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Decomposition of Algebraic Functions
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Functional decomposition—whether a function f(x) can be written as a composition
of functions g(h(x)) in a non-trivial way—is an important primitive in symbolic com-
putation systems. The problem of univariate polynomial decomposition was shown to
have an efficient solution by Kozen and Landau (1989). Dickerson (1987) and von zur
Gathen (1990a) gave algorithms for certain multivariate cases. Zippel (1991) showed
how to decompose rational functions. In this paper, we address the issue of decomposi-
tion of algebraic functions. We show that the problem is related to univariate resultants
in algebraic function fields, and in fact can be reformulated as a problem of resultant
decomposition. We characterize all decompositions of a given algebraic function up to
isomorphism, and give an exponential time algorithm for finding a non-trivial one if it
exists. The algorithm involves genus calculations and constructing transcendental gen-
erators of fields of genus zero.

c© 1996 Academic Press Limited

1. Introduction

Functional decomposition is the problem of representing a given function f(x) as a com-
position of “smaller” functions g(h(x)). Decomposition of polynomials is useful in simpli-
fying the representation of field extensions of high degree, and is provided as a primitive
by many major symbolic algebra systems.

The first analysed algorithms for decomposition of polynomials were provided by Bar-
ton and Zippel (1976, 1985) and Alagar and Thanh (1985), who gave algorithms for the
problem of decomposing univariate polynomials over fields of characteristic zero. Both so-
lutions involved polynomial factorization and took exponential time. Kozen and Landau
(1989) discovered a simple and efficient polynomial time solution that does not require
factorization. It works over fields of characteristic zero and whenever the characteristic
of the underlying field does not divide the degree of h. It also provides NC algorithms for
irreducible polynomials over finite fields and all polynomials over fields of characteristic
zero. Dickerson (1987) and von zur Gathen (1990a) gave algorithms for certain multi-
variate cases. In addition, von zur Gathen (1990b) also found algorithms for the case in
which the characteristic of the field divides the degree of h. Zippel (1991) showed how to
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decompose rational functions efficiently over fields of any characteristic, thus resolving
the polynomial problem for finite characteristic.

In this paper we address the decomposition problem for algebraic functions. We show
that the problem bears an interesting and useful relationship to univariate resultants
over algebraic function fields, and in fact can be reformulated as a certain resultant de-
composition problem: whether some power of a given irreducible bivariate polynomial
f(x, z) can be expressed as the resultant with respect to y of two other bivariate polyno-
mials g(x, y), h(y, z). We determine necessary and sufficient conditions for an algebraic
function to have a non-trivial decomposition, and classify all such decompositions up to
isomorphism. We give an exponential–time algorithm for finding a non-trivial decompo-
sition of a given algebraic function if one exists. The algorithm involves calculating the
genus of certain algebraic function fields and constructing transcendental generators of
fields of genus zero.

2. Resultants and Algebraic Functions

2.1. the univariate resultant

Here we review some basic facts about the univariate resultant; see Ierardi and Kozen
(1993) and Zippel (1993) for a detailed introduction.

The resultant of two polynomials

g(y) = a

m∏
i=1

(y − αi) h(y) = b
∏̀
j=1

(y − βj)

with respect to y is the polynomial

resy (g, h) = a`bm
∏
i,j

(βj − αi) = bm
∏

h(β)=0

g(β) . (2.1)

The resultant vanishes if and only if g and h have a common root. It can be calculated
in a number of ways, including as the determinant of the Sylvester matrix, a certain
(m+ `)× (m+ `) matrix containing the coefficients of g and h.

The following are some useful elementary properties, that follow immediately from (2.1).

resy (g, h) = (−1)m` resy (h, g)
resy (g1g2, h) = resy (g1, h) · resy (g2, h)
resy (g, h1h2) = resy (g, h1) · resy (g, h2)

resy (c, h) = c`

resy (g, 1) = resy (1, h) = 1
resy (g, y − β) = g(β)

resx (f(x), resy (g(x, y), h(y))) = resy (resx (f(x), g(x, y)) , h(y)) . (2.2)

Property (2.2) is an associativity property. Because of this property, we can write

resx,y (f(x), g(x, y), h(y))

unambiguously for the left- or right-hand side of (2.2).
We extend the definition to pairs of rational functions as follows. If neither g1, h2
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nor g2, h1 have a common root, define

resy

(
g1

g2
,
h1

h2

)
=

resy (g1, h1) · resy (g2, h2)
resy (g1, h2) · resy (g2, h1)

.

