
brought to you by COREView metadata, citation and similar papers at core.ac.uk

er Connector 
Spindle orientation in mammalian cerebral cortical development
Madeline A Lancaster and Juergen A Knoblich

Available online at www.sciencedirect.com
provided by Elsevier - Publish
In any mitotic cell, the orientation of the mitotic spindle

determines the orientation of the cleavage plane and therefore

the position of the two daughter cells. When combined with

polarization of cellular components, spindle orientation is also a

well-conserved means of generating daughter cells with

asymmetric cell fates, such as progenitors and differentiated cell

types. In the mammalian neocortex, the precise planar spindle

orientation observed early during development is vital for

symmetric proliferative divisions. During later stages, spindles

can be oblique or even vertical but the role of this reorientation is

somewhat less clear as asymmetric cell fates can arise

independently of spindle orientation during this stage.

Although decades of work have identified many key

conserved regulators of spindle positioning, its precise role in cell

fate determination in the mammalian neocortex has been

enigmatic. Recent work focused on mInsc and LGN has now

revealed an important role for spindle orientation in

determination of specific asymmetric cell fates, namely

intermediate progenitors and a new progenitor population,

termed outer radial glia. In this way, spindle orientation helps

determine the neurogenic outcome of asymmetric progenitor

divisions, thereby influencing neuron output and cerebral

cortical expansion.
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Introduction
During cell division, intracellular components must be

partitioned into two daughter cells in a highly regulated

manner. For some components this is done symmetrically

so that both daughter cells receive an identical set. How-

ever, other components, such as cell fate regulators, may be

partitioned asymmetrically to result in asymmetric cell

fates following division [1]. This cell fate asymmetry

contributes to developmental diversification that generates

the vast array of different cell types in a fully developed
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metazoan. Asymmetric localization of subcellular com-

ponents can be achieved by regulating the distribution

of these components and the mitotic spindle relative to one

another so that the two daughter cells terminate cytokin-

esis with distinct sets of these factors [2,3].

Regulated orientation of the spindle has been shown to be

an influential factor in cell fate decisions during devel-

opment of a variety of systems. For example, the Cae-
norhabditis elegans zygote positions the spindle along the

anterior–posterior axis through interactions of spindle

microtubules with polarity proteins at the cell cortex

[2]. Similarly, Drosophila neuroblasts orient their spindle

along the apicobasal axis through interactions at the cell

cortex with apically localized factors [4].

This paradigm of positioning the spindle through inter-

actions at the cell cortex seems to hold true in vertebrate

and mammalian asymmetric divisions as well. In particu-

lar, in the developing mammalian neocortex, neurons

arise from asymmetric divisions of progenitor cells,

whereas symmetric divisions drive self-renewal of pro-

genitors [5]. This process is dependent upon spindle

orientation, and, like in C. elegans and Drosophila, involves

polarity proteins. Orientation of the spindle has important

implications in human brain evolution as well as several

developmental disease states [6]. For example, disorders

such as lissencephaly (smooth brain) and microcephaly

(small brain) can be caused by mutations in genes with

specific roles in spindle orientation in the mammalian

cerebral cortex, including Lis1, Nde1, and MCPH1 to

name a few [7]. In this review, we will focus on mech-

anisms of spindle orientation in mammals and in particu-

lar in the developing cerebral cortex.

Mechanisms of spindle orientation in
mammalian cells
Astral microtubule growth and positioning. The mitotic

spindle is formed during prophase when the duplicated

centrosomes, or microtubule organizing centers (MTOC),

nucleate spindle microtubules to position chromosomes,

and astral microtubules to position the spindle relative to

the cell cortex [8]. Although centrosomes are not required

for spindle assembly in all cells (e.g. higher plants [9],

planarians [10], and mouse oocytes [11]), there is growing

evidence that centrosome function influences spindle

positioning [12]. Furthermore, regulation of microtubule

polymerization and stability is important not only for

spindle assembly, but also for positioning [13].

Astral microtubules elongate from the MTOC and

undergo microtubule-capture at the plasma membrane
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738 Neurodevelopment and disease
to position the spindle. This occurs through the concerted

effort of dynein–dynactin directed microtubule transport

with the help of dynein-associated proteins such as

CLASP1, Lis1, and Nde1/Ndel1, thereby pulling the

spindle into position [14–17]. One particularly interesting

finding is that the micromechanical characteristics of the

spindle allow it to move as a whole under spindle posi-

tioning forces [18�]. Thus, microtubule anchoring at the

cell cortex can position the entire spindle relative to

polarity cues.

