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Abstract Tumor necrosis factor a (TNFa), a pleiotropic cyto-
kine, activates both apoptotic and pro-survival signals depending
on the cell model. Using ECV304 cells, which can be made
TNFa-sensitive by cycloheximide (CHX) co-treatment, we eval-
uated the potential roles of ceramide and phospholipase D (PLD)
in TNFa-induced apoptosis. TNFa/CHX induced a robust in-
crease in ceramide levels after 16 h of treatment when cell death
was maximal. PLD activity was increased at early time point
(1 h) whereas both PLD activity and PLD1 protein were
strongly decreased after 24 h. TNFa/CHX-induced cell death
was significantly lowered by exogenous bacterial PLD and
phoshatidic acid, and in cells overexpressing PLD1. Conversely,
cells depleted in PLD proteins by small interference RNA (siR-
NA) treatment exhibited higher susceptibility to apoptosis.
These results show that PLD exerts a protective role against
TNFa-induced cell death.
� 2006 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Tumor necrosis factor a (TNFa) is a pleiotropic cytokine

that exerts various biological effects in different cell types. In

numerous tumor cells or virally infected cells, TNFa can initi-

ate an apoptotic cascade that involves a variety of mediators

and regulators including proteases, the sphingolipid ceramide,

and members of the Bcl-2 family. However, most normal cells

including endothelial cells are resistant to TNFa [1–3], but can

be rendered sensitive when protein or RNA synthesis inhibi-

tors such as cycloheximide (CHX) or actinomycin D are asso-
Abbreviations: Cer, ceramide; TNFa, Tumor necrosis factor a; PLD,
phospholipase D; PA, phosphatidic acid; DGK, diacylglycerol kinase;
DAG, diacylglycerol; SMase, sphingomyelinase; PBS, phosphate-buf-
fered saline
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ciated to TNFa treatment [2,4]. The sensitizing effect of CHX

to TNFa treatment is believed to result from the inhibition of

synthesis of some NF-jB-dependent survival factors [5,6]. The

death induced by TNFa in the presence of CHX shows typical

morphological and biochemical features of apoptosis and is

blocked by anti-apoptotic proteins such as E1B, a viral homo-

logue of Bcl-2 protein [7] or the cowpox virus CrmA protein

[8]. Although the role of ceramide as a second messenger in

apoptosis signaling has been a matter of debate, its involve-

ment in the transmission of the death signal initiated by

TNF receptor activation is now well recognized. In different

cell types, TNFa has been shown to increase intracellular cer-

amide levels either through the activation of sphingomyelin-

ases (SMases) or by a mechanism involving de novo

ceramide synthesis [9–11].

On the other hand, phospholipase D (PLD) through its reac-

tion product, phosphatidic acid (PA), has been shown to play a

key role in the proliferation of various cell models, and there is

a growing body of evidence linking PLD activity with mito-

genic signaling. Thus, PLD activity has been shown to increase

in response to various growth factors and in cells transformed

by a variety of oncogenes [12]. However, the role of PLD in

apoptosis remains controversial, both pro- and anti-apoptotic

effects being reported depending on the cell type and the apop-

totic stimulus considered [13,14]. Indeed, some reports indi-

cated that PLD activity is upregulated during apoptosis of

hematopoietic cells such as Jurkat T-cells [15] and murine B

lymphoma A20 cells [16] or normal rat fibroblasts [17]. Con-

versely, a downregulation of PLD has been reported to occur

during the ceramide-induced apoptosis of rat C6 glial cells [18]

and the human keratinocyte cell line HaCaT [19]. Interestingly,

recent studies are beginning to point out a protective role of

PLD against apoptosis of either normal [20,21] or transformed

cells [22,23] induced by different stimuli.

