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SUMMARY

Darwinian-like cell selection has been studied during
development and cancer [1–11]. Cell selection is
often mediated by direct intercellular comparison of
cell fitness, using ‘‘fitness fingerprints’’ [12–14]. In
Drosophila, cells compare their fitness via several iso-
forms of the transmembrane protein Flower [12, 13].
Here, we studied the role of intercellular fitness com-
parisons during regeneration. Regeneration-compe-
tent organisms are traditionally injured by amputation
[15, 16], whereas in clinically relevant injuries such as
local ischemia or traumatic injury, damaged tissue re-
mains within the organ [17–19]. We reasoned that
‘‘Darwinian’’ interactions between old and newly
formed tissues may be important in the elimination
of damaged cells. We used a model of adult brain
regeneration inDrosophila in whichmechanical punc-
ture activates regenerative neurogenesis based on
damage-responsive stem cells [20]. We found that
apoptosis after brain injury occurs in damage-
exposed tissue located adjacent to zones of de novo
neurogenesis. Injury-affected neurons start to ex-
press isoforms of the Flower cell fitness indicator pro-
tein not found on intact neurons. We show that this
change in the neuronal fitness fingerprint is required
to recognize and eliminate such neurons. Moreover,
apoptosis is inhibited if all neurons express ‘‘low-
fitness’’ markers, showing that the availability of new
and healthy cells drives tissue replacement. In sum-
mary, we found that elimination of impaired tissue
during brain regeneration requires comparison of
neuronal fitness and that tissue replacement after
brain damage is coordinated by injury-modulated
fitness fingerprints. Intercellular fitness comparisons
betweenold andnewly formed tissues could beagen-
eral mechanism of regenerative tissue replacement.

RESULTS

In many clinically relevant injuries, such as stroke or traumatic

brain injury, impaired cells remain within an organ. In order to

study how damaged brain tissue interacts and may be replaced
Cur
by newly generated cells after injury, we subjected adult flies to

penetrating traumatic brain injury, by lesioning the optic lobe

(OL) unilaterally with a thin metal filament (Figures 1A and 1B).

This local mechanical damage has been previously shown to

activate quiescent adult neural stem cells and drive regenerative

neurogenesis [20], therefore leading to the apposition of injury-

exposed and intact neurons, as well as de novo generated neu-

rons. Local recruitment and activation of stem cells is a common

strategy to regenerate tissues in many organisms [15, 16, 21].

Traumatic brain injuries typically cause a variable extent of

tissue damage. Neurons can persist in vulnerable states due to

axon stretching and tearing, activating secondary injury pro-

cesses (diffuse neuronal depolarization, glutamate excitotoxicity,

disturbed calcium homeostasis, etc.), which are poorly under-

stood [18, 19]. To study the fate of impaired brain tissue, we

decided tomonitor cell death several days after the primary injury.

Pre-existing Tissue Undergoes Apoptosis at Sites of De
Novo Neurogenesis after Traumatic Brain Injury
We have previously shown that neuronal apoptosis is detectable

within the first hours after damage (AD) as a direct consequence

of the mechanical impact [20]. Extended analysis revealed a

second burst of apoptosis starting at around 24 hr AD, with

low numbers of apoptotic cells present in the lesioned area (Fig-

ure 1C), which increased and peaked around 3 days after injury

(Figure 1D). To determine whether apoptosis occurred within re-

generating or pre-existing tissue, we performed TUNEL staining

of injured brains in which proliferating cells upon injury were

marked with GFP/RFP based on perma-twin labeling [20], a

mitotic recombination-dependent tracing method, which is acti-

vated before brain damage in adult Drosophila to mark newly

generated tissue [20]. Three days after brain injury, we observed

numerous apoptotic cells in damage-exposed tissue next to new

tissue (Figures 1E). Even 6 days AD, cells continued to die in the

‘‘old’’ tissue neighboring patches of regenerated tissue (Figures

1F and 1G), whereas undamaged OLs did not show apoptosis

associated with newly generated cells (n = 20 OLs) derived

from physiologic adult neurogenesis (Figure 1H) [20].

The newly formed tissue observed 6 days after brain damage

consisted mainly of newborn neurons (Figure 1I) [20], which ex-

pressed the panneuronal marker Elav [22] and persisted up to

11 days AD (Figure S1A). Regenerated tissue was usually devoid

of glial cells [20] and macrophages (Figure S1B).