An important player in microtubule anchoring is the actin

cytoskeleton. Subcortical F-actin filaments at the cell

cortex interact with astral microtubules of the nascent

spindle poles [19]. Through myosin transport and cortical

flow of F-actin, astral microtubules can be pulled, thereby

positioning centrosomes and the entire spindle [20]

(Figure 1a). However, since subcortical actin is often

uniformly distributed throughout the cell, asymmetry

must be conveyed by other factors as well. For example,

external forces that influence cell shape can influence

spindle orientation through an effect on the actin cytos-

keleton [21–23]. Internally, polarity cues, such as apical–
basal factors, can influence spindle orientation.
Figure 1
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The role of the apical Par complex. Epithelial cells, including

the neuroepithelium, exhibit pronounced apicobasal

polarity [24]. This polarity can provide an endogenous

source of asymmetry to orient the spindle [25]. The apical

Par complex containing Par3, Par6, and aPKC, is a master

regulator of apicobasal polarity, with Par3 functioning as a

scaffold for Par6 and aPKC [26]. These components, with

the help of Cdc42, selectively exclude non-apical proteins

from the apical domain [27].

In epithelial cells, adherens junctions help to establish and

maintain this apical polarity [26]. Adherens junctions, a

type of cell–cell contact, are composed of cadherins and

catenins, particularly E-cadherin and a-catenin, b-catenin

and p120 catenin [28]. These adherens junctions interact

with Par-3 to recruit the Par-complex apically, and facilitate

apical polarity maintenance by preventing mixing between

apical and basolateral domains of the epithelial cell [24]. In

addition, adherens junctions can influence the cytoskele-

ton through a-catenin interaction with actin and p120

catenin interaction with microtubules [28].

Connecting the spindle to polarity cues. Many of the factors

involved in orienting the spindle relative to apicobasal
Current Opinion in Neurobiology
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Spindle orientation in mammalian cerebral cortical development Lancaster and Knoblich 739
polarity cues have been described in Drosophila [2], and, to a

large degree, their homologs have been identified to func-

tion similarly in mammalian and vertebrate epithelial cells

[25]. In particular, a protein complex comprising LGN,

NuMA, and Gai associates tightly with the spindle pole

[29,30�]. In planar epithelial divisions, this complex loca-

lizes to a restricted belt between apical and basal domains,

associating with both spindle poles on either lateral side of

the dividing cell [29,31�] (Figure 1b). This localization

seems to be maintained through aPKC phosphorylation

of LGN to exclude it from the apical domain [32].

In contrast, divisions along the apicobasal axis display

association of the LGN complex with only one spindle

pole oriented at the apical domain of the cell

[30�,33,34�,35] (Figure 1c). With the LGN complex posi-

tioned, NuMA acts as the bridge between LGN and

dynein–dynactin [36]. Through dynein minus-end

directed movement, the spindle pole is positioned adja-

cent to the LGN complex, either along the lateral axis in

the case of planar divisions, or along the apicobasal axis.

Although LGN is required for directed spindle orien-

tation, it does not define which orientation the cell will

adopt during mitosis. In Drosophila, that role is fulfilled by

Inscuteable (Insc), which functions by coupling the LGN

(Pins) complex with the Par complex [37,4,38] to direct
Figure 2
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LGN apical localization and determine orientation of the

spindle. In Drosophila embryos, Insc acts as a switch to

drive cells toward vertical divisions, whereas cells with

inactive Insc drive parallel divisions [37]. As in Drosophila,

mammalian mInsc interacts with Lgn and Par3 [33], and

seems to influence spindle orientation in mammalian

epithelia away from planar toward more apicobasal orien-

tation [39,40�,41] (Figure 1c).

Neurogenesis in mammalian cortical
development
During mammalian cerebral cortical development, the

neuroepithelium initially divides symmetrically and with

a planar orientation to expand the progenitor pool [42]

(Figure 2). At the start of neurogenesis, the progenitor

pool, termed radial glial stem cells (RGs) or apical pro-

genitors, then begin dividing asymmetrically. These

asymmetric divisions can result in several outcomes lead-

ing to either direct neurogenesis to produce a neuron

immediately after division, or indirect neurogenesis giv-

ing rise to an intermediate progenitor (IP) (Figure 2). This

IP can then divide again to produce two neurons, thereby

expanding the neurogenic output.