In the present study, we set out to investigate whether cera-

mide and PLD were involved in TNFa-induced apoptosis of

ECV304 cells, a model of TNFa-resistant cells, which can be

made TNFa-sensitive by CHX co-treatment. We first investi-

gated the involvement of ceramide in the apoptotic response

to TNFa/CHX. Then, we examined whether the apoptotic re-

sponse of ECV304 cells to TNFa could be modified by changes

in their PLD activity or PA content. PLD activity increases

were mimicked either by addition of exogenous bacterial

PLD or PA, or through PLD1 and PLD2 overexpression,

whereas 1-butanol which prevents normal PLD functioning

and PLDI- and PLD2-siRNA were used to lower endogenous

PLD activity. Herein, our data provide evidence that PLD has

a survival role counteracting TNFa-induced cell death in

ECV304 cells.
blished by Elsevier B.V. All rights reserved.
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2. Materials and methods

2.1. Materials
TNFa was from Peprotech (AbCys, Paris, France). Triton X-100

was from Pierce. Silica Gel G60 and LK6D Silica Gel G60 (Whatman)
TLC plates were from VWR International (Fontenay-sous-Bois,
France). [33P]-ATP, [3H]-palmitic acid, MP Hyperfilm, ECL were from
Amersham Biosciences (Orsay, France). HRP-conjugated anti-mouse
IgG antibody was from Jackson Immunoresearch Laboratories
(Soham, UK). Bradford protein assay and HRP-conjugated anti-
rabbit IgG antibody were from Bio Rad (Marnes-La-Coquette,
France). Immobilon P membranes were from Millipore (St Quentin
Yvelines, France). Annexin V-conjugated Alexa Fluor 594 was from
Molecular Probes. Phospholipase D from Streptomyces chromofuscus,
LL-a dipalmitoyl and LL-a dioctanoyl phosphatidic acids (sodium salts),
anti a-tubulin monoclonal antibody were from Sigma–Aldrich (L’Isle
d’Abeau, France). Escherichia coli DAG Kinase and cycloheximide
were from Calbiochem (Merck Biosciences, France). TransPEI trans-
fection reagent and negative control siRNA were from Eurogentec
(Anger, France). C2-ceramide and dihydroceramide were purchased
from Avanti Polar Lipids (Biovalley, France).

2.2. Cell culture
ECV-304, an immortalized human vascular endothelial cell line, was

obtained from American Type Culture Collection (Rockville, MD).
Cells were grown in M199 medium supplemented with 10% fetal calf
serum, 2 mM glutamine, 100 U/ml penicillin and 100 lg/ml strepto-
mycin, in 5% CO2 at 37 �C in a humidified incubator. Treatments were
carried out on 80–90% confluent cells.

2.3. Cell viability assay
Viability of cultured cells was measured at various time points using

the trypan blue exclusion test or the MTT colorimetric assay (Roche
Diagnostics, Meylan, France) as described previously by Mosmann
[24]. In this latter case, cells were cultured in 96-well culture plates at
a cell density of 105 cells/ml. At the end of the treatment period in ab-
sence or presence of TNFa or TNFa/CHX, 10 ll of the 3-(4,5-dimeth-
ylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) labeling
reagent (0.5 mg/ml final concentration) was added to each well. The
cells were incubated for further 4 h. 100 ll solubilization solution
was then added and plates were allowed to stand overnight at 37 �C
in a humidified atmosphere. The optical density (OD) was measured
the next day at 550 and 690 nm wavelength using an ELISA plate read-
er (PowerWave X, Biotek Instruments, Winooski, USA). The number
of viable cells was directly correlated to the difference of absorbance
measured at 550 and 690 nm. Results were normalized relative to their
respective controls (without TNFa or TNFa/CHX) taken as 100. In
some experiments, apoptosis was ascertained by annexin-V binding.
After treatment, cells were washed once with PBS then incubated with
1 lg/ml annexin-V conjugated to Alexa Fluor 594 (Molecular Probes)
in annexin-binding buffer (10 mM HEPES, pH 7.4, 140 mM NaCl and
2.5 mM CaCl2) at 37 �C. After 30 min of incubation, cells were exam-
ined by fluorescence microscopy and counted for annexin-V binding.
Different fields (at least 300 cells) were counted for each experiment.