Most apoptotic cells were found close (within three cell diam-

eters) to newly generated cells 3 days and 6 days AD (81% and

90% of total cell death, respectively) (Figure 1J). In contrast,

apoptosis rarely occurred in ‘‘perma-twin-marked’’ new tissue
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(0.5% of total cell death at 3 days AD and 2%± 2%at 6 days AD)

(Figure 1J). Overall, apoptotic counts were highest 3 days AD

(74 ± 13 apoptotic cells/OL) and dropped to one-third around

6 days after injury (25 ± 11 cells/OL), accompanied by a prolifer-

ative phase, evident from the expansion of perma-twin-marked

tissue (Figures 1E, 1F, and S1A and as shown previously [20]).

Thus, we have identified a burst of delayed cell death in injury-

exposed brain tissue that is not caused by the primary mechan-

ical insult but is associated with the onset of regenerative

neurogenesis.

Adult Neurons Express Fitness Indicator Proteins
In order to find genes thatmay regulate cell death at regeneration

borders, we tested reporters for pathways such as JNK [23, 24],

Hippo [25–27], Wingless [28, 29], and JAK-STAT [30] that are

important for regeneration of fly epithelial tissues. Among

these, only TRE-gfp, a sensitive JNK pathway reporter [31],

was strongly induced after brain damage (Figures S1C–S1F).

We repressed JNK signaling in neurons during all stages or

specifically during adulthood, but we did not observe any signif-

icant reduction of cell death 1 or 2 days after brain injury (Figures

S1G and S1H).

Next, we hypothesized that ‘‘Darwinian-like’’ interactions be-

tween impaired and newly formed tissues may trigger cell death,

since negative selection can drive elimination of less fit cells dur-

ing development or carcinogenesis [1–11].

In Drosophila, different isoforms of the conserved Flower pro-

tein form tissue-specific fitness fingerprints at the cell surface

(Figure 2A) that mediate negative selection of suboptimal cells

when surrounded by fitter cells [12, 13]. First, we asked whether

Flower isoforms are expressed in the adult brain and, specif-

ically, in the OLs. To this end, we used transgenic flies carrying

a translational flower reporter in which expression of Flowerubi,

FlowerLoseA, and FlowerLoseB can be visualized as fusion proteins

to YFP, GFP, and RFP, respectively [32]. FlowerLoseA::GFP was

strongly expressed in the adult brain, including the OLs,

whereas FlowerLoseB::RFP was not detectable (Figure 2B). Since

Flowerubi::YFP signal was of low intensity (Figure S2A), we verified

the expression pattern of Flowerubi with an ubi-specific antibody

[12]. We found that both FlowerLoseA and Flowerubi localized to

cell membranes (Figures 2B and 2C), but Flowerubi levels were

lower since immunodetection required signal amplification.

Next, we stained adult brains for Elav, which showed that mature

neurons in the adult brain display FlowerLoseA and low levels of

Flowerubi at the cell surface (Figure 2D and data not shown).
Figure 1. Cell Death during Tissue Regeneration

(A and B)Drosophila head (frontal view) indicating the site of traumatic brain injury

paths (B). Xo, outer optic chiasm; Me, Medulla; La, lamina; Lo, lobula; Lp, lobula

(C and D) Cell death (white; TUNEL) 24 hr (C) and 72 hr (D) after brain damage (A

(E–G) Apoptosis (TUNEL; white) in laterally injured OLs 3 days (E) and 6 days (F an

nuclei are shown in blue (DAPI). Inset shows cell death (TUNEL, white) near rege

(H) TUNEL staining (white) of undamaged control OLs. Physiologic adult neuroge

RFP). DAPI marks cell nuclei (blue).

(I) Regenerated tissue (perma-twin tracing, GFP/RFP) 6 days AD consists of Elav

(J) Graph showing percentage of TUNEL-positive cells at the regeneration bord

regenerated cells (new cells; red bars) 3 days and 6 days AD. Error bars indicate

(K) Graph depicting the number (nr) of apoptotic cells per damaged right OL (ROL)

indicate n.

Scale bars represent 10 mm (G and I) and 20 mm (C–F and H). Dashed arrows (C

Cur
This revealed that Flower proteins are not only expressed during

nervous system development [13], but also form similar fitness

fingerprints in the adult nervous system.