This definition reduces to the previous one in the case of polynomials. All the properties
listed above still hold, taking m = deg g1 − deg g2 and n = deg h1 − deg h2.

2.2. resultants and decomposition

Let K be an algebraically closed field, and let Ω be a universal field over K in the sense
of van der Waerden (1970a); i.e., an algebraically closed field of infinite transcendence
degree over K. Let A2(Ω) denote the affine plane over Ω.

Algebraic functions of γ are usually defined as elements of some finite extension of
K(γ), the field of rational functions of γ. We can also view algebraic functions more
concretely as multivalued functions Ω→ 2Ω or as binary relations on Ω defined by their
minimum polynomials. In the latter view, the decomposition problem is naturally defined
in terms of ordinary composition of binary relations:

R ◦ S = {(u,w) | ∃v (u, v) ∈ R ∧ (v, w) ∈ S} .

Definition 2.1. For f(x, z) ∈ K[x, z], let

V (f) = {(α, γ) | f(α, γ) = 0} ⊆ A2(Ω)

be the affine variety generated by f . A decomposition of f is a pair of polynomials
g(x, y) ∈ K[x, y] and h(y, z) ∈ K[y, z] such that

V (f) = V (g) ◦ V (h) ,

where the overbar denotes the Zariski closure in A2(Ω) (see Hartshorne, 1977).

The Zariski closure is taken in order to account for points at infinity in a composition.
An alternative approach would be to consider f as a binary relation on the projective
line.

This notion of decomposition is strongly related to the univariate resultant:

V (g) ◦ V (h) = {(α, γ) | ∃β g(α, β) = h(β, γ) = 0}
= {(α, γ) | resy (g(α, y), h(y, γ)) = 0}

by (2.1). The following results develop this relationship further.

Lemma 2.2. Let g(x, y) ∈ K[x, y] and h(y, z) ∈ K[y, z]. Considering g(x, y) and h(y, z)
as polynomials in y, let gm(x) and h`(z) be their respective leading coefficients. Then

V (resy (g, h)) = (V (g) ◦ V (h)) ∪ V (gm, h`) .

Proof. Consider the two expressions

resy (g(α, y), h(y, γ)) (2.3)
resy (g(x, y), h(y, z)) [x := α, z := γ] . (2.4)

The difference is whether α and γ are substituted for x and z before or after the resultant
is taken. We claim that for any α, γ,
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(i) if gm(α) = h`(γ) = 0, then (2.4) vanishes;
(ii) if either gm(α) 6= 0 or h`(γ) 6= 0, then (2.3) and (2.4) vanish or do not vanish

simultaneously.

In case (i), we have
resy (g(x, y), h(y, z)) = detS(x, z) ,

where S(x, z) is the Sylvester matrix of g(x, y) and h(y, z). Then

resy (g(x, y), h(y, z)) [x := α, z := γ] = detS(α, γ) = 0 ,

since the first row of S(α, γ) is the zero vector. In case (ii), say h`(γ) 6= 0 (the other case
is symmetric). Then

resy (g(x, y), h(y, z)) [x := α, z := γ] = resy (g(x, y), h(y, γ)) [x := α]

= h`(γ)degy g(x,y)
∏

h(β,γ)=0

g(α, β)

resy (g(α, y), h(y, γ)) = h`(γ)degy g(α,y)
∏

h(β,γ)=0

g(α, β)

thus both expressions are simultaneously zero or non-zero.
By (i) and (ii),

V (resy (g, h)) = {(α, γ) | resy (g(x, y), h(y, z)) [x := α, z := γ] = 0}
= {(α, γ) | resy (g(α, y), h(y, γ)) = 0 ∨ gm(α) = h`(γ) = 0}
= (V (g) ◦ V (h)) ∪ V (gm, h`) .