2.4. Ceramide measurement
ECV 304 cells cultured in 10 cm Petri dishes were treated for the

indicated times with TNFa in the presence or absence of CHX. Culture
medium was removed and centrifuged to collect floated dead cells. At-
tached cells were washed twice with ice-cold PBS, scraped in 1 ml
methanol, and pooled with pelleted floating cells. Total lipids were
then extracted by the method of Bligh and Dyer [25]. Lipids were then
dried and an aliquot was taken from each sample for total lipid phos-
phate determination as described [26]. Measurement of ceramide levels
was performed using the DAG kinase assay as previously described
[26,27]. Briefly, lipid samples and standards were sonicated in 20 ll
of mixed micelles (7.5% b-n-octyl-DD-glucopyranoside/25 mM dioleyl
phosphatidylglycerol) and incubated for 30 min at 37�C. Then, 70 ll
of enzyme reaction buffer (75 mM imidazole pH 6.6, 71 mM LiCl,
17.8 mM MgCl2, 1.5 mM EGTA, 0.25 mM DTPA, 2.8 mM DTT
and 3 lg E. coli DAG kinase) and 10 ll of ATP mixture (10 mM
ATP and 0.2 lCi/ll [c-33P]ATP in 5 mM imidazole) was added to sam-
ples, and the mixture incubated for 1 h at room temperature. Phos-
phorylated ceramide and DAG were extracted with chloroform/
methanol. Lipid extracts, DAG and ceramide standards (0–600 pmol)
were then spotted onto TLC plates and developed in chloroform/ace-
tone/methanol/acetic acid/ water (50:20:15:10:5, by volume). Radioac-
tive PA and ceramide-1-P were visualized and quantified by
autoradiography.

2.5. PLD assay in intact cells
PLD was determined on the basis of its transphosphatidylation

activity. As it is known that serum starvation increases ceramide levels,
ECV304 cells were labeled in complete medium containing 2 lCi/ml
[3H]-palmitic acid for 24 h at 37 �C. Cells were then washed twice with
PBS, shifted to complete culture medium and treated for the indicated
times with CHX or with TNFa plus CHX; 1-butanol (1% final concen-
tration) was added during the last 30 min of treatment. Cells were then
collected and lipids extracted by the method of Bligh and Dyer in the
presence of 50 lM butylhydroxylated toluene. Phosphatidylbutanol
was separated by bidimensional TLC using chloroform/methanol/
28% ammonia (65:35:5.5, by volume) for the first migration, and ethyl
acetate/isooctane/acetic acid (9:5:2, by volume) for migration in the
second dimension. TLC plates were then stained with Coomassie Bril-
liant Blue R and phosphatidylbutanol spots were scraped off and the
radioactivity determined by liquid scintillation counting. Radioactivity
associated with phosphatidylbutanol was expressed as percentage of
total phospholipid radioactivity.

2.6. Transient transfections
pEGFP-PLD1b and -PLD2 constructs were prepared as previously

described [28]. Transient transfections using transPEI reagent were
performed according to the manufacturer’s recommendations. Briefly,
transPEI reagent diluted in 150 mM NaCl was mixed with 4.5 lg
pEGFP-PLDI or pEGFP-PLD2 DNA and left in contact for
30 min. The mix was then added dropwise to 3 · 105 cells suspended
in 4.5 ml of complete culture medium. The cells were plated
(105 cells/well) and cultured for 12 h in complete culture medium be-
fore TNFa or TNFa/CHX treatment for an additional 9 h period.
Control cells were transfected with 4.5 lg of pEGFP DNA (empty vec-
tor) in the same experimental conditions. SiRNA for PLD1 (hPLD1
target sequence: AAGTTAAGAGGAAATTCAAGC) and siRNA
for PLD2 (hPLD2 target sequence: GACACAAAGTCTTGATGAG)
were designed according to Fang et al. [29] and Powner et al. [30],
respectively. A siRNA without sequence similarity with any known
mammalian gene was used as a negative control. Transfection of siR-
NA was performed using Xtreme Gene reagent (Roche) with 25 nM
siRNA in antibiotic-free medium. The cells were kept for 12 h in this
medium and then shifted to complete culture medium for 24 h before
treatment with TNFa/CHX.

2.7. Western blotting experiments
Cells were homogenized in 20 mM Tris/HCl, pH 7.6, buffer contain-

ing 100 mM NaCl, 1% Triton, and protease inhibitors cocktail. Cell ly-
sates were mixed with Laemmli buffer supplemented with 2 M urea,
boiled for precisely 1 min, and separated on 8% SDS–polyacrylamide
gel including 4 M urea. The blots were probed with PLD1- and
PLD2-specific polyclonal antibodies kindly provided by Dr S. Bourg-
oin (Laval University, Canada), diluted 1:2000. Immunoblots were re-
vealed with the ECL detection system. After stripping, the membranes
were reprobed with an anti-a-tubulin monoclonal antibody for nor-
malization. Proteins were assayed by Bradford method.