Brain Injury Modulates the Expression of Fitness
Indicator Proteins
Subsequently, we injured OLs unilaterally and observed

FlowerLoseB::RFP induction specifically in the damaged right OLs

(Figures 2E–2G) compared to the undamaged control side (Fig-

ure S2B). FlowerLoseB::RFP signal was first detectable in few cells

24 hr AD andwas then present in numerous cells along the lesion

48 and 72 hr AD, whereas expression levels of Flowerubi and

FlowerLoseA remained similar (Figures 2E–2G). Next, we repeated

the experiments with a different flower reporter where the

three isoforms carry Flag (Flowerubi), HA (FlowerLoseA), and Myc

(FlowerLoseB) tags [32]. Again, we found that FlowerLoseB::Myc

was upregulated in lesioned OLs compared to uninjured brains,

whereas FlowerLoseA::HA was expressed at high levels in da-

maged and undamaged OLs (Figures S2C and S2D).

Elav staining of flies carrying the flower reporter revealed

that FlowerLoseB::RFP was induced at the cell surface of injury-

exposed neurons 48 hr AD (Figure 2H, arrowheads) or present

in dying neurons (Elav+) (Figure 2H, arrow).

These results show that acute brain injury triggers local and

dynamic changes in displayed fitness marks on damage-ex-

posed neurons compared to surrounding, non-affected cells:

impaired neurons start to signal low fitness via induction of

FlowerLoseB, which is not encountered on healthy neurons,

whereas FlowerLoseA and Flowerubi expression remains compa-

rable on injured versus non-injured cells (Figure 2I).

FlowerLoseB Expression Is Associated with Cell Death
In order to relate FlowerLoseB induction to cell death during brain

regeneration, we performed TUNEL staining of flies transgenic

for the YFP/GFP/RFP translational flower reporter. We observed

that FlowerLoseB expression often correlated with cell death 1 to

3 days after brain injury (Figures 3A and 3B). At 72 hr after injury,

64% ± 9% of FlowerLoseB::RFP-expressing cells stained positive

for TUNEL (n = 11 OLs), raising the possibility that FlowerLoseB

expression could drive negative neuronal selection, as previously

described for neuronal culling during retina development [13].

Interestingly, FlowerLoseB was not detected in apoptotic cells

6–14 hr after mechanical injury (Figure S2E), suggesting that im-

mediate cell death after mechanical tissue disruption may be

FlowerLoseB independent.
either via eye (lateral; 1) or head cuticle (apical; 2) (A) and corresponding needle

r plate.

D). Cell nuclei are shown in blue (DAPI).

d G) AD. Regenerated tissue is marked by perma-twin labeling (GFP/RFP), and

nerated cells (GFP/RFP) (G).

nesis in the medulla cortex of the OLs is revealed by perma-twin tracing (GFP/

+ neurons (white); DAPI marks nuclei (blue).

er (maximum of three cell diameters away from new tissue; blue bars) and in

the SD. n = 9 right OLs.

in perma-twin flies 3 days and 6 days AD. Error bars indicate the SEM. Numbers

–F and H) mark the area of injury. See also Figure S1.
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Figure 3. FlowerLoseB Is Upregulated in

Apoptotic Cells

(A) A subset of apoptotic cells (TUNEL; white) in

laterally injured OLs (arrow) express FlowerLoseB

(red) 24 hr AD. Cell nuclei are stained with DAPI

(blue). The upper-right panels show an inset of the

same right OL.

(B) Apoptotic cells in apically injured OL (through

cuticle; arrow) express FlowerLoseB 72 hr AD.

Ubiquitous FlowerLoseA expression is shown in the

merged image (green).

Scale bars represent 20 mm.
Flower Fitness Marks Mediate Negative Selection
of Unfit Neurons during Brain Regeneration
To examine whether Flower is functionally implicated in neuronal

cell death linked to flowerLoseB upregulation, we conditionally

activated UASflowerRNAi constructs in the adult nervous sys-

tem using the neuronal driver elav-Gal4 and the thermosensitive

Gal4 repressor Gal80ts. Five days after gene activation, OLs

were lesioned laterally and brains were processed for TUNEL

staining.