2

Theorem 2.3. Let g(x, y) ∈ K[x, y] and h(y, z) ∈ K[y, z] be irreducible and non-degen-
erate (i.e., positive degree in each variable). Then

V (resy (g, h)) = V (g) ◦ V (h) .

Proof. We have V (g) ◦ V (h) ⊆ V (resy (g, h)) by Lemma 2.2 and the fact that
V (resy (g, h)) is Zariski-closed.

Conversely, it follows from the assumption that g(x, y) and h(y, z) are irreducible and
non-degenerate that for all α, β, γ such that g(α, β) = h(β, γ) = 0, either all α, β, γ ∈ K
or all are transcendental over K. We use this to show that resy (g, h) has no factor of
the form u(x). Suppose it did. Let a ∈ K be a root of u (recall that K is algebraically
closed). Then resy (g, h) [x := a] = 0. Let γ be transcendental over K. We have

0 = resy (g(x, y), h(y, z)) [x := a, z := γ]
= resy (g(x, y), h(y, γ)) [x := a]

= h`(γ)m
∏

h(β,γ)=0

g(x, β)[x := a]

= h`(γ)m
∏

h(β,γ)=0

g(a, β) ,

thus g(a, β) = h(β, γ) = 0 for some β. But a ∈ K and γ is transcendental over K, which
contradicts our observation above.
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By symmetry, resy (g, h) has no factor v(z).
Thus all irreducible factors of resy (g, h) are non-degenerate. Let (α, γ) be a generic

point of some irreducible component C of V (resy (g, h)). Then α and γ are transcendental
over K. By Lemma 2.2, (α, γ) ∈ V (g)◦V (h), so C ⊆ V (g) ◦ V (h). Since C was arbitrary,
V (resy (g, h)) ⊆ V (g) ◦ V (h). 2

Corollary 2.4. Let f(x, z), g(x, y), and h(y, z) be irreducible and non-degenerate. Then
g, h give a decomposition of f if and only if fk = resy (g, h) for some k > 0.

Proof. If fk = resy (g, h), then by Theorem 2.3,

V (f) = V (fk) = V (resy (g, h)) = V (g) ◦ V (h) .

Conversely, if V (f) = V (g) ◦ V (h), then by Theorem 2.3, V (f) = V (resy (g, h)), and
fk = resy (g, h) follows immediately from the Nullstellensatz and the assumption that f
is irreducible. 2

We use the term functional decomposition, despite the fact that the function z 7→ x
specified by the bivariate polynomial f(x, z) is in general multivalued, and would be more
accurately termed a relation. However, at least in characteristic 0, these relations behave
locally like functions; for example, consider the square root “function”

√
y, specified by

the bivariate polynomial x2− y. It is this common intuition on which our terminology is
based.

In light of Corollary 2.4 and the above discussion, we define the decomposition problem
for algebraic functions as follows:

Given an irreducible polynomial f(x, z), find polynomials g(x, y) and h(y, z) and
a positive integer k such that fk = resy (g, h).

This formulation directly generalizes the definition of functional decomposition for uni-
variate polynomials and rational functions, considering univariate polynomials to be
specified by bivariate polynomials f(x, y) that are monic and linear in x, and ratio-
nal functions to be specified by polynomials f(x, y) that are linear in x; that is, the
bivariate polynomial h(y)x− g(y) specifies the rational function g(y)/h(y). For example,
to compose univariate polynomials g(y) and h(z), take the resultant of y − h(z) and
x− g(y):

resy (x− g(y), y − h(z)) = x− g(h(z)) .

Under this definition, every bivariate polynomial f is decomposable in infinitely many
ways:

resy
(
f(x, yk), yk − z

)
=
∏
βk=z

f(x, βk) =
∏
βk=z

f(x, z) = fk . (2.5)

However, these decompositions are not optimal in a sense to be made precise. In the next
section we will define a notion of minimality for decompositions, and show that up to
isomorphism there are only finitely many non-trivial minimal decompositions.
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2.3. irreducible decompositions

A decomposition f = resy (g, h) is called irreducible if both g and h are irreducible as
polynomials in K[x, y] and K[y, z], respectively. By the multiplicativity of the resultant,
every decomposition factors into a product of irreducible decompositions.