2.8. Statistical analysis
Data were compared by ANOVA (Statview II for Macintosh) fol-

lowed by protected t test for multiple comparison. Paired sample
means were compared using the t test. P values of 0.05 or less were
considered statistically significant.
3. Results and discussion

3.1. Cytotoxic effects of TNFa/CHX in ECV304 cells

TNFa has been shown to induce apoptotic signals together

with the activation of survival pathways [31,32]. The survival

pathways induced by TNFa are known to require de novo
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protein synthesis, and blocking protein synthesis render the

cells sensitive to TNFa-induced cell death [11]. Treatment of

ECV304 cells for up to 24 h with TNFa (200 ng/ml) alone

did not induce any cell death (Fig. 1A and B) showing that

although ECV304 are immortalized cells, they are spontane-

ously resistant to the cytotoxic effects of TNFa. We thus con-

sidered to evaluate TNFa cytotoxicity in the absence of

protein synthesis, and as a preliminary step, we addressed

the effects of cycloheximide on protein synthesis in ECV304

cells. [3H]-leucine incorporation was inhibited in a dose-depen-

dent manner when ECV304 cells were treated with CHX. At a

concentration of 10 lg/ml, CHX markedly inhibited [3H]-leu-

cine incorporation by around 97.5% (data not shown) but

did not induce any cell death (Fig. 1B). In contrast, when cells

were treated with increasing concentrations of TNFa in the

presence of 10 lg/ml CHX, a dose-dependent decrease of cell

survival was observed (Fig. 1A). The percentage of live cells

decreased to approximately 25% of control after 24 h of treat-

ment with the combination of TNFa (200 ng/ml) and CHX

(10 lg/ml) as measured by MTT assay. Time-course studies

showed that cell death induced by the combination of TNFa
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and CHX started from 6 h (around 15%) and reached a max-

imum at 16 h (around 75%), as evaluated by trypan blue exclu-

sion test (Fig. 1B). Cells undergoing apoptosis present

characteristic features, such as phosphatidylserine (PS) exter-

nalization, an early event in apoptosis. The presence of PS in

the outer leaflet of ECV304 cell membrane was thus evaluated

by means of specific PS labeling with annexin-V conjugated to

a fluorescent dye. After 6 h of treatment with the combination

of TNFa and CHX, the proportion of annexin-V labeled cells

was markedly higher (around 30%) than the proportion of cells

excluding the blue dye (Fig. 1C). This result indicates that, at

this early time point, around half of cells with externalized PS

were still alive. When cells were treated with TNFa or CHX

alone the percentage of annexin-V positive cells remained low-

er than 7%, whatever the duration of treatment, and similar to

that measured in untreated cells (Fig. 1C).

3.2. Effect of TNFa/CHX on ceramide levels

TNFa is known to increase the intracellular levels of cera-

mide during apoptosis in a number of cell types [9,10,27].

Treatment of ECV304 cells with TNFa alone did not induce
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significant changes in ceramide levels as compared to untreated

control cells (Fig. 2A). In contrast, TNFa plus CHX treatment

caused a biphasic increase of ceramide levels. A first and mod-

est increase of ceramide level (1.5-fold) was observed at 6 h

(Fig. 2A, inset). At later time points, a robust increase of cer-

amide levels was observed, which reached a maximum at 16 h.

3.3. Effect of exogenous ceramide on ECV304 cell death

The involvement of ceramide in ECV304 cell apoptosis in-

duced by TNFa/CHX was further explored using a cell perme-

able ceramide. As shown in Fig. 2B, treatment of ECV304 cells

with C2-ceramide for 24 h, at concentrations ranging from 10

to 100 lM caused a dose-dependent cell death, with around

75% of the cells undergoing death at 100 lM. Apoptosis was

also evaluated by assessment of annexin-V binding (Fig. 2C).

In these experiments, 40% of cells treated with 75 lM C2-cer-

amide underwent apoptosis. As a control, the effect of the bio-
logically inactive ceramide precursor, C2-dihydroceramide,

was also evaluated. No significant pro-apoptotic effect was

found at concentrations up to 75 lM (Fig. 2C). These results

indicate that C2-ceramide was able to induce apoptosis of

ECV304, suggesting that cell death induced by TNFa/CHX

could be mediated, at least partly, through the observed cera-

mide generation.