The asymmetric cell fate resulting from these divisions is

likely determined by many factors, such as epigenetic

changes and signaling, which we are only just beginning
Oblique
Asymmetric

N

N

IP

oRG
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n (N) or IP. Oblique or vertical orientation (right panel) gives rise to

t [40�,41]. In all panels, the orange line marks the basal surface.
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740 Neurodevelopment and disease
to identify. In particular, there is now substantial evi-

dence that asymmetric divisions in the cortex give rise to

daughter cells with variable Notch activities resulting in

daughter cells with greater Notch activity, which tend to

remain as RGs, while those with lesser Notch activity

become neurons or IPs [43]. Indeed, disruption of Notch

signaling in the mammalian neocortex has dramatic con-

sequences to cell fate [44]. For example, inducing Notch
Table 1

Regulators of spindle orientation and their phenotypes in the neocort

Gene/protein Function Effec

Centrosome/MTOC

MCPH1 DNA damage repair, chromosome

condensation, centrosome function

LOF: increased ve

ASPM Centrosome/spindle pole

localization, Wnt signaling

LOF: increased ob

Cdk5Rap2 Centrosome function, centriole

duplication, DNA damage response

LOF: increased ve

Cenpj Centrosome localization, centriole

duplication and elongation

LOF: randomized 

Stil Spindle pole localization, centriole

duplication, Shh signaling

LOF: randomized 

Microtubule organization/positioning

DCX Microtubule organization, stability LOF: randomizatio

Lis1 Dynein/dynactin complex function LOF: randomizatio

Magoh Splicing, Lis1 expression LOF: increased ve

Nde1 Lis1–dynein complex LOF: increased ve

Arhgef2 GEF, microtubule associated LOF: increased pl

Tctex1 Dynein light chain,

G protein signaling

LOF: decreased p

Htt Dynein–dynactin complex LOF: increased ve

orientation [91�]

Apical complex

Par3 Apicobasal polarity LOF: increased ob

in MDCK [32]

Par6 Apicobasal polarity LOF: increased ob

aPKC Apicobasal polarity LOF: increased ob

Cdc42 Apicobasal polarity LOF: Increased ob

but no change in t

Adherens junctions

Beta-catenin Adherens junctions, Wnt signaling LOF: increased ob

orientations in mid

Spindle positioning

mInsc Spindle orientation LOF: increased pl

GOF: increased ve

orientation [40�,41

LGN Spindle orientation LOF: increased ob

orientations [41]

Other

Lamin-B Nuclear lamina LOF: increased ob

Pax6 Transcription factor, neurogenesis

and self-renewal

LOF: increased ob

orientations [98]

Vangl2 Planar cell polarity LOF: increased pl

Not all factors affecting cortical progenitor asymmetric division are show

specifically examined.

LOF = Loss of function, GOF = Gain of function.
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activation inhibits neuronal differentiation by maintain-

ing RGs as progenitors [45].

Thus, establishment of differential Notch activities is

likely a key event in fate determination following asym-

metric division of RGs. Other signaling pathways, such as

Shh and Wnt signaling are also vital to acquisition of

specific cell fates in the neocortex [46], though their roles
ex

t on spindle Cortical phenotype (human;

mouse or rat)

rtical orientation [48�] Microcephaly [76]; mild

microcephaly [48�]

lique orientation [49] Microcephaly, simplified gyri [77];

mild microcephaly [78]

rtical orientation [79�] Microcephaly [80]; microcephaly [79�]

in HeLa cells [81] Microcephaly [80]

in HeLa cells [81] Microcephaly, simplified gyri [82];

neural tube defects [83]

n [13] Lissencephaly/Subcortical band

heterotopia [84]; neuronal migration

defects [85]

n [51] Lissencephaly; cortical

disorganization [86]

rtical and oblique [87�] Cortical disorganization, microcephaly

rtical and oblique [17] Microlissencephaly; mild

microcephaly [88,89]

anar orientation [90] Decreased neurons, increased RGs

lanar orientation [90] Increased neurons, decreased RGs

rtical and oblique Huntington disease; decreased RGs,

increased neurons [91�]

lique and vertical Decreased RGs (LOF), increased

RGs (GOF) [53,60]

lique in Caco-2 cells [27] Increased RGs (GOF) [53]

lique in Caco-2 cells [27] Normal neurogenesis (aPKClambda)

lique in Caco-2 cells [92],

elencephalon [93]