2.4. monic decompositions

A decomposition f = resy (g, h) is called monic if g ∈ K(y)[x] and h ∈ K(z)[y] are
monic. The next result says that we can restrict our attention to monic decompositions
without loss of generality.

Lemma 2.5. Let f ∈ K[x, z], g ∈ K[x, y], h ∈ K[y, z] be non-degenerate, g, h irreducible,
f a power of an irreducible polynomial. Let f̂ , ĝ, and ĥ be the monic associates of f ,
g, h in K(z)[x], K(y)[x], and K(z)[y] respectively. Then f = resy (g, h) if and only if

f̂ = resy
(
ĝ, ĥ
)

.

Proof. Let fn(z), gm(y), and h`(z) be the lead coefficients of f , g and h, respectively.
Let

u(z) = resy (gm(y), h(y, z)) · h`(z)degy g−degy gm .

Then

resy (g, h) = resy (gm, h) · resy
(
ĝ, h`

)
· resy

(
ĝ, ĥ
)

= u · resy
(
ĝ, ĥ
)
.

But since ĝ and ĥ are monic, so is resy
(
ĝ, ĥ
)

, therefore if f = resy (g, h) = u · resy
(
ĝ, ĥ
)

,
then u = fn and f̂ = resy

(
ĝ, ĥ
)

.

Conversely, if f̂ = resy
(
ĝ, ĥ
)

, then uf = fn resy (g, h). Remove common factors to
get vf = w · resy (g, h), where v, w ∈ K[z] are relatively prime. Now f has no factor in
K[z], so w is a unit. Likewise, as argued in the proof of Theorem 2.3, resy (g, h) has no
factor in K[z], so v is a unit. 2

2.5. inseparable decompositions

In prime characteristic p, a decomposition f(x, z)k = resy (g(x, y), h(y, z)) is separable
if f is separable as a polynomial in K(z)[x], g is separable as a polynomial in K(y)[x],
and h is separable as a polynomial in K(z)[y]. The following argument shows that we
can restrict our attention to separable decompositions without loss of generality.

Any inseparable polynomial f(xq, z), q = pn, has a non-trivial decomposition

f(xq, z) = resy (xq − y, f(y, z)) . (2.6)

The polynomial xq − y decomposes into the composition of n copies of xp − y. Also,

resy (g(x, y), yq − z) = resy
(
g(x, y), (y − q

√
z)q
)

= resy
(
g(x, y), y − q

√
z
)q

= g(x, q
√
z)q

= g[q](xq, z) (2.7)
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where g[q](u, v) denotes the polynomial obtained from g(u, v) by raising all the coefficients
to the qth power.

Once we have decomposed f(xq, z) as in (2.6), we can attempt to decompose f(y, z)
further. The following results show that any decomposition of f(xq, y) gives an associated
decomposition of f(x, y), so we can take this step without loss of generality.

Lemma 2.6. If f(x, z)k = resy (g(x, y), h(y, z)) is a non-degenerate irreducible decom-
position, g is separable in x, and h is separable in y, then f is separable in x.

Proof. Let γ be transcendental over K. Let β be a root of h(y, γ) and let α be a root of
g(x, β). Then α is a root of f(x, γ). Since h is separable in y, the extension K(β, γ) : K(γ)
is separable. Since g is separable in x, the extension K(α, β, γ) : K(β, γ) is separable.
Combining these extensions, we have that the extension K(α, β, γ) : K(γ) is separable,
hence f(x, γ) is separable. 2

Theorem 2.7. Let q be a power of p and let f(xq, z)k = resy (g(x, y), h(y, z)) be a monic
non-degenerate irreducible decomposition, f(x, z) separable. Then there exists a separable
decomposition

f(x, z)k = resy
(
ĝ[s](x, y), ĥ(y, z)

)
where g(x, y) = ĝ(xr, y), h(y, z) = ĥ(ys, z), and q = rs.