Three days after injury, knockdown of all flower isoforms

(UASRNAifwe_all) or both flower Lose isoforms (UASRNAif-

weLA/LB) in adult neurons significantly reduced apoptosis in

damaged right OLs (12 ± 4 dead cells/right OL) compared to

control brains (87 ± 22 cells/right OL), where expression of

UASlacz was activated instead (ANOVA: p = 9.7 3 10�14 for

UASRNAifwe_all and p = 1.13 10�13 forUASRNAiLoseA/LoseB)

(Figures 4A–4D and 4J). Apoptotic numbers were already

reduced 24 hr AD when Flower fitness fingerprints were sup-

pressed by the same RNAi constructs (ANOVA: p = 7.7 3 10�6

for UASRNAifwe_all and p = 2.4 3 10�5 for UASRNAiLoseA/

LoseB) (Figure 4I).

Sequence similarities between flowerLoseA and flowerLoseB

mRNAs did not allow flowerLoseB-specific targeting. These re-

sults show that Flower fitness indicator proteins are functionally

required in neurons to signal removal of unfit neurons.

Cell Death after Traumatic Brain Injury Is Regulated
through Neuronal Fitness Comparison
Since Flower isoforms have previously been shown to reveal

fitness deficits in a non-cell-autonomous manner [12, 13], we

tested whether uniform overexpression of low fitness marks (in
Figure 2. Brain Injury Modulate Fitness Fingerprints of Adult Neurons

(A) Different isoforms of the cell membrane protein Flower (ubi, LoseA, and LoseB

(B) Expression of FlowerLoseA and FlowerLoseB in intact OLs in green and red, res

(C and D) Insets show Flowerubi (C) and FlowerLoseA expression (C and D) on ma

(E and F) FlowerLoseB (red) induction in laterally punctured OLs 24 hr and 48 hr A

(G) FlowerLoseB expression (red) in laterally injured OLs 72 hr AD.

(H) At 48 hr after injury, FlowerLoseB (red) is upregulated in injury-exposed neu

expression, and the arrow shows nuclear accumulation of FlowerLoseB in a d

expression.

(I) Scheme illustrating the change in Flower fitness fingerprints upon damage.

Dashed arrows mark needle insertion sites. Scale bars represent 10 mm (C, D, a

Cur
this case FlowerLoseB) would prevent apoptosis coinciding with

brain regeneration. To this end, we activated overexpression of

UASflowerLoseB,UASflowerLoseA, andUASflowerubi in all neurons

in adult flies and examined the effect on cell death (Figures 4B

and 4E–4J).

When flowerLoseB was ectopically expressed in adult brains,

apoptotic counts in lesioned brains were halved 24 hr AD

compared to UASlacz control brains (ANOVA p = 2.4 3 10�5)

(Figure 4I) and ten times lower at the third day after traumatic

brain injury (9 ± 4 cells/right OL; ANOVA: p = 1.9 3 10�14) (Fig-

ures 4G and 4J), whereas uninjured left OLs (UASlacz) showed

on average 4 ± 1 apoptotic cells (Figures 4H and 4J). In contrast,

neuronal overexpression of flowerLoseA and flowerubi did not

significantly affect the number of TUNEL-positive cells 24 and

72 hr after brain injury (ANOVA: p R 5.1 3 10�1) (Figures 4I

and 4J).

These results show that the majority of cell death 3 days after

traumatic brain injury is actively regulated through comparison of

neuronal fitness, leading to elimination of FlowerLoseB-express-

ing impaired neurons when surrounded by intact or newly

formed neurons with more advantageous fitness profiles

(Figure 4K).

DISCUSSION

Darwinian-like cell selection plays an important role when con-

structing tissues during development [1–5, 7, 8]. Here, we have

addressed how the brain weeds out less functional neurons after

injury. We show that fitness-based cell selection regulates the

elimination of damaged tissue during adult brain regeneration

in Drosophila. Based on reporter screening and genetic
) form tissue-specific fitness fingerprints. Identical regions are depicted in gray.

pectively. Staining for Flowerubi is shown in white. DAPI marks nuclei (blue).

ture neurons (Elav+; white) (D).

D.

rons (Elav+; white). Arrowheads point to neurons with induced FlowerLoseB

ying neuron (small nucleus; Elav+). FlowerLoseA (green) shows panneuronal

nd H) and 20 mm (B and E–G). See also Figures S2 and S3.
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analyses, we have found that specific isoforms of the cell fitness

indicator protein Flower drive the active elimination of impaired

neurons at stages in which regenerative neurogenesis provides

new neurons for repair.