3.4. Effect of TNFa/CHX and exogenous ceramide on PLD

activity and expression

We next investigated whether PLD activity and expression

were modified after 1, 6, and 24 h of treatment with 200 ng/

ml TNFa in the presence of 10 lg/ml CHX. After 1 h of treat-

ment, a time point when neither ceramide level nor cell survival

was affected, PLD activity was significantly increased (+40%,

P < 0.02) as compared to cells incubated with CHX alone

(Fig. 3B). After 6 h, which corresponds to the first modest
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increase of ceramide level, PLD activity returned close to con-

trol level, whereas a marked fall (�61%, P < 0.002) was ob-

served at 24 h when both ceramide increase and cell death

were maximal (Fig. 3B). No significant variations of PLD

activity were observed either in untreated cells or cells treated

with TNFa alone at any time point (not shown). As illustrated

on the representative blots shown in Fig. 3A, the large decrease

in PLD activity observed after 24 h of treatment with TNFa/

CHX could be attributed to a marked reduction of PLD1

expression (�57%, P < 0.02) as compared to levels observed

in CHX treated cells, as indicated by ANOVA analysis of den-

sitometric evaluation from three separate experiments (not

shown). No significant variation of PLD1 expression could

be detected in untreated cells or cells treated by TNFa alone.

PLD2 expression remained unchanged whatever the nature

and duration of cell treatment (Fig. 3A, quantification not

shown). In addition, a direct inhibition of PLD activity by in-

creased ceramide levels could also be involved at this later time

point. Indeed, ceramide has been reported to inhibit PLD

activity both in cell-free systems [33] and in intact cells [34].

In the present study, we observed that PLD activity of

ECV304 cells was highly sensitive to C2-ceramide inhibition

(50% and 75% inhibition at 50 and 75 lM, respectively,
Fig. 3D) whereas dihydro C2-ceramide was inactive. Further-

more, as shown in Fig. 3C, C2-ceramide also reduced PLD1

expression of ECV304 cells after 24 h of treatment (�43 and

�49% at 50 and 75lM, respectively, P < 0.01, quantification

not shown). This suggests that ceramide could act both by

inhibiting PLD activity and decreasing the expression of the

PLD1 isoform. On the whole, these results show that as long

as PLD activity was maintained elevated, apoptosis did not oc-

cur and suggest that PLD activity exerted a protective effect

against apoptosis in ECV304 cells.

3.5. Effect of PLD on TNFa/CHX-induced cell death

To explore further the potential protective role of PLD in

ECV304 cells, we investigated the effect of exogenous addition

of a bacterial PLD from Streptomyces chromofuscus (scPLD)

on TNFa/CHX-induced cell death. Exogenous scPLD has

been shown to efficiently protect neutrophils from spontaneous

as well as FAS-induced apoptosis [21] and to inhibit hypoxia-

induced apoptotic cell death in PC12 cells [35]. Addition of

scPLD to ECV304 cells prior to treatment with 20 ng/ml

TNFa in the presence of 10 lg/ml CHX significantly decreased

TNFa/CHX death promoting effect, as shown by the dose-

dependent increase of cell survival measured by the MTT assay
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are expressed relative to cell survival measured in the absence of TNFa/CHX taken as 100. They are means ± S.E. of three separate experiments
performed with six replicates. � significantly different from cell survival without scPLD or PA, P < 0.05. � significantly different from 100 lM di-C8
PA alone, P < 0.05.
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(Fig. 4A). These results suggest that the newly synthesized PA

has a protective effect against apoptosis although we cannot

exclude a contributing effect of other bioactive lipids, due to

the limited specificity of scPLD toward phosphatidylcholine.

The protective effect of PA was supported further by results

of experiments showing that addition of dipalmitoyl PA

(di-C16-PA) or the cell-permeant dioctanoyl PA (di-C8-PA)

significantly increased cell survival to TNFa/CHX treatment

(Fig. 4B and C). Moreover, the protective effect of 100 lM

di-C8-PA was further increased by propranolol, which pre-

vents PA dephosphorylation by PA phosphohydrolase and

then enhances PA accumulation. These results together with

the lack of effect of the DAG kinase inhibitor R59022 (data

not shown) suggest that PA itself, rather than PA derived

metabolites, protects ECV 304 cells against TNFa/CHX-in-

duced cell death.