Proof. Let r, s be powers of p such that g and h can be written g(x, y) = ĝ(xr, y),
h(y, z) = ĥ(ys, z) with ĝ, ĥ separable. Then ĝ, ĥ are also irreducible, and so is ĝ[s](x, y).

resy
(
xq − y, f(y, z)k

)
= f(xq, z)k

= resy (g(x, y), h(y, z))

= resy
(
ĝ(xr, y), ĥ(ys, z)

)
= resy,w

(
ĝ(xr, y), ys − w, ĥ(w, z)

)
= resw

(
ĝ[s](xrs, w), ĥ(w, z)

)
by (2.7)

= resy,w
(
xrs − y, ĝ[s](y, w), ĥ(w, z)

)
and resw

(
ĝ[s](y, w), ĥ(w, z)

)
is separable by Lemma 2.6. Thus q = rs and

f(y, z)k = resw
(
ĝ[s](y, w), ĥ(w, z)

)
.

2

This argument shows that in any irreducible decomposition of f , any inseparability
of f must stem from the inseparability of one of the composition factors, and this insep-
arability ultimately emerges as a composition factor of the form xq − y.

By Theorem 2.7, we can henceforth assume without loss of generality that all decom-
positions are separable.
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3. A Characterization of All Decompositions

In this section we give a characterization of all possible irreducible decompositions of
an algebraic function that can arise. As above, we assume that K is algebraically closed
and that Ω is a universal field over K.

Let γ be transcendental over K and let α be a non-constant algebraic function of γ
with monic minimum polynomial f(x, γ) ∈ K(γ)[x] of degree n. From the results of the
previous section, the functional decomposition problem reduces to the problem of finding
all monic irreducible decompositions of the form

f(x, γ)k = resy (g(x, y), h(y, γ)) =
∏

h(β,γ)=0

g(x, β) .

Moreover, we can assume without loss of generality that f(x, γ) is separable.
Let A be the set of conjugates of α over K(γ), |A| = n. Let SymA denote the field

of symmetric functions of A. This is the smallest field containing all the coefficients of
f(x, γ). Note that SymA properly contains K, for otherwise f(x, γ) would factor into
linear factors since K is algebraically closed, contradicting the assumption that α is
non-constant.

Now consider the following condition on algebraic functions β of γ:

Condition 3.1. The monic minimum polynomial g(x, β) of α over K(β) divides f(x, γ).

If β is algebraic over K(γ), then g exists, since α is algebraic over K(γ) and γ is algebraic
over K(β). A subtle but important point to note is that Condition 3.1 does not imply
that f(x, γ) factors over K(β). Indeed, K(β) need not contain the coefficients of f or f/g.
We give an example of this in Section 5. The polynomial g(x, β) does divide f(x, γ) in
the field K(β, γ), so f(x, γ) does factor over this field.

The following theorem states that any β satisfying Condition 3.1 uniquely determines
a monic irreducible decomposition of α; moreover, all monic irreducible decompositions
of α arise in this way.

Theorem 3.2. Let α be an algebraic function of γ with monic minimum polynomial
f(x, γ) ∈ K(γ)[x] of degree n. Let β be algebraic over K(γ) with monic minimum poly-
nomial h(y, γ) ∈ K(γ)[y] of degree `. Let g(x, β) ∈ K(β)[x] of degree m be the monic
minimum polynomial of α over K(β). If β satisfies Condition 3.1, i.e. if g(x, β) divides
f(x, γ), then

f(x, z)
`m
n = resy (g(x, y), h(y, z))

is a monic irreducible decomposition of α. Moreover, all monic irreducible decompositions
of α arise in this way.

Proof. Let A be the set of roots of f(x, γ) and let Bβ ⊆ A be the set of roots of g(x, β).
If η is a conjugate of β over K(γ), let Bη be the set of roots of g(x, η). The set Bη is the
image of Bβ under any Galois automorphism over K(γ) mapping β to η. For any such
conjugate η, |Bη| = |Bβ | = m and Bη ⊆ A, since the Galois group over K(γ) preserves A
setwise.