Decreased RGs, increased IPs [93]

lique and vertical

brain [94]

Decreased RGs (LOF) [95],

increased RGs (GOF) [96]

anar orientation [40�],

rtical and oblique

]

Decreased neurons and IPs (LOF) [40�],

increased IPs and oRGs (GOF) [40�,41]

lique and vertical Decreased RGs, increased IPs

and oRGs [41]

lique orientations [97] Cortical disorganization [97]

lique and vertical Increased asymmetric fates [98]

anar orientation [99] Increased early-born neurons,

decreased RGs [99]

n. This table is limited to those factors where spindle orientation was

www.sciencedirect.com



Spindle orientation in mammalian cerebral cortical development Lancaster and Knoblich 741
in asymmetric fate determination have not been specifi-

cally addressed. Importantly, it is still largely unclear how

differential signaling activities in daughter cells are estab-

lished and whether this is influenced by spindle orien-

tation. This is discussed further below.

Spindle orientation factors and their
phenotypes in the mammalian neocortex
The MTOC and microtubule dynamics. Disruptions in mitotic

spindle components, such as the centrosome and astral

microtubules, lead to striking phenotypes in the mamma-

lian neocortex. For example, disruption of factors involved

in centrosome function leads to misorientation of the

mitotic spindle in neural progenitors [47,48�], which results

in a depletion of neural progenitors [12,49]. Furthermore,

disruption of microtubule dynamics as is seen with loss of

Doublecortin (Dcx), a gene mutated in patients with

lissencephaly and cortical band heterotopia, leads to a

similar depletion of progenitor cells due to randomized

spindle orientation [13]. Along these lines, disruption of

dynein–dynactin function at the cell cortex, as in the case of

Lis1 and Nde1/Ndel1 mutations, similarly leads to

depletion of progenitor cells due to randomized spindle

orientation (Table 1) [17,50,51].

Apical polarity proteins. Several regulators of the apical Par

complex have been shown to regulate asymmetric versus

symmetric divisions in the mammalian brain. For

example, mutation of ASPP2, a regulator of apical Par3
Figure 3

Planar
Asymmetric

Model of spindle orientation in two types of asymmetric divisions. During as

direct the spindle pole away from the apical domain along the planar axis. N

dynactin, which drive spindle pole positioning through directed microtubule

may compete for binding with LGN and displace NuMA from the LGN comp

anchoring relative to the apical domain.
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localization, leads to structural defects as expected with

disruption of polarity, but also leads to defects in asym-

metric divisions with a decrease in apical RGs [52]. In

addition, Par proteins themselves, such as Par3 and Par6,

have been shown to promote symmetric, self-renewing

divisions (Table 1) [53]. However, inactivation of one of

the aPKC isoforms (aPKCl) did not lead to changes in

cell fate despite the striking effect on neuroepithelial

architecture [54], although the other isoform remains to

be examined in this context.

Spindle orientation machinery. Several of the known orien-

tation regulators that have been examined in other mam-

malian systems have now been examined in the

mammalian neocortex. In particular, LGN has been

shown to promote planar orientations in the neocortex

and its loss leads to a randomization of spindle orientation

with a concomitant increase in IPs and a decrease in apical

RGs (Table 1) [41]. Despite the decrease in apical RGs

however, the authors describe a population of RGs dis-

placed from the ventricular zone and localized more

basally, which is dramatically increased with LGN

mutation. These basal RGs likely represent a population

of very recently identified RGs of the outer SVZ, termed

outer radial glia (oRG) [55�,56�,57�] (Figure 2). Our un-

derstanding of these oRGs is still in its infancy, but

several studies have revealed that, like apical RGs, oRGs

can divide asymmetrically to expand neuronal output.

Additionally, although oRGs express identical markers to
Adherens junction
Par complex

LGN, Gα, NuMA

Dynein-dynactin

mInsc

Oblique
Asymmetric

Current Opinion in Neurobiology

ymmetric planar divisions (left), LGN associates with NuMA and Ga to

uMA acts as the bridge between LGN at the lateral poles and dynein/

 transport. During asymmetric oblique or vertical divisions (right), mInsc

lex thereby uncoupling spindle pole positioning and lateral cortex
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742 Neurodevelopment and disease
apical RGs, they lack an apical process and therefore

the apical domain [5]. These are important characteristics

as they have major implications for many aspects of

asymmetric cell division in the neocortex (discussed

below).