We could show that traumatic brain injury causes fitness

deficits in injury-exposed neurons, which start to express

FlowerLoseB isoforms that are absent on healthy neurons (Fig-

ure 2). This reveals for the first time that fitness indicator proteins

operate in the adult nervous system and are able to dynamically

reflect changes in neuronal fitness states. Local FlowerLoseB up-

regulation alsomediates the culling of sensory neurons in incom-

plete photoreceptor units during development [13] and therefore

seems to present a common signal to mediate negative neuronal

selection. These findings open the possibility that conserved

Flower proteins may reflect changes in neuronal fitness in other

neuropathological conditions.

For further insight, it will be helpful to determine which

unfit neurons are recognized and selected for replacement.

FlowerLoseB could be upregulated upon physical damage to the

neuronal cell body, axon shearing, or disruption of proper wiring

or a combination of insults. Moreover, for damaged brain tissue

to be replaced, not only neuronal cell bodies but also their axonal

projections need to be removed efficiently. It is therefore

possible that flowerLoseB induction and ‘‘axon death’’ signaling

molecules [33], which trigger Wallerian degeneration to allow

fast fine-tuning of the nervous system, may be linked.

Importantly, we show that damage-modulated fitness indica-

tor proteins are necessary to identify and cull impaired neurons

after brain injury (Figure 4). If all neurons are forced to express

‘‘low-fitness’’ fingerprints, such unfit neurons are not removed

by apoptosis. Our analysis has shown that damage-exposed

cells are specifically eliminated around proliferating zones,

where de novo neurogenesis is taking place (Figures 1E–1J).

We propose a model in which newly born cells are favored

over unfit damaged neurons to reconstitute the adult brain

based on Flower fitness fingerprints (Figure 4K). One possibility

is that neurons partially damaged and/or displaced by the injury

upregulate FlowerLoseB. A non-exclusive alternative is that

newborn neurons play an active role in the elimination of less

fit neurons.

Based on our data, cell death does not seem to be associated

with physiologic adult neurogenesis (n = 20 left OLs), but further

analysis with higher temporal resolution will be required to

corroborate these results.

Is fitness-driven elimination of ‘‘old’’ cells that do not fit into re-

generated tissues important in other regenerating tissue types?

Our preliminary results show that specific Flower isoforms are

induced in regenerating wing imaginal discs after cell ablation

and in the adult midgut after irradiation (Figure S3) and [34].
Figure 4. Elimination of Unfit Tissue Is Mediated by Comparison of Ne

(A–H) Cell death (TUNEL; white) in laterally injured right or uninjured left OLs 72 h

(B–H) Merged images with DAPI to visualize cell nuclei.

(I and J) Quantification of apoptotic cells 24 hr (I) and 72 hr (J) AD in injured rig

Genotypes were compared to UASlacz controls. ***p < 0.001. Bold lines show t

logarithmic scale. n, the number of OLs, is plotted below.

(K) Model for tissue replacement during adult brain regeneration in Drosophila

generated and intact neurons (green) via Flower fitness fingerprints drives elimin

Scale bars represent 20 mm.

Cur
Moreover, Darwinian-like cell selection could play a role during

liver regeneration in mice. An initial study reported a striking in-

crease in apoptosis of host hepatocytes immediately adjacent

to transplanted progenitor cells, which can repopulate the liver

[35]. It will be interesting to see if mouse Flower homologs [36]

also play a role there.

We therefore propose that comparison of cellular fitness be-

tween damaged and intact tissuemay be a commonmechanism

during regeneration and relevant for stem cell-based replace-

ment therapies after injury.

EXPERIMENTAL PROCEDURES

Fly Stocks

The following fly stocks were used: fweReporter(yfp_gfp_rfp) [32], fweReporter

(myc_HA_flag) [32] (a gift from H. Bellen), GMR-Gal4, fweReporter

(yfp_gfp_rfp)/Cyo; MKRS/TM6b; elav-Gal4; Gal80ts; UASbskDN; UASpuc;

TRE::gfp [31], UASlacz; 10xStat92E-DGFP [37, 38], exp-lacz; Diap-lacz (a gift

from B. Thompson), UAS-fweLoseB [12], UAS-fweubi [12], UAS-fweLoseA [12],

RNAi flower (KK); RNAi flowerLoseA/B [13], and w1118; +; rnGal4, UASeiger,

tubGal80ts [28] (a gift from I. Hariharan).