By the symmetry of the action of the Galois group on A, each δ ∈ A occurs in the
same number of the Bη, say k. We determine k by counting in two ways the number of
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pairs (δ, η) such that δ ∈ Bη. First, it is the number of conjugates η of β times the size of
each Bη, or `m. Second, it is the number of δ ∈ A times the number of Bη containing δ,
or nk. Equating these two values gives k = `m/n, the exponent in the statement of the
theorem. Moreover, it follows from the same argument that

f(x, γ)k =
∏
δ∈A

(x− δ)k =
∏

h(η,γ)=0

∏
δ∈Bη

(x− δ)

=
∏

h(η,γ)=0

g(x, η) = resy (g(x, y), h(y, γ)) .

Since γ is transcendental over K, we might as well replace it with the indeterminate z
to get

f(x, z)k = resy (g(x, y), h(y, z)) . (3.1)

The decomposition is monic and irreducible by definition.
Now we show that every monic irreducible decomposition of α arises in this way. Sup-

pose we have such a decomposition (3.1). Let β be a common root of g(α, y) and h(y, γ).
Such a β exists, since f(α, γ) vanishes, hence so does the resultant resy (g(α, y), h(y, γ)).
Then β is algebraic over K(γ) with minimum polynomial h(y, γ); g(x, β) is the minimum
polynomial of α over K(β); and

f(x, γ)k = resy (g(x, y), h(y, γ)) =
∏

h(η,γ)=0

g(x, η) .

Since g(x, β) is one of the factors in the product, it divides f(x, γ). 2

At this juncture we make a few observations about minimal decompositions and unique-
ness.

3.1. minimal decompositions

There may exist β of arbitrarily high degree over K(γ) satisfying Condition 3.1. For
example, for any k, β = k

√
γ gives the decomposition

(x− z)k = resy
(
x− yk, yk − z

)
.

This is also the situation with (2.5) above. However, we can bound the search for a
suitable β as follows. Observe that if there exists a β satisfying Condition 3.1 with factor
g(x, β) of f , say with roots B ⊆ A, then α will have the same degree over any subfield
of K(β) containing the coefficients of g. Furthermore, any such subfield is again a purely
transcendental extension of K by Lüroth’s Theorem (see van der Waerden (1970b) and
Zippel (1993)), so a transcendental generator of that subfield would give a decomposition
with the same g and smaller degree h and smaller k. For a given g, the degree of h and
exponent k are minimized by taking the smallest subfield containing the coefficients of g,
namely SymB.

3.2. non-trivial decompositions

If the minimum polynomial g(x, β) of α over K(β) is f (as would occur in the case
β = γ), then the minimal decomposition with this g occurs when β is a transcendental
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generator of SymA. Since SymA ⊆ K(γ), β would be a rational function of γ, and h
would be linear of the form y − u(γ), u ∈ K(z), giving the decomposition

f(x, z) = resy (g(x, y), y − u(z)) = g(x, u(z)) .

In this case α is the composition of an algebraic function and a rational function.
In case g(x, β) is linear, say g = x− v(β), the smallest field containing the coefficients

of g is K(v(β)), so by using v(β) instead of β we would obtain the trivial decomposition

f(x, z) = resy (x− y, h(y, z)) = h(x, z) .

To find a non-trivial decomposition, we must find a β such that K(β) does not contain α.

3.3. uniqueness up to linear composition factors

The decomposition determined by β essentially depends only on the field K(β), not
on the choice of transcendental generator β. Any other transcendental generator of K(β)
is related to β by a non-singular fractional linear transformation

β 7→ aβ + b

cβ + d
, ad− bc 6= 0 ,

which extends to an automorphism of K(β). Any two decompositions defined with re-
spect to two transcendental generators of the same field are equivalent up to invertible
composition factors of the form (cz + d)y − (az + b).

