As an
example for this, we again take the ring Z. Let p ∈ Z be a prime number, then the p-Prüfer group
C(p∞) is Z-projective (cf. [1, 10(1), p. 190]), but C(p∞) is a singular Z-module.

If a module M has finite uniform dimension, we denote its dimension by u-dim(M) and call M a
finite dimensional module.
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Lemma 2. Let D be a right hereditary domain. Then:

(a) Every projective right D-module is isomorphic to a direct sum of right ideals of D.
(b) In addition, if D is right noetherian and right V, then every finite dimensional submodule of a D-projective

right D-module P is projective.

Proof. (a) holds by a well-known result of Kaplansky [10] (see also [12, 2.24]).
(b) Let D be a right noetherian right hereditary right V-domain, and P be a D-projective right

D-module. By Lemma 1, P is nonsingular. Let M ⊆ P be a submodule with u-dim(MR) = k where
k is a positive integer. Then there are k cyclic uniform independent submodules Xi ⊆ M such that
X1 ⊕ · · · ⊕ Xk is essential in M . Let Mi be a maximal submodule of Xi , then (X1/M1)⊕ · · ·⊕ (Xk/Mk)

is injective and so P/(
⊕k

i=1 Mi) = (
⊕k

i=1 Xi/Mi)⊕ L/(
⊕k

i=1 Mi) for some submodule L ⊆ P containing⊕k
i=1 Mi . Hence there is an epimorphism f : P → ⊕k

i=1(Xi/Mi) with Ker( f ) = L. On the other hand,

as D is a right noetherian domain, Xi ∼= D D , and P is (
⊕k

i=1 Xi)-projective (see, e.g., [1, 16.12]), there

is a homomorphism f ′ : P → ⊕k
i=1 Xi such that g f ′ = f where g is the canonical homomorphism⊕k

i=1 Xi → ⊕k
i=1(Xi/Mi).

As Xi � Ker( f ) we see that for each i, Xi � Ker( f ′). It follows that f ′(M) 	= 0, and as a submodule

of the projective module
⊕k

i=1 Xi , f ′(M) is projective. Setting K = Ker( f ′|M) we have

M ∼= f ′(M) ⊕ K , and f ′(M) 	= 0. (1)

Now we prove the claim by induction on k. For k = 1, M is uniform, and hence K = 0 and so M
is projective. Now assume that the claim is true for any submodule with uniform dimension < k. If
in (1), K 	= 0, then both f ′(M) and K have uniform dimension < k, and hence they are projective.
Therefore, by (1), M is projective. If K = 0, then M ∼= f ′(M), a projective module. �

Now we are ready to prove the main result.

Theorem 3. For a right module P over a right noetherian right hereditary right V-domain D, the following
conditions are equivalent:

(i) P is D-projective.
(ii) P is projective.

Proof. (ii) ⇒ (i) is clear.
(i) ⇒ (ii): We consider the case P 	= 0. Let ℘ be the set of all nonzero projective submodules

of P . By Lemma 1, P is nonsingular, and hence ℘ is not empty. Moreover, ℘ is partially ordered with
respect to the set inclusion (⊆). We aim to show that (℘,⊆) satisfies the hypothesis of Zorn’s Lemma.
For this purpose, let {Pλ}λ∈Λ be an ascending chain in ℘ , and set Q = ⋃

λ∈Λ Pλ . We need to show
that Q ∈ ℘ , i.e., that Q is projective.

There is an epimorphism ϕ : D(A) → Q D where D(A) is the direct sum of |A| copies of D D , and A
is a suitable index set. Let Tλ = {x ∈ D(A) | ϕ(x) ∈ Pλ}, i.e., Tλ is the largest submodule of D(A) with
ϕ(Tλ) = Pλ . It is clear that Ker(ϕ) ⊆ Tλ . Hence Tλ = Vλ ⊕ Ker(ϕ) for some submodule Vλ ⊆ Tλ such
that ϕ(Vλ) = Pλ . Observe that for any λ,λ′ ∈ Λ, Pλ ⊆ Pλ′ if and only if Vλ ⊆ Vλ′ . Hence the system
{Vλ}λ∈Λ forms an ascending chain in D(A) . Set V = ⋃

λ∈Λ Vλ . We see that V is a submodule of D(A) .
As D is right hereditary, V is a projective module. It is obvious that ϕ(V ) ⊆ Q . Now let y ∈ Q , then
there is a Pλ such that y ∈ Pλ . By the construction of Tλ , there is an x ∈ Vλ such that ϕ(x) = y. Hence
ϕ(V ) ⊇ Q , and so ϕ(V ) = Q . Let 0 	= z ∈ V . There is a Vλ such that z ∈ Vλ . As ϕ|Vλ : Vλ → Pλ is an
isomorphism, we have ϕ(z) 	= 0. Thus ϕ|V is an isomorphism, or equivalently, V ∼= Q . This shows that
Q ∈ ℘ .
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Now we can apply Zorn’s Lemma for the partially ordered set (℘,⊆) to see that ℘ contains a
maximal element P ′ . We aim to show that P ′ = P , proving the projectivity of P , i.e., (ii) holds. We
assume on the contrary that P ′ 	= P .

By Lemma 2(a), we have

P ′ =
⊕
α∈Ω

Pα (2)

where each Pα is isomorphic to a right ideal of D , in particular, each Pα is uniform and noetherian.
Let t ∈ P \ P ′ . Since P D is nonsingular, t D ∼= D , hence t D is uniform and noetherian.