In addition, genetic studies of mInsc have now been

performed in mouse neocortex and reveal that loss of

mInsc leads to a decrease in oblique and vertical divisions,

resulting in a decrease in IPs (Table 1) [40�]. On the other

hand, overexpression of mInsc leads to a reduction of

planar divisions and drives the production of IPs as well as

basal RGs [40�,41] (Figure 3). Interestingly, this does not

seem to affect the number of apical RGs as seen in other

mutants affecting spindle orientation. Furthermore,

mInsc seems to specifically affect later neurogenic events,

as early dynamics are not affected in mInsc mutants.

Thus, mInsc seems to inhibit planar divisions and

promote oblique and vertical orientations to drive pro-

duction of IPs and oRGs.

Spindle orientation and cell fate
Spindle orientation seems to be a key initial factor in

acquisition of asymmetric cell fates. Specifically, oblique

and vertical (along the apicobasal axis) orientations tend

to give rise to asymmetric fate outcomes suggesting these

orientations drive asymmetric cell fate. Furthermore, the

contribution of these division orientations varies

temporally during neurogenesis, with early neuroepithe-

lium dividing primarily with a planar orientation, and

oblique orientation arising to a greater extent as neuro-

genesis increases [51,58]. Vertical orientations are some-

what rare under normal circumstances but can be induced

to a greater extent upon genetic manipulation (such as

with mInsc overexpression) [40�,41].

Disruption of these orientations has been shown to have

consequences for resultant cell fate. For example, early

planar orientations seem to be the most sensitive to

spindle orientation defects and their disruption leads to

depletion of the progenitor pool [51]. Disruption of planar

orientations at later stages, by either randomization or

induction of vertical and oblique orientations, also leads

to a gradual depletion of progenitors due to increased

asymmetric neurogenic divisions at the expense of sym-

metric proliferative divisions. On the other hand, disrup-

tion of oblique and vertical orientations leads to a

reduction in neurons due to loss of this pool of asymmetric

divisions [40�].

It is important to point out that while oblique and vertical

divisions promote asymmetric cell fate, the orientation of

asymmetric divisions can also be planar [2]. This suggests

that while spindle orientation influences cell fate, it is not

the only determining factor in generating asymmetric

outcomes, leaving the possibility for other factors open

for investigation.
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One candidate is the apical Par complex. On the basis of

the cellular architecture of the developing cortex, one

model suggests that oblique or vertical spindle orientation

influences the inheritance of the apical domain [59].

Recently, Par3 was shown to localize asymmetrically in

dividing RGs where it promotes Notch signaling in cells

inheriting greater Par3 levels, thereby promoting reten-

tion of RG fate [60]. Par3 was shown to interact with

Numb, a well-known fate determinant in Drosophila
neuroblasts and regulator of Notch signaling [61], and

this interaction led to enhanced Notch activity. Numb is

also asymmetrically localized in this context [62–64].

Thus, Par3 and Numb localize asymmetrically in dividing

RGs to help establish Notch asymmetry post-mitosis.

There are still several open questions here, however. In

particular, the link with spindle orientation is not clear

since asymmetric distribution of Par3 did not correlate

with spindle orientation [60]. Furthermore, Numb and its

related Numb-like (Numbl) have additional roles in

apicobasal polarity, which may also influence spindle

orientation [64]. In addition, numerous studies have

examined whether the apical and/or basal domains cor-

relate with daughter cell fate with somewhat contradic-

tory results [54,57�,59,64,65]. Furthermore, the fact that

oRGs lack an apical domain suggests that inheritance of

the apical domain is not required for RG fate specification

per say, but may be involved in oRG versus apical RG fate

determination. At the moment, the evidence points to a

requirement for both apical and basal domains in main-

taining apical RG fate, whereas alternative fates do not

correlate with inheritance of these domains [41]. Since

these studies are correlative, functional studies to

examine apical and basal components in cell fate deter-

mination and the role of spindle orientation are still

needed.

A new model coming from data from mInsc mutant mice

may help explain why oblique and vertical orientations

influence asymmetric cell fates but planar divisions also

give rise to asymmetric outcomes. The fact that mInsc

induces production of IPs and basal RGs suggests that its

effect on spindle orientation may specifically regulate

indirect versus direct neurogenic asymmetric divisions

[40�]. These data point to the intriguing possibility that

spindle orientation regulates the type of asymmetric

division, rather than whether a division will be asym-

metric (Figure 3). This model would suggest that planar

asymmetric divisions primarily result in direct neurogen-

esis while oblique and vertical divisions result in indirect

neurogenesis through IPs and basal RGs. It will be

important to further test this in the future.