4. An Algorithm

As determined in the previous section, up to fractional linear transformations there
are only finitely many minimal irreducible monic decompositions of f , at most one for
each factor g of f . We have thus reduced the decomposition problem to the problem of
finding a subset B ⊆ A (the roots of g) such that the field SymB (the field generated
by the coefficients of g) is a purely transcendental extension of K, and then finding a
transcendental generator β of SymB. Such a β is automatically algebraic over K(γ),
since SymB ⊆ K(A), the splitting field of f over K(γ).

We must first determine whether f has a factor g whose coefficients lie in a purely
transcendental extension of K. Equivalently, we want to know when the field SymB of
symmetric functions in the roots B of g is isomorphic to a rational function field over K.
This is true if and only if SymB is of genus zero. Thus the problem reduces to the
problem of determining the genus of an algebraic function field.

The following is a synopsis of our algorithm.

Algorithm 4.1.

1. Construct a splitting field of f and factor f over it. This can be done by repeatedly
adjoining roots and factoring. Over Q, the algorithm of Landau (1985) or Lenstra
(1983) can be used here. Over finite fields, the computation is even simpler, since
every extension is normal.

2. Let g be a non-trivial factor of f obtained by taking the product of some subset of
the linear factors of f obtained in step 1. Then g can be written

g(x) = xm + um−1x
m−1 + · · ·+ u0 ,
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where the ui lie in some finite extension of K(γ) that is a subfield of the splitting
field. For each such g, perform steps 3 and 4.

3. The field K(u0, . . . , um−1) is the field SymB, where B is the set of roots of g. Pick
one of the coefficients of g not in K, say u0. We have two cases:

(a) If K(u0, . . . , um−1) = K(u0), we are done: u0 is a transcendental generator of
SymB. This can be determined by asking whether ui ∈ K(u0), 1 ≤ i ≤ m− 1.
Membership in an algebraic extension can be tested by solving a linear system.

(b) If K(u0, . . . , um−1) 6= K(u0), construct a primitive element θ of the extension
such that K(u0, . . . , um−1) = K(u0, θ). This can be done using Lang (1984),
p. 290. Compute the genus of K(u0, θ) by the Hurwitz genus formula or in
some other fashion. An efficient algorithm is given in Kozen (1994). If the
genus is non-zero, then no decomposition arises from this factor of f . If the
genus is zero, compute a rational generator β of K(u0, θ). Coates (1970), Trager
(1984), Huang and Ierardi (1991), and Sendra and Winkler (1991) give efficient
algorithms for computing rational generators. The coefficients of g can then be
written as rational functions of β.

4. Let h(y, γ) be the minimum polynomial of β over K(γ). Return g(x, y) and h(y, z)
as the decomposition factors.

Under suitable assumptions about the complexity of operations inK, the complexity of
the algorithm as given above is exponential in the worst case, since there are exponentially
many potential factors. For each such factor, the computation for that factor can be
performed in polynomial time in the size of the representation of the algebraic numbers
needed to express the result, or exponential time in the bit complexity model Huang and
Ierardi (1991). We have not been too careful about the analysis here, because we are not
optimistic about the practicality of the algorithm.

5. An Example

The following gives an example of a decomposition involving a β such that g(x, β)
divides f(x, γ), but f(x, γ) does not factor over K(β). Consider the polynomial

f(x, z) = x4 − zx2(x+ 1) + z3(x+ 1)2 .

Let γ be transcendental over K, and let

β =
γ(1 +

√
1− 4γ)

2
η =

γ(1−
√

1− 4γ)
2

g(x, y) = x2 − y(x+ 1) h(y, z) = y2 − zy + z3 .

Then β and η are conjugates over K(γ) with minimum polynomial h(y, γ), and

f(x, γ) = g(x, β) · g(x, η) ,

thus Theorem 3.2 says that g and h should give a decomposition of f . Indeed,

resy (g(x, y), h(y, z)) =
−(x+ 1) 0 1

x2 −(x+ 1) −z
0 x2 z3

= f(x, z) .
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To show f(x, γ) does not factor over K(β), it suffices to show that its trace γ is not
in K(β). But γ is a root of the irreducible polynomial h(β, z), therefore is algebraic of
degree three over K(β).
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