There is a finite subset F1 ⊆ Ω , such that P ′ ∩ t D ⊆ (
⊕

α∈F1
Pα). Set W = ⊕

α∈Ω\F1
Pα . Again

since W ∩ [(⊕α∈F1
Pα) + t D] is noetherian, there is a finite subset F2 ⊆ Ω \ F1 such that W ∩

[(⊕α∈F1
Pα)+ t D] ⊆ ⊕

α∈F2
Pα . Set F = F1 ∪ F2, then (

⊕
α∈Ω\F Pα)∩[(⊕α∈F Pα)+ t D] = 0. Namely,

let a ∈ (
⊕

α∈Ω\F Pα)∩[(⊕α∈F Pα)+ t D], then a = b + tc for some b ∈ ⊕
α∈F Pα , c ∈ D . It follows that

a − b = tc ∈ P ′ ∩ t D ⊆ ⊕
α∈F1

Pα . This implies that a ∈ (
⊕

α∈Ω\F Pα) ∩ (
⊕

α∈F Pα) = 0. Thus

P ′ + t D =
( ⊕

α∈Ω\F

Pα

)
⊕

[(⊕
α∈F

Pα

)
+ t D

]
. (3)

Now, as (
⊕

α∈F Pα)+ t D is a finitely generated submodule of P , (
⊕

α∈F Pα)+ t D is noetherian, hence
projective by Lemma 2(b). Thus by (3), P ′ + t D is projective. This is a contradiction to the maximality
of P ′ in ℘ . Thus P ′ = P . �

Following Faith [6] a ring R is a right PCI-ring if every cyclic right R-module is either injective or
isomorphic to R R . By [6] and [5], a right PCI-ring is either semisimple artinian or a right noetherian
right hereditary right V-domain. Hence Theorem 3 holds for right PCI-domains. An example of a
PCI-domain which is not a division ring was given by Cozzens [4]. If D is a right PCI-domain, then
D/A is injective and semisimple for any nonzero right ideal A ⊆ D . In particular, every singular right
D-module is injective and semisimple.

Ken Goodearl [8] introduced and investigated a class of rings over which singular right modules
are injective and called these rings, right SI-rings. From the general structure theorem of right SI-
rings in [8, 3.11], if R is a prime right SI-ring with zero right socle (i.e., Soc(R R) = 0), then R is
Morita equivalent with a right SI-domain D . On the other hand, it is known that a domain D is right
SI if and only if D is a right PCI-domain.

More generally, let R be a prime right noetherian right hereditary right V-ring. By [7, 7.36A], R is
a simple ring. Hence R is Morita equivalent to a right noetherian right hereditary right V-domain (see
e.g., [7, 4.23B]). In the light of [1, 21.6] about the relationship between Morita equivalent rings and
Theorem 3, we obtain the following result which includes prime right noetherian right SI-rings.1

Corollary 4. Over a prime right noetherian right hereditary right V-ring R, a right R-module P is projective if
and only if P is R-projective.

For a ring R we denote by � the class of all semisimple right R-modules. In [9], a right R-module
M is called p-poor if whenever M is N-projective, for some N ∈ Mod-R , then N ∈ �. They studied the
class � of rings over which every right module is either projective or p-poor, and asked a question
whether any right PCI-domain does belong to �. Theorem 3 provides a positive answer for this when
we apply it for right PCI-domains. Moreover the following result particularly shows that the class (iii)
of [9, Theorem 3.11] is indeed not empty. This is what the authors of [9] wanted to see.

1 For a prime right SI-ring R , if Soc(R R ) = 0 then, by [8, 3.11], R is right noetherian, right hereditary and right V.
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Proposition 5. For a prime right SI-ring R with Soc(R R) = 0, the following conditions are equivalent:

(a) Every right R-module is projective or p-poor.
(b) Every quasi-projective right R-module is semisimple or projective.

In particular, every quasi-projective right R-module is either projective or injective and semisimple.

Proof. Note that every singular right R-module is injective and semisimple (cf., [8, 3.1]). Because
of [1, 21.6] and since R is Morita equivalent to a right PCI-domain D , it is enough to prove our
statements for D .

(a) ⇒ (b): Let P be a quasi-projective right D-module. Assume that P D is not semisimple. Then
P = P1 ⊕ S where S is the singular submodule of P , and P1 is nonsingular and nonzero. For any
0 	= x ∈ P1, xD ∼= D D since D is a right noetherian domain. As P is xD-projective, P is then D-
projective. Thus P is projective by Theorem 3. This proves (b).

(b) ⇒ (a): Let Q D be a module which is not p-poor. This means, there is a cyclic right D-module
X with the property that XD is not semisimple, and Q is X-projective. Write X = X1 ⊕ S where S is
the singular submodule of X . Hence X1 	= 0 and it is cyclic and nonsingular. Therefore, X1 ∼= D D . As
Q is X1-projective, Q must be D-projective. By Theorem 3, Q is projective, proving (a).

For the last statement, let P be a quasi-projective right D-module. If P is not semisimple, then P
contains a copy of D , hence D-projective. Therefore P is projective by Theorem 3. It is moreover clear
that every semisimple right D-module is injective. �

Let R be a prime noetherian hereditary right V-ring. Then for each essential right (left) ideal A ⊆ R ,
R/A is an artinian right (left) R-module by [3] and [15]. Hence, as R is right V, R is a right SI-ring.
By [2, Corollary 6], R is left SI. Thus by Proposition 5, every quasi-projective right (left) R-module is
either projective or injective and semisimple. This is the result stated in the title of this note.

All rings considered in this note are in fact simple rings. From this nature, we would like to ask
the following

Question 6. Let R be a right noetherian right hereditary simple ring, and P be an R-projective nonsingular
right R-module. Does this necessarily follow that P R is a projective module?

In the light of the proof of Theorem 3, to have a positive answer for Question 6 we need to show
that all finite dimensional submodules of P are projective. Hence, P is projective if and only if every
finite dimensional submodule of P is projective.
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