Furthermore, recent structural studies have shed light on

a possible competition between mInsc and NuMA for

binding to LGN [66�,67�,68�]. This would suggest a

potential model whereby spindle orientation machinery
www.sciencedirect.com
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primarily directs planar orientations through the action of

LGN and NuMA, but when mInsc is present, the com-

munication between LGN and the spindle via NuMA is

disrupted by competition with mInsc (Figure 3). Thus,

planar spindle orientation may be an active process of

orienting the spindle, while oblique and vertical orien-

tations may reflect a more passive result of inhibiting this

orienting machinery. This is in contrast to the switch

model seen in Drosophila, as mInsc does not drive strictly

vertical orientations in the mammalian neocortex.

Spindle orientation in human evolution and
developmental disorders
Several human brain diseases have been proposed to stem

from defects in asymmetric cell division and spindle

orientation [7]. In particular, microcephaly, a condition

involving an abnormally small brain and head, has been

linked to potential spindle defects. Notably, all the genes

so far identified in primary microcephaly encode proteins

with roles at the centrosome/MTOC of the spindle [12].

Three of these genes, MCPH1, ASPM, and CDK5RAP2,

have been shown to be required for planar oriented

divisions in the mouse neocortex [48�,49,69], and two

of these (MCPH1 and CDK5RAP2) have been shown to

be required for centrosome function and centriole dupli-

cation [48�,70]. Furthermore, several of the genes ident-

ified in the disorder lissencephaly, which is characterized

by a loss of gyri and sulci (the folds and grooves of the

cerebral cortex), have also been suggested to have roles in

spindle orientation. As mentioned above, LIS1, NDE1,

and DCX all regulate spindle orientation [13,17,51], and

this has consequences to cell fate specification.

These data from developmental disorders also point to a

probable role for spindle orientation in human brain

evolution, as this has involved a massive size expansion

as well as elaboration of foliation [6]. This may have

occurred through genetic changes to factors regulating

asymmetric division, and in particular spindle orientation.

For example, ASPM and CDK5RAP2 have both been

shown to have undergone positive selection along the

primate lineage and associate with increased brain size

[71–74].

We are only just beginning to understand some of the

molecular factors involved in human brain evolution, but

regulators of spindle orientation are likely candidates.

The identification of oRGs, and the fact that they are

dramatically expanded in humans and other animals with

large cerebral cortexes, suggests a potential role in evol-

utionary expansion of neuronal production. Along these

lines, it will be important to examine biological processes

governing generation of oRGs. Data from LGN and

mInsc mutants suggest that oblique oriented divisions

give rise to oRGs [40�,41,57�], pointing to the intriguing

possibility that oblique spindle orientation may have
www.sciencedirect.com 
contributed to evolutionary expansion of the human

cerebral cortex.

Concluding remarks
Studies from a diverse array of systems have provided a

foundation for understanding the molecular mechanisms

of spindle orientation. Many of these mechanisms hold

true in the mammalian cerebral cortex as well, and can

shed light on asymmetric cell division within this context.

Overall, existing data suggest spindle orientation influ-

ences asymmetric cell fate though it does not strictly

determine whether or not a division will be asymmetric or

symmetric. Whether this is due to an inherent stochas-

ticity [75] or an as yet unclear fate determinant, perhaps

involving the apical domain, is not yet evident. However,

evidence points to a more specific role for spindle orien-

tation in determining the type of asymmetric division in

the mammalian neocortex. It will be important to test this

model directly as well as whether oblique and vertical

divisions reflect a more passive process of disruption of

planar orientation as recent interaction evidence suggests.

One of the key remaining questions is how orienting the

spindle influences fate determination. Whether this is

through asymmetric inheritance of Notch signaling com-

ponents or other signaling cascade components is still

unclear. Now that we have a clearer understanding of the

role of spindle orientation, namely in generating IPs and

oRGs, we can begin to examine whether factors involved

in determination of these progenitor cell types are asym-

metrically inherited in a spindle orientation dependent

manner.

Finally, an examination of mechanisms of spindle orien-

tation in oRGs would be very exciting, as these seem to

undergo asymmetric divisions in the complete absence of

an apical domain to help govern the orientation. It may be

that the basal domain provides the directional cues

responsible for orientation in this context. This would

represent quite a divergence from the mechanism used in

other systems and should be examined.
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