To confirm that PLD has an anti-apoptotic effect in ECV304

cells, we transiently overexpressed GFP-PLD1 and -PLD2

fusion proteins prior to TNFa/CHX treatment of the cells.

The efficiency of transfection estimated by observing the bright

fluorescence of transfected cells was similar for both vectors

(around 20%). Transient overexpression of both fusion pro-

teins significantly increased PLD activity as compared to cells

transfected with the empty vector harboring only GFP

(Fig. 5A). ECV304 cells overexpressing PLD1 (Fig. 5B) exhib-

ited a higher percentage of live cells than cells transfected with

the empty vector (P < 0.05). Cells overexpressing PLD2 exhib-
ited a similar trend although difference with the empty vector

did not reach significance (P = 0.1). The lower protective effect

of overexpressed PLD2 can hardly be explained by a lower

transfection efficiency because the percentages of PLD1- and

PLD2-transfected cells were very similar. It may be speculated

that overexpressed PLD2, but not PLD1, would be partially

mislocated with respect to the endogenous protein. Although

fully catalytically active, mislocated PLD2 might have im-

paired protective effects or might have trapped endogenous

activators, thus preventing the correctly located PLD2 to be

functional. We next examined whether PLD inhibition by 1-

butanol could potentiate the apoptotic effect of TNFa/CHX,

using a suboptimal concentration of TNFa (0.2 ng/ml), which

only gave minimal cell death in the presence of 10 lg/ml CHX.

Given the transphosphatidylation property of PLD, the use of

a primary alcohol is a convenient way to divert phosphatidic

acid synthesis toward that of the biologically inactive phos-

phatidylalcohol, and thus to mimic PLD inhibition. As shown

in Fig. 5C, addition of 0.5% 1-butanol to ECV304 cells prior to

treatment with TNFa/CHX for 24 h, markedly decreased cell

survival. Control treatment by 2-butanol, an isomer not recog-

nized by PLD, had no effect on TNFa/CHX-induced cell

death, which rules out non specific effects of alcohol treatment.

Finally, in a more straightforward approach, we examined the

effect of PLD1 and PLD2 knockdown by means of specific

siRNA on TNFa/CHX-induced cell death. As shown in

Fig. 5E, both PLD1- and PLD-2 siRNA reduced the level of
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Fig. 5. Effect of changes in PLD activity on TNFa/CHX-induced cell death. (A and B) ECV304 cells were transiently transfected with pEGFP-
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16 h, or left untreated, and cell viability was measured by the MTT assay. Results are expressed relative to cell survival measured in the absence of
TNFa/CHX taken as 100. They are means ± S.E. of three separate experiments performed with six replicates. � significantly different from empty
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the corresponding PLD proteins by around 80%. PLD1 as well

as PLD2 silencing significantly increased cell death measured

by annexin-V labeling as compared to untreated cells or to

cells transfected with the negative control siRNA (Fig. 5D).
In conclusion, an increase of ceramide level and a concomi-

tant inhibition of PLD activity/expression were observed in the

course of ECV304 cell death induced by TNFa/CHX. The

present results showing that both exogenous bacterial PLD
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and PLD overexpression counteract TNFa-induced apoptosis,

and that depleting PLD proteins strongly potentiates cell

death, bring strong support to a role of PLD activity as a sur-

vival pathway in TNFa/CHX-treated cells. Although the func-

tional connexion between PLD1 and cell survival remains to be

determined, several hypotheses can be envisaged to explain the

pro-survival effect of the PLD product, PA. Among the vari-

ous PA targets identified to date, sphingosine kinase-1 (SK1)

is of special interest due to its key role in regulating the balance

between pro- and anti-apoptotic sphingolipids [36]. SK1 has

been shown to translocate to PA-enriched membranes upon

cell stimulation, the translocation being accompanied by a

marked activation [37]. Thus, increasing PA level in ECV304

cells might result in an increased level of the pro-survival

S1P at the expense of ceramide/sphingosine. The mammalian

target of rapamycin mTOR is another PA-activated protein

which plays a crucial role in the commitment of cells to life

or death [38]. Thus, PLD-dependent mTOR activation is con-

sidered to provide survival signals in most cancer cells [39].

The fact that TNFa/CHX-induced cell death was markedly

increased by rapamycin in ECV304 cells (our unpublished

results) suggests that the latter pathway may be involved in

the protection of ECV304 cells against apoptosis.
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