Perma-Twin Labeling

The following stocks were crossed: w; FRT40A, UAS-CD8-GFP, UAS-CD2-

Mir; act-Gal4 UAS-flp/TM6B and w; FRT40A, UAS-CD2-RFP, UAS-GFP-Mir;

Gal80ts/TM6B. Labeling was activated by shifting of 5-day-old adult flies

from 18�C to 29�C for 24 hr, followed by traumatic brain injury.

RNAi Experiments

elav-Gal4/Cyo; Gal80ts/TM6B flies were crossed to UASgene or UASRNAi-

gene lines at 18�C. Adults 3 to 4 days old were shifted for 5 days to 29� and

then subjected to brain injury.

Penetrating Traumatic Brain Injury

Flies were immobilized on a CO2 diffusion pad, and the medulla of the OL was

injured with a thin sterile filament (diameter 0.1 mm; Fine Science Tools) [12].

Flies were allowed to recover for 1 hr at room temperature and were then

shifted to 29�C. Comparable lesions (55–65 mm) were achieved by depth indi-

cators on the perforating filament. Lesions were identified under the micro-

scope based on pigment traces (lateral damage) deposited at the end of the

needle tract, TUNEL staining, and brain morphology (DAPI).

Brain Dissection and Immunostaining

Brains were prepared as described previously [20]. The following antibodies

were used: rat anti-Elav (1:50; Developmental Studies Hybridoma Bank);

monoclonal rat anti-HA (1:500; Roche), polyconal anti-Myc-tag (1:50; Cell

Signaling), anti-Flowerubi (1:30) [12] (in combination with Biotin-Streptavin

amplification), and mouse anti-Serpent (1:200; a gift from J. Pastor-Pareja).

TUNEL staining (Roche) was performed according to the supplier’s protocol.

Sections of OLs 50-mm thick were scanned and quantified for TUNEL-positive

cells. Confocal images were acquired with a Leica SP8 microscope.

Statistical Analysis

First, an ANOVA model was fitted to log-transformed values of the apoptotic

cell counts and validated via Tukey-Anscombe plot and QQ plot of the
uronal Fitness

r AD. Dashed arrows indicate the area of injury.

ht OLs and undamaged left OLs. Statistical significance is based on ANOVA.

he median, and the boxed area represents 25% and 75% quantiles. Note the

. Direct fitness comparison of impaired neurons (red) after injury and newly

ation of unfit neurons.
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residuals. Subsequently, p values were calculated by comparison of experi-

mental genotypes with the control genotype (UASlacz) and were corrected

for multiple testing with Holm’s method [39].
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36. Petrova, E., López-Gay, J.M., Rhiner, C., and Moreno, E. (2012). Flower-

deficient mice have reduced susceptibility to skin papilloma formation.

Dis. Model. Mech. 5, 553–561.
Cur
37. Bach, E.A., Ekas, L.A., Ayala-Camargo, A., Flaherty, M.S., Lee, H.,

Perrimon, N., and Baeg, G.H. (2007). GFP reporters detect the activation

of the Drosophila JAK/STAT pathway in vivo. Gene Expr. Patterns 7,

323–331.

38. Classen, A.K., Bunker, B.D., Harvey, K.F., Vaccari, T., and Bilder, D.

(2009). A tumor suppressor activity of Drosophila Polycomb genes medi-

ated by JAK-STAT signaling. Nat. Genet. 41, 1150–1155.

39. Holm, S. (1979). A simple sequentially rejective multiple test procedure.

Scand. J. Stat. 6, 65–70.
rent Biology 25, 955–963, March 30, 2015 ª2015 The Authors 963


	Brain Regeneration in Drosophila Involves Comparison of Neuronal Fitness
	Results
	Pre-existing Tissue Undergoes Apoptosis at Sites of De Novo Neurogenesis after Traumatic Brain Injury
	Adult Neurons Express Fitness Indicator Proteins
	Brain Injury Modulates the Expression of Fitness Indicator Proteins
	FlowerLoseB Expression Is Associated with Cell Death
	Flower Fitness Marks Mediate Negative Selection of Unfit Neurons during Brain Regeneration
	Cell Death after Traumatic Brain Injury Is Regulated through Neuronal Fitness Comparison

	Discussion
	Experimental Procedures
	Fly Stocks
	Perma-Twin Labeling
	RNAi Experiments
	Penetrating Traumatic Brain Injury
	Brain Dissection and Immunostaining
	Statistical Analysis

	Supplemental Information
	Acknowledgments
	References


